CN114041264A - 差分电流至电压转换 - Google Patents

差分电流至电压转换 Download PDF

Info

Publication number
CN114041264A
CN114041264A CN202080047500.4A CN202080047500A CN114041264A CN 114041264 A CN114041264 A CN 114041264A CN 202080047500 A CN202080047500 A CN 202080047500A CN 114041264 A CN114041264 A CN 114041264A
Authority
CN
China
Prior art keywords
current
signal
voltage
differential
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080047500.4A
Other languages
English (en)
Other versions
CN114041264B (zh
Inventor
R.托塔蒂尔
R.K.阿杜苏马利
帕瓦蒂.S.杰
V.B.武利加达拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams International AG
Original Assignee
Ams International AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ams International AG filed Critical Ams International AG
Publication of CN114041264A publication Critical patent/CN114041264A/zh
Application granted granted Critical
Publication of CN114041264B publication Critical patent/CN114041264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/083Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers
    • H03F1/086Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers with FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/005Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements using switched capacitors, e.g. dynamic amplifiers; using switched capacitors as resistors in differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/082Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/04Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only
    • H03F3/08Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light
    • H03F3/087Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements with semiconductor devices only controlled by light with IC amplifier blocks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/70Charge amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/013Modifications of generator to prevent operation by noise or interference
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/252Multiple switches coupled in the input circuit of an amplifier are controlled by a circuit, e.g. feedback circuitry being controlling the switch
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/264An operational amplifier based integrator or transistor based integrator being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/312Indexing scheme relating to amplifiers the loading circuit of an amplifying stage comprising one or more switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/411Indexing scheme relating to amplifiers the output amplifying stage of an amplifier comprising two power stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/421Multiple switches coupled in the output circuit of an amplifier are controlled by a circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/81Inputs or outputs are crossed during a first switching time, not crossed during a second switching time
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45134Indexing scheme relating to differential amplifiers the whole differential amplifier together with other coupled stages being fully differential realised
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45138Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45141A cross coupled pair of transistors being added in the input circuit of a differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45171Indexing scheme relating to differential amplifiers the input signal being switched to the one or more input terminals of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45174Indexing scheme relating to differential amplifiers the application of the differential amplifier being in an integrator circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45206One or two switches are coupled in the loading circuit of the dif amp
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45512Indexing scheme relating to differential amplifiers the FBC comprising one or more capacitors, not being switched capacitors, and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45514Indexing scheme relating to differential amplifiers the FBC comprising one or more switched capacitors, and being coupled between the LC and the IC
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45551Indexing scheme relating to differential amplifiers the IC comprising one or more switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45562Indexing scheme relating to differential amplifiers the IC comprising a cross coupling circuit, e.g. comprising two cross-coupled transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45614Indexing scheme relating to differential amplifiers the IC comprising two cross coupled switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45616Indexing scheme relating to differential amplifiers the IC comprising more than one switch, which are not cross coupled
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45634Indexing scheme relating to differential amplifiers the LC comprising one or more switched capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45726Indexing scheme relating to differential amplifiers the LC comprising more than one switch, which are not cross coupled

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)
  • Electronic Switches (AREA)

Abstract

一种装置包括差分电流至电压转换电路,其包括输入采样级电路、差分积分和DC信号消除级电路以及放大和累加器级电路。差分电流至电压电路的输入共模电压独立于差分电流至电压电路的输出共模电压。

Description

差分电流至电压转换
技术领域
本公开涉及差分电流至电压转换。
背景技术
电子电路中的各种应用需要测量相对较小的电流信号。例如,在光学接近度感测的上下文中,在存在较大环境光DC电流信号的情况下,检测从光发射器发射并从待检测对象反射的脉冲AC光信号会产生小的AC电流信号。当光发射器被打开时,由光检测器生成的由环境光引起的DC电流通常比由光检测器生成的由反射光线引起的AC电流大很多倍。DC电流信号幅度和AC电流信号幅度之间的大比率使得在存在强环境光或DC电流信号的情况下检测小AC电流信号具有挑战性。
发明内容
本公开的差分电流至电压转换电路可用于需要或期望检测相对小的电流的广泛应用中。
例如,在一个方面,本公开描述了一种包括差分电流至电压转换电路的装置,该差分电流至电压转换电路包括输入采样级电路、差分积分和DC信号消除级电路以及放大和累加器级电路。
输入采样级电路能够操作以在第一时段期间对第一电流信号进行采样,并且能够操作以在第二时段期间对第二电流信号进行采样。差分积分和DC信号消除级电路能够操作以从输入采样级电路接收第一和第二电流信号,对第一和第二电流信号进行积分,以及生成代表第一和第二电流信号之间的差的电压输出。放大和累加器级电路能够操作以接收来自差分积分和DC信号消除级电路的电压输出,并放大接收的电压输出。差分电流至电压电路的输入共模电压独立于差分电流至电压电路的输出共模电压。
一些实施方式包括以下一个或多个特征。例如,在一些情况下,差分电流至电压电路的输入共模电压不同于差分电流至电压电路的输出共模电压。在一些实施方式中,差分积分和DC信号消除级电路的共模独立于放大和累加器级电路的共模。在一些情况下,差分积分和DC信号消除级电路的共模不同于放大和累加器级电路的共模。
在一些实施方式中,第一时段根据第一时钟信号来确定,并且第二时段根据不同的第二时钟信号来确定,该第二时钟信号从第一时钟信号偏移,使得第一和第二时段不重叠。差分电流至电压转换电路能够操作以针对每个时钟阶段(clock phase)执行复位操作,其中时钟阶段包括针对第一和第二时钟信号两者的完整周期。
在一些情况下,该装置还包括连接到差分电流至电压转换电路的输入共模的电流生成设备。电流生成设备可以是例如光检测器(例如光电二极管)。
在一些实施方式中,放大和累加器级电路能够操作以在指定数量的时钟周期内累加接收电压。放大和累加器级电路的输出可以耦合到例如模数转换器。
一些实施方式包括以下一个或多个优点。例如,差分电流至电压转换电路可以减少或消除电荷引起的误差,例如单端接近架构中可能存在的电荷共享和时钟馈通。在一些情况下,所公开的电路可以显著改进电源抑制比(power supply rejection ratio,PSRR)和共模抑制比(common mode rejection ratio,CMRR)。所公开的电路还可以避免反馈电容器在操作的任何阶段浮动。
根据以下具体实施方式、附图和权利要求,其他方面、特征和优点将变得显而易见。
附图说明
图1示出了差分电流至电压转换电路的示例。
图2是与图1的电路相关联的时序图。
图3是示出其中可以结合图1的电路的光电模块的示例的框图。
具体实施方式
在以下段落中,在包括光发射器(例如,VCSEL或LED)和光检测器(例如,光电二极管)的接近度传感器的上下文中描述了差分电流至电压转换电路10。然而,差分电流至电压转换电路10可以用于其他应用,包括期望感测相对小的电流信号的应用。
如图1所示,差分电流至电压转换电路10包括输入采样级12、差分积分和DC信号消除级14以及放大和累加器级16。电路10可以被制造为例如使用标准数字CMOS设计和制造技术的集成半导体电路。
输入采样级12被配置为从电流生成设备接收电流信号,在所示的示例中,电流生成设备是接近度感测模块的光检测器(例如,光电二极管)20。输入采样级12包括第一开关P1和第二开关P2,它们可以分别在指定时间闭合,以便将光检测器20的输出连接到差分积分和DC信号消除级14。
差分积分和DC信号消除级14包括第一差分放大器22,第一差分放大器22能够操作以在其第一输入处(例如,正端“+”)接收来自光检测器20的第一输入信号,该第一输入信号代表第一时间段(例如,当接近度传感器的光发射器关闭时,在AC脉冲之间出现的时段)期间的环境光DC信号。当开关24打开并且开关26闭合时(其又对应于当接近度传感器的光发射器不发射AC光脉冲并且仅感测DC环境光信号时的第一时间段),第一输入信号被提供给第一输入(+)。
差分放大器22还能够操作以在其第二输入端处(例如,负端‘-’)接收第二输入信号,该第二输入信号表示在第二时间段期间(例如,当光发射器开启并发射AC脉冲时并且当环境光信号也被感测时的时段)环境光DC信号和反射光AC脉冲的组合。当开关24闭合并且开关26打开时,第二输入信号被提供给第二输入(-)。
差分积分和DC信号消除级14能够操作以生成分别代表正积分反射光AC脉冲和负积分反射光AC脉冲的第一差分模拟输出信号和第二差分模拟输出信号。差分输出信号分别提供在差分放大器22的输出线28、30上以及(当开关36、38闭合时)差分积分和DC信号消除级14的输出线32、34上。输出线32、34通过积分电容器CINT分别连接回差分放大器22的负输入端和正输入端。
差分放大器22的操作导致环境光DC信号被消除,使得环境光DC信号不包括在出现在线28、30和32、34上的差分输出信号中。具体地,差分积分和DC信号消除级14能够操作以消除在接近度传感器的光发射器被接通和断开的时钟时段的完整周期内积分的平均DC电流信号,同时在多个积分周期内小AC电流信号的测量幅度增加,直到对于特定应用(例如,要检测的对象距传感器的距离的精确确定)获得具有足够高信噪比的AC电流信号。电路的固有环境消除功能去除了对提供与差分积分电路分离和分开的环境光信号消除电路的需要。
当开关40、42闭合时,差分积分和DC信号消除级电路14的输出分别由电容器CS采样和存储。当开关46、48随后闭合时,由电容器CS存储的信号被分别传输到第二差分放大器44的负(“-”)输入和正(“+”)输入,第二差分放大器44形成放大和累加器级电路16的一部分。差分放大器44的输出通过反馈电容器CF分别连接回差分放大器22的负输入端和正输入端。
差分电流至电压电路10的输入共模电压(VCMIN)独立于输出共模电压(VCM),并因此可以与输出共模电压(VCM)不同。同样,差分积分和DC信号消除级14的共模可以独立于放大和累加器级电路16的共模,并因此与放大和累加器级电路16的共模不同。例如,VCM可以至少是VCMIN的两倍,在一些情况下,它可以是VCMIN的五倍以上。举例来说,VCMIN可以是100mV,而VCM可以是900mV。
以下时钟和复位信号:P1、P2、P21、P22、P21D、P22D、RST和RSTB触发如图1所示的各种开关的打开/闭合。图2中示出了时钟信号P1、P2、P21、P22和复位信号RST的示例。此外,时钟信号P21D是时钟信号P21的延迟版本(例如,延迟几纳秒);同样,时钟信号P22D是时钟信号P22的延迟版本(例如,延迟几纳秒)。复位信号RSTB是复位信号RST的反相。
差分电流至电压电路10的示例操作在以下段落中在差分接近度感测的上下文中描述。在积分阶段,接近度传感器的光发射器开启,光检测器20接收和感测例如由感兴趣对象反射的光学信号。在积分阶段期间,光检测器20连接到差分放大器22的负端。如图2所示,在积分阶段期间,时钟信号P1为开(即,数字高信号,使得相关联的开关闭合),时钟信号P2为关(即,数字低信号,使得相关联的开关打开),复位信号RST为关(即,数字低信号,使得相关联的开关打开)。在该阶段期间,相当于由反射光生成的电流(Iac)和环境电流(Idc)之和的输出电压被积分到积分电容器CINT之一上,因此差分放大器22的输出处的电压也从输出共模(VCM)增加,直到时钟信号P1变低。输出将保持该值,直到时钟信号P2变高。保持阶段等于时钟信号P1和P2之间的非重叠时间。
在消除阶段,接近度传感器的光发射器关闭,光检测器20连接到差分放大器22的正端。在该消除阶段期间,时钟信号P1为关,时钟信号P2为开,复位信号RST为关。对应的输出电压仅相当于环境信号(Idc)。对应于环境电流(-Idc)的电压被积分到积分电容器CINT之一上。该电流(-Idc)沿与Iac+Idc之和的方向相反的方向移动(即负斜率)。因此,在消除阶段结束时,输出电压相当于仅由反射光生成的电流(Iac)。该电压随后被保持以供进行放大的第二级采样。具体地,输出保持该电压值,直到复位信号RST变高。这里,保持阶段等于时钟信号P2和复位信号RST之间的非重叠时间。
在复位阶段期间,接近度传感器的光发射器关闭,时钟信号P1和P2为关,复位信号RST为开。复位信号RST(和RSTB)用于将积分电容器CINT复位到已知电位,以及将第一级输出复位到输出共模电压VCM。在该阶段期间,差分放大器22处于开环。
在积分和消除阶段之后,但在复位阶段之前,时钟信号P21用于对差分积分和DC信号消除级14的输出处的信号进行采样。时钟信号P22用于将存储的电荷传输到放大和累加器级16(具有放大(Cs/Cf))的输出。如上所述,放大和累加器级16被配置为使得它将保持反馈电容器CF处的电压,并且对应于信号电流(Iac)的电压在N个时钟周期内被累加到取决于所需设置的特定水平。放大和累加器级16输出的模拟电压可以由ADC 50采样并转换成对应的数字码。
在图1和图2所示的电路中,针对每个时钟阶段执行复位操作(即,其中时钟阶段包括时钟信号P1和P2二者变高的完整周期),这可以降低电流至电压放大器的复杂性,并且还可以支持高的N值(即,对摆动和饱和值的限制更少)。由于每个时钟阶段处都有复位信号,该电路可以处理相对较高的环境光条件。此外,在图示的示例中,光电二极管20连接到输入共模(即,有限电位),这可以防止二极管电容器充电,使得当光电二极管在P1和P2时钟阶段期间连接回差分放大器22的输入端时不会影响输出。因此,光电二极管20在任何操作阶段期间都不是浮动节点。
图3示出了包括光发射通道和光检测通道的光电模块100的示例。光发射器106和光接收器108可以被容纳在封装内,该封装被安装在例如印刷电路板(PCB)或用于其中设置有模块100的主机设备的其他基板110上。光发射器106能够操作以发射特定波长或波长范围的光。在一些实施方式中,光发射器106被实现为一个或多个激光二极管或垂直腔面发射激光器(vertical cavity surface emitting laser,VCSEL)。来自发射器106的光被引导出模块100穿过盖玻璃102,并且如果被模块外部的对象反射回模块的检测通道,则可以被光接收器108感测,光接收器108包括能够操作以响应于检测到的光信号来生成电流的光检测器(例如,光电二极管),并且还包括差分电流至电压转换电路10和ADC 50。差分电流至电压转换电路10和ADC 50可以位于与光检测器20相同的半导体芯片中,或者位于一个或多个其他半导体芯片中。在一些情况下,差分电流至电压转换电路10和ADC 50可以在模块100的外部;例如,它们可以安装在PCB或其中设置有模块100的主机设备的其他基板110上。
尽管上述电路在接近度感测的上下文中特别有用,但是它们也可以用于需要或期望检测相对小的电流的其他应用。此外,尽管图示的示例示出了输入采样级12的两个输入被布置成从相同的光检测器20接收信号,但是在一些实施方式中,第一个输入被布置成从第一电流生成设备(例如,第一光检测器)接收信号,而第二个输入被布置成从第二电流生成设备(例如,第二光检测器)接收信号。
在本公开的精神内的各种修改将是显而易见的,并且可以对上面详细描述的示例进行修改。因此,其他实施方式也在权利要求的范围内。

Claims (10)

1.一种包括差分电流至电压转换电路的装置,包括:
输入采样级电路,能够操作以在第一时段期间对第一电流信号进行采样,并且能够操作以在第二时段期间对第二电流信号进行采样;
差分积分和DC信号消除级电路,能够操作以:
从所述输入采样级电路接收所述第一电流信号和所述第二电流信号;
对所述第一电流信号和所述第二电流信号进行积分;和
生成代表所述第一电流信号和所述第二电流信号之间的差的电压输出;以及
放大和累加器级电路,能够操作以:
接收来自所述差分积分和DC信号消除级电路的所述电压输出;和
放大接收的电压输出,
其中所述差分电流至电压电路的输入共模电压独立于所述差分电流至电压电路的输出共模电压。
2.根据权利要求1所述的装置,其中所述差分电流至电压电路的所述输入共模电压不同于所述差分电流至电压电路的所述输出共模电压。
3.根据权利要求1或2所述的装置,其中所述差分积分和DC信号消除级电路的共模独立于所述放大和累加器级电路的共模。
4.根据权利要求3所述的装置,其中所述差分积分和DC信号消除级电路的所述共模不同于所述放大和累加器级电路的所述共模。
5.根据权利要求1至4中任一项所述的装置,其中所述第一时段根据第一时钟信号来确定,并且所述第二时段根据不同的第二时钟信号来确定,所述第二时钟信号从所述第一时钟信号偏移,使得所述第一时段和所述第二时段不重叠,其中所述差分电流至电压转换电路能够操作以针对每个时钟阶段执行复位操作,其中时钟阶段包括针对所述第一时钟信号和所述第二时钟信号两者的完整周期。
6.根据前述权利要求中任一项所述的装置,还包括连接到所述差分电流至电压转换电路的输入共模的电流生成设备。
7.根据权利要求6所述的装置,其中所述电流生成设备是光检测器。
8.根据权利要求6所述的装置,其中所述电流生成设备是光电二极管。
9.根据前述权利要求中任一项所述的装置,其中所述放大和累加器级电路还能够操作以在指定数量的时钟周期内累加所述接收电压。
10.根据前述权利要求中任一项所述的装置,其中所述放大和累加器级电路的输出耦合到模数转换器。
CN202080047500.4A 2019-06-28 2020-06-09 差分电流至电压转换 Active CN114041264B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962868464P 2019-06-28 2019-06-28
US62/868,464 2019-06-28
PCT/EP2020/065996 WO2020260012A1 (en) 2019-06-28 2020-06-09 Differential current-to-voltage conversion

Publications (2)

Publication Number Publication Date
CN114041264A true CN114041264A (zh) 2022-02-11
CN114041264B CN114041264B (zh) 2024-11-08

Family

ID=

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041080A1 (en) * 2002-08-29 2004-03-04 Barna Sandor L. Differential column readout scheme for CMOS APS pixels
US20070210872A1 (en) * 2006-03-10 2007-09-13 Sipex Corporation Elimination of dummy detector on optical detectors using input common mode feedback
US20110163233A1 (en) * 2010-01-06 2011-07-07 Avago Technologies Ecbu (Singapore) Pte. Ltd. Optical Proximity Sensor with Improved Dynamic Range and Sensitivity
US8299837B1 (en) * 2011-08-16 2012-10-30 Himax Technologies Limited Integrator-based common mode stabilization method applied to pseudo-differential switched-capacitor circuit
JP2013123085A (ja) * 2011-12-09 2013-06-20 Kawasaki Microelectronics Inc 線形増幅回路
US20140125413A1 (en) * 2012-11-07 2014-05-08 Semtech Corporation Instrumentation amplifier with rail-to-rail input range
US20140252212A1 (en) * 2013-03-08 2014-09-11 Ams Ag Signal conditioning circuit for a light sensor, a sensor arrangement and a method for signal conditioning for a light sensor
US20140323844A1 (en) * 2013-04-25 2014-10-30 Analog Devices, Inc. Circuit architecture for photodiodes
US20150145801A1 (en) * 2012-09-14 2015-05-28 Stmicroelectronics Asia Pacific Pte. Ltd. High signal to noise ratio capacitive sensing analog front-end
US20160025777A1 (en) * 2014-07-25 2016-01-28 Analog Devices, Inc. Circuit architecture for mode switch
US20160238442A1 (en) * 2015-02-13 2016-08-18 Northrop Grumman Systems Corporation Balanced intensity differential photo detector
US9825646B1 (en) * 2016-07-07 2017-11-21 Tech Idea Co., Ltd. Integrator and A/D converter using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040041080A1 (en) * 2002-08-29 2004-03-04 Barna Sandor L. Differential column readout scheme for CMOS APS pixels
US20070210872A1 (en) * 2006-03-10 2007-09-13 Sipex Corporation Elimination of dummy detector on optical detectors using input common mode feedback
US20110163233A1 (en) * 2010-01-06 2011-07-07 Avago Technologies Ecbu (Singapore) Pte. Ltd. Optical Proximity Sensor with Improved Dynamic Range and Sensitivity
US8299837B1 (en) * 2011-08-16 2012-10-30 Himax Technologies Limited Integrator-based common mode stabilization method applied to pseudo-differential switched-capacitor circuit
JP2013123085A (ja) * 2011-12-09 2013-06-20 Kawasaki Microelectronics Inc 線形増幅回路
US20150145801A1 (en) * 2012-09-14 2015-05-28 Stmicroelectronics Asia Pacific Pte. Ltd. High signal to noise ratio capacitive sensing analog front-end
US20140125413A1 (en) * 2012-11-07 2014-05-08 Semtech Corporation Instrumentation amplifier with rail-to-rail input range
US20140252212A1 (en) * 2013-03-08 2014-09-11 Ams Ag Signal conditioning circuit for a light sensor, a sensor arrangement and a method for signal conditioning for a light sensor
US20140323844A1 (en) * 2013-04-25 2014-10-30 Analog Devices, Inc. Circuit architecture for photodiodes
US20160025777A1 (en) * 2014-07-25 2016-01-28 Analog Devices, Inc. Circuit architecture for mode switch
US20160238442A1 (en) * 2015-02-13 2016-08-18 Northrop Grumman Systems Corporation Balanced intensity differential photo detector
US9825646B1 (en) * 2016-07-07 2017-11-21 Tech Idea Co., Ltd. Integrator and A/D converter using the same

Also Published As

Publication number Publication date
US20220255536A1 (en) 2022-08-11
US11996818B2 (en) 2024-05-28
WO2020260012A1 (en) 2020-12-30
DE112020003217T5 (de) 2022-03-24

Similar Documents

Publication Publication Date Title
US20110163233A1 (en) Optical Proximity Sensor with Improved Dynamic Range and Sensitivity
US7176438B2 (en) Method and system to differentially enhance sensor dynamic range using enhanced common mode reset
EP1614159B1 (en) Method and system to differentially enhance sensor dynamic range
EP3255789B1 (en) Conversion circuit and detection circuit
US8097853B2 (en) Infrared photocurrent front-end ADC for rain-sensing system with ambient light compensation
KR102279479B1 (ko) 근접 센서
CN110967683B (zh) 信号接收和放大电路以及具有其的激光雷达
EP1197735B1 (en) Photodetector
CN112114328A (zh) 飞时测距装置
US11996818B2 (en) Differential current-to-voltage conversion
US7755348B1 (en) Current sensor output measurement system and method
CN114041264B (zh) 差分电流至电压转换
US20230102504A1 (en) Photoplethysmography front-end receiver
US10243544B1 (en) Light detection with logarithmic current-to-voltage converter
CN111279214B (zh) 信号处理装置
US8957363B2 (en) Differential photodiode integrator circuit for absorbance measurements
WO2000033038A1 (fr) Photodetecteur
CN117083804A (zh) 光学接近传感器
JP3937756B2 (ja) 光電式煙感知器
US20240328853A1 (en) Active clamp photoelectric sensing device
KR101806861B1 (ko) 펄스폭 변조 기반의 센서 리드아웃 장치
CN115900940A (zh) 光体积变化描记图法前端接收机
KR101332880B1 (ko) 광통신 시스템에서 광수신기용 광신호 유무 검출 회로
JP2005121398A (ja) 光検出装置及びそれを用いた測距装置
CN115201837A (zh) 近接传感器及其控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant