CN114016009A - 一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法 - Google Patents

一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法 Download PDF

Info

Publication number
CN114016009A
CN114016009A CN202111317490.4A CN202111317490A CN114016009A CN 114016009 A CN114016009 A CN 114016009A CN 202111317490 A CN202111317490 A CN 202111317490A CN 114016009 A CN114016009 A CN 114016009A
Authority
CN
China
Prior art keywords
plating
sio
layer
pfa
plating solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111317490.4A
Other languages
English (en)
Other versions
CN114016009B (zh
Inventor
赵波
高涵
曹生现
邹明衡
吕昌旗
王恭
孙天一
范思远
沙浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Electric Power University
Original Assignee
Northeast Dianli University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Dianli University filed Critical Northeast Dianli University
Priority to CN202111317490.4A priority Critical patent/CN114016009B/zh
Publication of CN114016009A publication Critical patent/CN114016009A/zh
Application granted granted Critical
Publication of CN114016009B publication Critical patent/CN114016009B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1651Two or more layers only obtained by electroless plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1837Multistep pretreatment
    • C23C18/1844Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种Ni‑P‑PFA‑SiO2纳米复合镀层及其制备方法,属于金属表面工程技术领域。该Ni‑P‑PFA‑SiO2纳米复合镀层以Ni‑P镀层为底层,再依次施镀Ni‑P‑SiO2镀层、Ni‑P‑PTFE‑SiO2镀层和Ni‑P‑PFA‑SiO2镀层,制备过程中通过对基材进行碱洗、电碱洗、酸洗去除表面污垢,采用分层施镀四次的方法提高镀层的结合力,有效降低镀层的孔隙率,改变镀层的微观结构,使镀层的硬度性能更优异,制备方法环保、镀液可重复利用、科学合理、适用性强、防腐蚀效果好。采用本发明方法可以延长钢材物品的使用寿命,节约成本。

Description

一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法
技术领域
本发明涉及一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法,属于金属表面工程技术领域。
背景技术
随着先进制造装备技术的快速发展,对金属零部件以及电子器件的耐磨性与耐蚀性有着越来越高的需求,传统的金属材料,如不锈钢、铝制品、铜制品,已经不能满足产品表面的高性能要求,于是化学镀被应用在各个化学、机械、电子产品等零件加工中。
不锈钢作为一种防腐蚀性很强的材料,应用于各个工业领域,同时也是生活中随手可见的金属材料,但由于其价格高昂限制了其应用范围。为了寻找其他同时具有防腐与耐磨的金属材料,且又要考虑一定的经济性,化学镀技术在近些年有着快速的发展,经过化学镀的钢件同时具有高性能、低价格双重优势,扩大了该金属的应用领域。其中,金属表面化学镀大多为Ni-P基为主,但Ni-P镀层存在耐磨性差、硬度不够高、孔隙率较多等缺点。所以提供一种防腐、耐磨具有高性能的复合镀层具有重要意义。
发明内容
为了解决上述技术问题,本发明提供了如下方案:
本发明提供了一种Ni-P-PFA-SiO2纳米复合镀层,所述纳米复合镀层以Ni-P镀层为底层,再依次施镀Ni-P-SiO2镀层、Ni-P-PTFE-SiO2镀层和Ni-P-PFA-SiO2镀层,所述Ni-P镀层沉积在钢材基底上。
本发明还提供了一种所述的Ni-P-PFA-SiO2纳米复合镀层的制备方法,包括以下步骤:
(1)钢材表面经抛光预处理、碱洗、电碱洗、酸洗前处理得到预处理钢材;
(2)将步骤(1)中的前处理钢材置于Ni-P层镀液中进行底层施镀,完成后取出后置于Ni-P-SiO2层镀液中进行第二次中间层施镀,完成后取出后置于Ni-P-PTFE-SiO2层镀液中进行第三次中间层施镀,完成后取出后置于Ni-P-PFA-SiO2层镀液中进行表层施镀,取出后得到镀有Ni-P-PFA-SiO2纳米复合镀层的钢材样品;
(3)将步骤(2)得到的镀有Ni-P-PFA-SiO2纳米复合镀层的钢材样品在去离子水中冲洗,去除表面残留镀液,之后钝化、去离子水冲洗、N2气吹干、热处理(放入真空炉中烘干)、冷却至室温(冷却过程在真空条件下),后处理即可得到Ni-P-PFA-SiO2纳米复合镀层。
进一步地,步骤(1)中,每个步骤之间用去离子水冲洗,所述抛光的具体步骤为:钢材表面依次经过400#、800#、1200#的SiC砂纸打磨表面,直到肉眼无法看见明显锈迹为止。将砂纸打磨过的样品用去离子水冲洗掉表面污垢,然后使用ф200mm的鹿皮抛光盘和氧化铝粉末(80-150nm)对样品进行反复抛光,直至达到镜面(Ra0.005)。将抛光后的样品用去离子水冲洗,紧接着在无水乙醇溶液中在超声清洗仪(超声频率40KHZ,单位面积功率450~600W/m2)中清洗10min,能够有效去除基体表面油性物质,最后冷风吹干或室温晾干。
进一步地,步骤(1)中,所述碱洗的温度为60~75℃,时间为7~10min,通过皂化反应和乳化作用除去基体表面的油污。碱洗前,碱液必须达到预定温度,将待镀样品浸在碱液之中浸泡,去除样品表面氧化膜,样品不碰壁,7~10min取出样品。先用70~75℃自来水冲洗,然后再用去离子水中冲洗,洗去样品表面残留药剂,漂洗两次后完成碱洗除油。
进一步地,步骤(1)中,所述电碱洗是将钢材样品悬挂在碱洗液渡槽中,并与直流电源正极相连,阴极连两块316L不锈钢,将阴极所连钢片置于施镀样品两侧,电压设置为4~8V,电流设置为3~7A,通电时间为2~4min,碱洗温度为室温。
进一步地,步骤(1)中碱洗与电碱洗所用碱液为:NaOH 20~30g/L、Na2CO3 20-30g/L、Na3PO4 20~40g/L、Na2SiO3 5~12g/L,充分混合后制得。
进一步地,步骤(1)中,所述酸洗用稀盐酸溶液浸泡15~30s,稀盐酸溶液是将质量浓度为30%的HCl与H2O按照体积比为1:1混合而成,使样品完全浸入酸洗液中,直至表面无明显锈迹与杂质,然后去离子水洗,酸洗能有效除去细微的锈迹,同时能活化表面,因为化学镀的前提是基体表面必须具有催化活性,这样才能引发化学沉积反应,使后期施镀更加有效,另外为了清除碱洗后残留的表面氧化物、膜层或残留的吸附物质。
进一步地,步骤(2)中,所述底层施镀的温度80~90℃,时间为1~2h,镀液为:硫酸镍20~30g/L、次亚磷酸钠25~30g/L、柠檬酸钠15~20g/L、无水乙酸钠15~20g/L、甘氨酸0.5g/L,pH值为4.5~5.0。
进一步地,步骤(2)中,所述第二次中间层施镀的温度75~85℃,时间为1~2h,镀液为:硫酸镍20~30g/L、次亚磷酸钠25~30g/L、柠檬酸钠15~20g/L、无水乙酸钠15~20g/L、甘氨酸0.5g/L和SiO2纳米颗粒12.5~17.5g/L,pH值为8.0~9.0。
进一步地,步骤(2)中,所述第三次中间层施镀的温度75~85℃,时间为1~2h,镀液为:硫酸镍20~30g/L,次亚磷酸钠25~30g/L,柠檬酸钠15~20g/L,无水乙酸钠15~20g/L,甘氨酸0.5g/L,FC-4活性剂0.1~0.4g/L,SiO2纳米颗粒12.5~17.5g/L,60wt%固含量的PTFE乳液5~10mL/L,pH值为8.0~9.0。
进一步地,步骤(2)中,所述表层施镀的温度75~85℃,时间为1~2h,镀液为:硫酸镍20~30g/L,次亚磷酸钠25~30g/L,柠檬酸钠15~20g/L,无水乙酸钠15~20g/L,甘氨酸0.5g/L,60wt%固含量的PFA乳液5~10mL/L,SiO2纳米颗粒12.5~17.5g/L混合,pH值为8.0~9.0。
进一步地,步骤(2)中所用的镀液用乳酸与氨水调节pH值。
进一步地,每次施镀结束后用80~90℃的去离子水冲洗。
进一步地,步骤(3)中,所述钝化以样品作阴极,不锈钢作阳极浸入钝化液中,在电压为2.5~3V,温度30~40℃下通电30~50s。钝化能够清除孔隙中残存的有害盐类,减小孔隙率,另一方面在暴露的基体上能够形成有一定抗蚀能力的钝化膜,从而提高其抗蚀性。
进一步地,步骤(3)中,所述后处理的温度为200~250℃,时间为1h。
本发明公开了以下技术效果:
1)本发明对钢材基底进行表面预处理,通过碱洗、电碱洗、酸洗等步骤能高效去除样品表面油脂与污垢,酸洗在去除铁锈的同时还能活化基体表面,使其更好与镀液发生化学反应。
2)本发明通过化学镀技术在样品表面先以Ni-P镀层作为底层,然后再施以Ni-P-SiO2镀层、Ni-P-PTFE-SiO2镀层、Ni-P-PFA-SiO2镀层,制得的复合纳米结构镀层采用分层施镀四次的方法能提高镀层的结合力,有效降低镀层的孔隙率,改变镀层的微观结构,使镀层的硬度性能更优异。
3)本发明制备的Ni-P-PFA-SiO2镀层中使用的PFA(可溶性聚四氟乙烯)为一种新型材料,密度高于PTFE,有卓越的耐化学腐蚀性,其抗蠕变性和压缩强度均高于PTFE。其次,PFA的工作温度也高于PTFE,有更好的热稳定性。
4)本发明制备过程的后处理技术,包括钝化、后处理等,可以提高结合力,降低孔隙率,提升防腐蚀性能。孔隙率作为化学镀层耐腐蚀性很重要的一个指标,本发明中减小孔隙率的方法提及了两种,一是通过后处理,二是镀四层复合镀层。后处理能够减小镀层的孔隙率,适当的后处理温度能够使镀层的孔隙率减小到零,显著提高了镀层的耐蚀性,同时有效地减少了镀层的氢脆性;工艺上使用四次施镀四层镀层的方法,一是可以有效地降低孔隙率,从而提高镀层的耐蚀性,二是这样分层施镀比一次施镀Ni-P-PFA-SiO2的结合力更强,适当的热处理温度也能够令镀层中的原子相互扩散、偏聚,增大镀层的晶化程度及纳米颗粒的弥散程度等。得到的Ni-P-PFA-SiO2镀层的维氏显微硬度不小于HV900;孔隙率降为0;与水的接触角不小于90度,具有更好的疏水性。
5)本发明在Ni-P化学镀中加入了SiO2纳米颗粒、PFA颗粒等与Ni-P共沉积的作用下制备出纳米复合镀层,该镀层既能提高金属的耐蚀性又大大提高了金属表面的硬度、降低了镀层的孔隙率,使其能应用于更广泛的领域,制备方法环保、镀液可重复利用、科学合理、适用性强、防腐蚀效果好。采用本发明方法可以延长钢材物品的使用寿命,节约成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明样品抛光预处理的工艺流程图;
图2为本发明的Ni-P-PFA-SiO2纳米复合镀层制备流程图;
图3为本发明的Ni-P-PFA-SiO2纳米复合镀层的结构示意图,其中,1-钢材基体、2-Ni-P镀层、3-Ni-P-SiO2镀层、4-Ni-P-PTFE-SiO2镀层、5-Ni-P-PFA-SiO2镀层。
具体实施方式
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见得的。本发明说明书和实施例仅是示例性的。
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
本发明实施例中抛光的具体步骤为:钢材表面依次经过400#、800#、1200#的SiC砂纸打磨表面,直到肉眼无法看见明显锈迹为止。将砂纸打磨过的样品用去离子水冲洗掉表面污垢,然后使用ф200mm的鹿皮抛光盘和氧化铝粉末(80-150nm)对样品进行反复抛光,直至达到镜面(Ra0.005)。将抛光后的样品用去离子水冲洗,紧接着在无水乙醇溶液中在超声清洗仪(超声频率40KHZ,单位面积功率450~600W/m2)中清洗10min,能够有效去除基体表面油性物质,最后冷风吹干或室温晾干。工艺流程图见图1。
本发明实施例中电碱洗是将钢材样品悬挂在碱洗液渡槽中,并与直流电源正极相连,阴极连两块316L不锈钢,将阴极所连钢片置于施镀样品两侧。
本发明实施例的稀盐酸溶液是将质量浓度为30%的HCl与H2O按照体积比为1:1混合而成。
本发明的Ni-P-PFA-SiO2纳米复合镀层制备流程见图2,结构示意图见图3,其中,1-钢材基体、2-Ni-P镀层、3-Ni-P-SiO2镀层、4-Ni-P-PTFE-SiO2镀层、5-Ni-P-PFA-SiO2镀层。
本发明中的维氏显微硬度、孔隙率以及水接触角的测试方法均是常规测试方法,不是本发明的发明要点,所以不再做过多赘述。
以下通过实施例对本发明的技术方案做进一步说明。
实施例1
经抛光后的钢材用NaOH 20g/L、Na2CO3 20g/L、Na3PO4 20g/L、Na2SiO3 12g/L混合而成的碱液在70℃下碱洗10min,用75℃自来水冲洗,然后再用80℃的去离子水清洗,之后将钢材样品在4V电压,3A的电流下,通电2min在相同碱液中进行电碱洗,去离子水清洗之后用稀盐酸溶液浸泡30s,去离子水清洗得到预处理钢材;
将预处理钢材悬挂于Ni-P层镀液(硫酸镍30g/L、次亚磷酸钠30g/L、柠檬酸钠15g/L、无水乙酸钠15g/L、甘氨酸0.5g/L,pH值为4.5)中,在90℃下施镀2h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-SiO2层镀液(硫酸镍30g/L、次亚磷酸钠30g/L、柠檬酸钠15g/L、无水乙酸钠15g/L、甘氨酸0.5g/L和SiO2纳米颗粒12.5g/L,pH值为8.0)在90℃下施镀2h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-PTFE-SiO2层镀液(硫酸镍30g/L、次亚磷酸钠30g/L、柠檬酸钠15g/L、无水乙酸钠15g/L、甘氨酸0.5g/L,FC-4活性剂0.1g/L,SiO2纳米颗粒12.5g/L,60wt%固含量的PTFE乳液10mL/L,pH值为8.0)在90℃下施镀2h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-PFA-SiO2层镀液(硫酸镍30g/L、次亚磷酸钠30g/L、柠檬酸钠15g/L、无水乙酸钠15g/L、甘氨酸0.5g/L,60wt%固含量的PFA乳液10mL/L,SiO2纳米颗粒12.5g/L混合,pH值为8.0)在90℃下施镀2h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);得到镀有Ni-P-PFA-SiO2纳米复合镀层的钢材样品;
完成第四层施镀后,将钢材样品作阴极,不锈钢作阳极浸入钝化液中,在电压为3V,温度30℃下通电50s钝化,之后用去离子水洗、N2气吹干、放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下),之后将马弗炉加热到250℃时,放入马弗炉中热处理1h,即可得到Ni-P-PFA-SiO2纳米复合镀层。
实施例2
经抛光后的钢材用NaOH 30g/L、Na2CO3 30g/L、Na3PO4 40g/L、Na2SiO3 5g/L混合而成的碱液在65℃下碱洗10min,用70℃自来水冲洗,然后再用90℃的去离子水清洗,之后将钢材样品在5V电压,5A的电流下,通电4min在相同碱液中进行电碱洗,去离子水清洗之后用稀盐酸溶液浸泡30s,去离子水清洗得到预处理钢材;
将预处理钢材悬挂于Ni-P层镀液(硫酸镍20g/L、次亚磷酸钠30g/L、柠檬酸钠20g/L、无水乙酸钠20g/L、甘氨酸0.5g/L,pH值为5.0)中,在90℃下施镀2h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-SiO2层镀液(硫酸镍20g/L、次亚磷酸钠30g/L、柠檬酸钠20g/L、无水乙酸钠20g/L、甘氨酸0.5g/L和SiO2纳米颗粒17.5g/L,pH值为9.0)在90℃下施镀2h,结束后用90℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-PTFE-SiO2层镀液(硫酸镍20g/L、次亚磷酸钠30g/L、柠檬酸钠20g/L、无水乙酸钠20g/L、甘氨酸0.5g/L,FC-4活性剂0.4g/L,SiO2纳米颗粒17.5g/L,60wt%固含量的PTFE乳液5mL/L,pH值为9.0)在90℃下施镀2h,结束后用90℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-PFA-SiO2层镀液(硫酸镍20g/L、次亚磷酸钠30g/L、柠檬酸钠20g/L、无水乙酸钠20g/L、甘氨酸0.5g/L,60wt%固含量的PFA乳液5mL/L,SiO2纳米颗粒17.5g/L混合,pH值为9.0)在90℃下施镀2h,结束后用90℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);得到镀有Ni-P-PFA-SiO2纳米复合镀层的钢材样品;
完成第四层施镀后,将钢材样品作阴极,不锈钢作阳极浸入钝化液中,在电压为2.5V,温度40℃下通电50s钝化,之后用去离子水洗、N2气吹干、放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下),之后将马弗炉加热到200℃时,放入马弗炉中热处理1h,即可得到Ni-P-PFA-SiO2纳米复合镀层。
实施例3
经抛光后的钢材用NaOH 25g/L、Na2CO3 30g/L、Na3PO4 30g/L、Na2SiO3 5g/L混合而成的碱液在60℃下碱洗7min,用70℃自来水冲洗,然后再用80℃的去离子水清洗,之后将钢材样品在8V电压,3A的电流下,通电2min在相同碱液中进行电碱洗,去离子水清洗之后用稀盐酸溶液浸泡20s,去离子水清洗得到预处理钢材;
将预处理钢材悬挂于Ni-P层镀液(硫酸镍20g/L、次亚磷酸钠25g/L、柠檬酸钠20g/L、无水乙酸钠20g/L、甘氨酸0.5g/L,pH值为4.6)中,在80℃下施镀1h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-SiO2层镀液(硫酸镍20g/L、次亚磷酸钠25g/L、柠檬酸钠20g/L、无水乙酸钠20g/L、甘氨酸0.5g/L和SiO2纳米颗粒15.5g/L,pH值为8.0)在80℃下施镀1h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-PTFE-SiO2层镀液(硫酸镍20g/L、次亚磷酸钠25g/L、柠檬酸钠20g/L、无水乙酸钠20g/L、甘氨酸0.5g/L,FC-4活性剂0.3g/L,SiO2纳米颗粒15.5g/L,60wt%固含量的PTFE乳液8mL/L,pH值为8.0)在80℃下施镀1h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-PFA-SiO2层镀液(硫酸镍20g/L、次亚磷酸钠25g/L、柠檬酸钠20g/L、无水乙酸钠20g/L、甘氨酸0.5g/L,60wt%固含量的PFA乳液8mL/L,SiO2纳米颗粒15.5g/L混合,pH值为8.0)在80℃下施镀1h,结束后用80℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);得到镀有Ni-P-PFA-SiO2纳米复合镀层的钢材样品;
完成第四层施镀后,将钢材样品作阴极,不锈钢作阳极浸入钝化液中,在电压为3V,温度30℃下通电30s钝化,之后用去离子水洗、N2气吹干、放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下),之后将马弗炉加热到250℃时,放入马弗炉中热处理1h,,即可得到Ni-P-PFA-SiO2纳米复合镀层。
实施例4
经抛光后的钢材用NaOH 20g/L、Na2CO3 25g/L、Na3PO4 40g/L、Na2SiO3 10g/L混合而成的碱液在75℃下碱洗7min,用73℃自来水冲洗,然后再用85℃的去离子水清洗,之后将钢材样品在4V电压,7A的电流下,通电3min在相同碱液中进行电碱洗,去离子水清洗之后用稀盐酸溶液浸泡30s,去离子水清洗得到预处理钢材;
将预处理钢材悬挂于Ni-P层镀液(硫酸镍30g/L、次亚磷酸钠30g/L、柠檬酸钠15g/L、无水乙酸钠15g/L、甘氨酸0.5g/L,pH值为4.7)中,在90℃下施镀2h,结束后用90℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-SiO2层镀液(硫酸镍30g/L、次亚磷酸钠30g/L、柠檬酸钠15g/L、无水乙酸钠15g/L、甘氨酸0.5g/L和SiO2纳米颗粒17.5g/L,pH值为8.0)在90℃下施镀2h,结束后用90℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-PTFE-SiO2层镀液(硫酸镍30g/L、次亚磷酸钠30g/L、柠檬酸钠15g/L、无水乙酸钠15g/L、甘氨酸0.5g/L,FC-4活性剂0.4g/L,SiO2纳米颗粒17.5g/L,60wt%固含量的PTFE乳液10mL/L,pH值为8.0)在90℃下施镀2h,结束后用90℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);之后悬挂于Ni-P-PFA-SiO2层镀液(硫酸镍30g/L、次亚磷酸钠30g/L、柠檬酸钠15g/L、无水乙酸钠15g/L、甘氨酸0.5g/L,60wt%固含量的PFA乳液10mL/L,SiO2纳米颗粒17.5g/L混合,pH值为8.0)在90℃下施镀2h,结束后用90℃的去离子水冲洗,放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下);得到镀有Ni-P-PFA-SiO2纳米复合镀层的钢材样品;
完成第四层施镀后,将钢材样品作阴极,不锈钢作阳极浸入钝化液中,在电压为2.5V,温度35℃下通电40s钝化,之后用去离子水洗、N2气吹干、放入真空炉中烘干、冷却至室温(冷却过程中在真空条件下),之后将马弗炉加热到200℃时,放入马弗炉中热处理1h,即可得到Ni-P-PFA-SiO2纳米复合镀层。
对比例1
同实施例1,区别仅在于,去掉在Ni-P-PFA-SiO2镀液中施镀的步骤。
对比例2
同实施例1,区别仅在于,去掉在Ni-P-PTFE-SiO2镀液中施镀的步骤。
对比例3
同实施例1,区别仅在于,去掉在Ni-P-SiO2镀液中施镀的步骤。
对比例4
同实施例1,区别仅在于,钢材不进行抛光处理。
对比例5
同实施例1,区别仅在于,钢材不进行酸洗处理。
对比例6
同实施例1,区别仅在于,钢材不进行后处理。
对比例7
同实施例1,区别仅在于,钢材不进行钝化处理。
将实施例1-4与对比例1-7制备得到的复合纳米镀层根据《GB/T 7997-2014硬质合金》中的测试标准进行维氏显微硬度测试,并对其孔隙率、水接触角和耐腐蚀性能(放入质量浓度5%的HCl中浸蚀100h)进行测试,测试结果见表1。
表1性能测试结果
Figure BDA0003344261550000151
由表1内容可知,本发明实施例1-4制备得到的Ni-P-PFA-SiO2镀层的维氏显微硬度不小于HV900;孔隙率降为0;与水的接触角不小于90度,较对比例具有更好的疏水性,大大降低了纳米复合镀层的表面张力。经过100h的腐蚀,对比本发明实施例的腐蚀失重,对比例1失重更多,说明PTFE的耐蚀性要差与PFA。对比例2与对比例3说明了取出中间一层会导致镀层之间的结合力差导致的耐蚀性下降。对比例4取消了抛光步骤会导致施镀过程化学反应不够理想,基体无法与镀层更好结合。对比例5取消了酸洗,对于基体表面的铁锈无法彻底去除,同时不能活化基体,使基体更好与镀液反应。对比例6的性能普遍下降说明了后处理重要性,后处理可以使镀层更致密从而能够增加镀层硬度。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (9)

1.一种Ni-P-PFA-SiO2纳米复合镀层,其特征在于,所述纳米复合镀层以Ni-P镀层为底层,再依次施镀Ni-P-SiO2镀层、Ni-P-PTFE-SiO2镀层和Ni-P-PFA-SiO2镀层,所述Ni-P镀层沉积在钢材基底上。
2.一种权利要求1所述的Ni-P-PFA-SiO2纳米复合镀层的制备方法,其特征在于,包括以下步骤:
(1)钢材表面经抛光预处理、碱洗、电碱洗、酸洗得到前处理钢材;
(2)将步骤(1)中的前处理钢材置于Ni-P层镀液中进行底层施镀,完成后取出置于Ni-P-SiO2层镀液中进行第二次中间层施镀,完成后取出置于Ni-P-PTFE-SiO2层镀液中进行第三次中间层施镀,完成后取出置于Ni-P-PFA-SiO2层镀液中进行表层施镀,取出后得到镀有Ni-P-PFA-SiO2纳米复合镀层的钢材样品;
(3)将步骤(2)得到的镀有Ni-P-PFA-SiO2纳米复合镀层的钢材样品进行钝化、后处理,即可得到Ni-P-PFA-SiO2纳米复合镀层。
3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中所述碱洗的温度为60~75℃,时间为2~3min,所述酸洗用稀盐酸溶液浸泡5~15s。
4.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述底层施镀的温度80~90℃,时间为1~2h,镀液为:硫酸镍20~30g/L、次亚磷酸钠25~30g/L、柠檬酸钠15~20g/L、无水乙酸钠15~20g/L、甘氨酸0.5g/L,pH值为4.5~5.0。
5.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述第二次中间层施镀的温度75~85℃,时间为1~2h,镀液为:硫酸镍20~30g/L、次亚磷酸钠25~30g/L、柠檬酸钠15~20g/L、无水乙酸钠15~20g/L、甘氨酸0.5g/L和SiO2纳米颗粒12.5~17.5g/L,pH值为8.0~9.0。
6.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述第三次中间层施镀的温度75~85℃,时间为1~2h,镀液为:硫酸镍20~30g/L,次亚磷酸钠25~30g/L,柠檬酸钠15~20g/L,无水乙酸钠15~20g/L,甘氨酸0.5g/L,FC-4活性剂0.1~0.4g/L,SiO2纳米颗粒12.5~17.5g/L,60wt%固含量的PTFE乳液5~10mL/L,pH值为8.0~9.0。
7.根据权利要求2所述的制备方法,其特征在于,步骤(2)中,所述表层施镀的温度75~85℃,时间为1~2h,镀液为:硫酸镍20~30g/L,次亚磷酸钠25~30g/L,柠檬酸钠15~20g/L,无水乙酸钠15~20g/L,甘氨酸0.5g/L,60wt%固含量的PFA乳液5~10mL/L,SiO2纳米颗粒12.5~17.5g/L混合,pH值为8.0~9.0。
8.根据权利要求2所述的制备方法,其特征在于,步骤(3)中,所述钝化的电压为2.5~3V,温度30~40℃。
9.根据权利要求2所述的制备方法,其特征在于,步骤(3)中,所述后处理的温度为200~250℃,时间为1h。
CN202111317490.4A 2021-11-09 2021-11-09 一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法 Active CN114016009B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111317490.4A CN114016009B (zh) 2021-11-09 2021-11-09 一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111317490.4A CN114016009B (zh) 2021-11-09 2021-11-09 一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法

Publications (2)

Publication Number Publication Date
CN114016009A true CN114016009A (zh) 2022-02-08
CN114016009B CN114016009B (zh) 2022-05-24

Family

ID=80062616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111317490.4A Active CN114016009B (zh) 2021-11-09 2021-11-09 一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法

Country Status (1)

Country Link
CN (1) CN114016009B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160010214A1 (en) * 2014-07-10 2016-01-14 Macdermid Acumen, Inc. Composite Electroless Nickel Plating
CN106958013A (zh) * 2017-03-24 2017-07-18 东北电力大学 一种化学镀Ni‑P‑PTFE复合镀层制备工艺
CN109487248A (zh) * 2018-12-29 2019-03-19 大连大学 一种化学镀Ni-P-PTFE-SiC复合镀层的制备工艺
CN111046553A (zh) * 2019-12-11 2020-04-21 东北电力大学 一种空冷器钢基铝翅片管束抗垢纳米复合镀层的设计制备方法
CN112593218A (zh) * 2020-12-12 2021-04-02 中核检修有限公司 一种防海生物污染的复合微纳结构镀层的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160010214A1 (en) * 2014-07-10 2016-01-14 Macdermid Acumen, Inc. Composite Electroless Nickel Plating
CN106958013A (zh) * 2017-03-24 2017-07-18 东北电力大学 一种化学镀Ni‑P‑PTFE复合镀层制备工艺
CN109487248A (zh) * 2018-12-29 2019-03-19 大连大学 一种化学镀Ni-P-PTFE-SiC复合镀层的制备工艺
CN111046553A (zh) * 2019-12-11 2020-04-21 东北电力大学 一种空冷器钢基铝翅片管束抗垢纳米复合镀层的设计制备方法
CN112593218A (zh) * 2020-12-12 2021-04-02 中核检修有限公司 一种防海生物污染的复合微纳结构镀层的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
侯俊英 等: "Ni-P-PTFE-SiO2化学复合镀工艺研究", 《中国铸造装备与技术》 *
李富军 等: "不同种类纳米粒子对低磷化学复合镀Ni-P合金的影响", 《电镀与精饰》 *
赵丹 等: "《钢铁表面化学镀镍技术》", 31 July 2017, 冶金工业出版社 *

Also Published As

Publication number Publication date
CN114016009B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Luo et al. Synthesis of a duplex Ni-P-YSZ/Ni-P nanocomposite coating and investigation of its performance
CN105506526B (zh) 铝合金表面Ni-SiC复合镀层的制备方法及其电镀液
CN102534732B (zh) 脉冲电沉积Ni-Co-P/HBN复合镀层及其制备方法
WO2007073213A1 (en) Micro-arc assisted electroless plating methods
CN112853416A (zh) 兼具自润滑和耐磨功能的复合镀层及其制备方法与镀液
CN105543912B (zh) 一种在铜基体上制备复配表面活性剂/La‑Ni‑Mo‑W共沉积镀层的方法
CN101298677A (zh) 镁合金表面耐磨耐腐蚀纳米复合镀层的制备方法
CN105177640A (zh) 一种高效高性能高硬镀铬工艺
CN113201780A (zh) 具有镍基超疏水纳米CeO2复合镀层的复合材料及其制备方法
CN114507887A (zh) 一种复合镀层及其制备方法
CN109023488B (zh) 一种微裂纹硬铬复合镀层及其制备方法
CN111607817A (zh) 一种铁族元素和钨的合金与碳化硅复合镀层及其制备方法与应用
CN111334827A (zh) 一种超声波辅助纳米氧化铈掺杂Ni-W-TiN复合镀层及其制备方法
CN114016009B (zh) 一种Ni-P-PFA-SiO2纳米复合镀层及其制备方法
CN106567118A (zh) 制备中空工件内表面Ni‑SiC复合镀层的方法
CN109183132B (zh) 一种Sn-Ni-石墨烯/氟化石墨烯复合镀层的制备工艺
CN113943957B (zh) 一种Ni-W-WS2纳米复合镀层及其制备方法
CN105420775A (zh) 一种在碳钢基体上制备La-Ni-Mo-W/GO复合沉积层的方法
KR20240093443A (ko) 코팅된 표면, 코팅 및 이를 사용하는 물품을 생성하는 공정
CN115386864A (zh) 一种Ni-P-ETFE复合纳米镀层及其制备方法
CN110468437B (zh) 一种石油不锈钢管道耐蚀结构的制备方法
Li et al. Parameter optimization and performance study of Ni–P coatings prepared by pulse-assisted jet electrochemical deposition
CN114990671B (zh) 一种提高水泵拉杆的耐腐蚀性的电镀方法
Li et al. Effect of pretreatment process on the performance of Ni-Co-Al2O3 (sol) nanocomposite coatings via electro-brush plating on steel substrate
CN114959817B (zh) 一种管线钢表面超疏水Ni-CeO2层的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant