CN114004467A - 一种基于监测数据的预制装配式桥梁结构性能分析方法 - Google Patents

一种基于监测数据的预制装配式桥梁结构性能分析方法 Download PDF

Info

Publication number
CN114004467A
CN114004467A CN202111200614.0A CN202111200614A CN114004467A CN 114004467 A CN114004467 A CN 114004467A CN 202111200614 A CN202111200614 A CN 202111200614A CN 114004467 A CN114004467 A CN 114004467A
Authority
CN
China
Prior art keywords
monitoring data
prefabricated
correlation coefficient
error
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111200614.0A
Other languages
English (en)
Inventor
靳启文
周亚栋
薛晓锋
靳琳琳
孙艺利
刘忠强
郑德乾
丁永刚
陈桂香
贺拴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Henan University of Technology
Original Assignee
Changan University
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University, Henan University of Technology filed Critical Changan University
Priority to CN202111200614.0A priority Critical patent/CN114004467A/zh
Publication of CN114004467A publication Critical patent/CN114004467A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/20Administration of product repair or maintenance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/08Construction

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Mathematical Analysis (AREA)
  • Development Economics (AREA)
  • Quality & Reliability (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Educational Administration (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Algebra (AREA)
  • General Engineering & Computer Science (AREA)
  • Game Theory and Decision Science (AREA)
  • Software Systems (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Probability & Statistics with Applications (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开一种基于监测数据的预制装配式桥梁结构性能分析方法,包括如下步骤:a、预制构件响应监测数据预处理;b、预制构件响应监测数据相关性分析模型;c、预制构件响应监测数据相关性系数短期预测,采用三次平滑指数方法对监测数据Pearson相关性系数进行短期预测;d、预制构件响应监测数据相关性系数短期预测误差;e、当Pearson相关性系数分析误差不能满足设定精度值时,重复步骤c、d,考虑更高次平滑指数,直到Pearson相关性系数分析误差满足设定值;本发明能揭示现役预制装配式桥梁各预制构件自身的材料劣化性能、揭示相邻两预制构件连接件服役性能退化状况;基于短期预测,制定有针对性的养管决策。

Description

一种基于监测数据的预制装配式桥梁结构性能分析方法
技术领域
本发明涉及装配式桥梁智能监测与运维领域,特别涉及一种基于监测数据的预制装配式桥梁结构性能分析方法。
背景技术
目前,桥梁结构监测由于受海量监测数据难以有效处理、同一运输线路不同桥梁服役性能变化复杂、桥位环境等因素影响,普遍存在着监测数据分析与桥梁结构养护管理脱节的现象,发生此类现象的原因主要在于以下两个方面:
1、监测数据受监测传感器性能(如灵敏度、耐久性),监测系统动力与互联网、桥位环境等因素影响,监测数据超量程卡死、阶跃变换现象突出,使得监测数据周期性变差,研究人员多数情况下会主观选择部分周期性较好的样本数据展开分析。此外,监测数据传统分析方法,未能充分考虑不同传感器类型、不同测点监测数据的相关性和关联性;
2、桥梁结构类型繁多,各不同类型由通常涉及多种不同结构型式,不同桥型服役性能差异显著且变化复杂,未能借助海量监测数据得到全面、更有针对性的分析和建模,如各运输险路最为广泛应用的预制装配式桥梁,常见的有装配式 T 型梁桥、装配式空心板桥、装配式箱梁桥等型式。此类桥梁受预制构件连接件影响显著,如装配式梁板桥上部结构受湿接缝影响,单梁(板)受力现象突出,亟需借助海量监测数据建立更有针对性的分析模型,有助于实现同一运输线路此类桥梁的集中统一管理,进一步降低安全风险。
因此,本发明考虑海量监测数据提出现役预制装配式桥梁各预制构件材料劣化分析模型和相邻两预制构件连接件服役性能退化模型,并实施短期预测十分必要。
发明内容
本发明目的是为解决监测数据传统分析方法未能充分考虑不同传感器类型、不同测点监测数据的相关性和关联性,以及无法实施大量现役预制装配式桥梁结构性能分析预测和统一管理决策的问题,提出一种基于监测数据的现役预制装配式桥梁结构性能分析预测方法,采用了监测数据相关性分析模型和短期预测,实现了预制构件结构真实服役状态分析,并基于短期预测,制定更有针对性的养管决策。
为达到上述目的所采取的技术方案是:
一种基于监测数据的预制装配式桥梁结构性能分析方法,包括如下步骤:
a、监测数据预处理
针对现役预制装配式桥梁结构各预制构件位移响应、微应变响应、桥位温度监测数据,将现役预制装配式桥梁结构各预制构件位移、微应变对应的试验值、理论设计值、极限值作为参考数值,通过监测数据与参考数值对比,当监测数据超过参考数值时,对结构安全性做出宏观判断,并将参考数值替换部分超量程卡死监测数据;即用试验值替换由于重型车辆快速通行、传感器灵敏度等因素导致的部分超量程卡死、阶跃变换监测数据,使监测数据更加平滑;
b、监测数据相关性分析模型
针对现役预制装配式桥梁结构各预制构件位移响应、微应变响应、桥位温度监测数据,分别绘制预制装配式桥梁结构各预制构件自身的位移响应或者微应变响应监测数据相关性散点分布图、计算Pearson相关性系数,绘制相邻预制构件的位移响应、微应变响应、桥位温度监测数据相关性散点分布图,并计算Pearson相关性系数;
c、监测数据相关性系数短期预测
采用三次平滑指数方法(Holt-Winters)对监测数据Pearson相关性系数进行短期预测;
d、监测数据相关性系数短期预测误差
考虑平均值误差(ME)、平均值绝对误差(MAPE)、平均百分比误差(MPE)、均方误差(MSE)、均方根误差(RMSE)评价指标,分析监测数据Pearson相关性系数预测精度;
e、当Pearson相关性系数分析误差不能满足设定精度值时,重复步骤c、d,考虑更高次平滑指数,直到Pearson相关性系数分析误差满足设定精度值。
进一步, 所述步骤a中对初步预处理后的监测数据实施0—1正则化变换,使得不同监测项的数据值处于同一取值区间[0,1],所述不同监测项包括不同单位、不同属性、不同取值范围;
进一步,所述步骤c中三次平滑指数方法Holt-Winters,首先对监测数据Pearson相关性系数实施周期性、随机性分解,然后实施数据过滤,最后是短期预测和对应的置信区间。
本发明所具有的有益效果为:
本发明为一种基于监测数据的现役预制装配式桥梁结构性能分析方法,通过分别绘制现役预制装配式桥梁结构各预制构件自身的位移响应或者微应变响应监测数据相关性散点分布图、计算和Pearson相关性系数,绘制预制装配式桥梁结构相邻预制构件的位移响应(微应变响应、温度)监测数据相关性散点分布图,并计算Pearson相关性系数;采用三次平滑指数方法(Holt-Winters)对监测数据Pearson相关性系数进行短期预测,并借助误差分析和更高次平滑指数,使监测数据Pearson相关性系数分析达到设定精度;可以揭示预制构件自身的材料劣化性能、揭示相邻两预制构件连接件服役性能退化状况;有助于揭示结构真实服役状态,并基于短期预测,制定更有针对性的养管决策。
附图说明
图1是本发明的方法流程示意图;
图2是某预制装配式梁板桥结构原始监测数据示意图;
图3是图2中监测数据预处理效果示意图;
图4是图2中监测数据相关性示意图;
图5是图2中同一梁板5号梁位移和微应变Pearson相关系数的周期、非周期效应;
图6是图2中同一梁板5号梁位移和微应变Pearson相关系数的验证、预测示意图;
图7是图2中不同梁板3号梁和5号梁微应变Pearson相关系数的周期、非周期效应;
图8是图2中不同梁板3号梁和5号梁微应变Pearson相关系数的短期预测示意图。
具体实施方式
下面结合附图对本发明进一步描述。
如图1所示,一种基于监测数据的预制装配式桥梁结构性能分析方法,包括如下步骤:
a、监测数据预处理
针对现役预制装配式桥梁结构各预制构件位移响应、微应变响应、桥位温度监测数据,将现役预制装配式桥梁结构各预制构件位移、微应变对应的试验值、理论设计值、极限值作为参考数值,通过监测数据与参考数值对比,当监测数据超过参考数值时,对结构安全性做出宏观判断,并将参考数值替换部分超量程卡死监测数据;即用试验值替换由于重型车辆快速通行、传感器灵敏度等因素导致的部分超量程卡死、阶跃变换监测数据,使监测数据更加平滑;
对初步预处理后的监测数据实施0—1正则化变换,使得不同监测项的数据值处于同一取值区间[0,1],所述不同监测项包括不同单位、不同属性、不同取值范围;
b、监测数据相关性分析模型
针对现役预制装配式桥梁结构各预制构件位移响应、微应变响应、桥位温度监测数据,分别绘制预制装配式桥梁结构各预制构件自身的位移响应或者微应变响应监测数据相关性散点分布图、计算Pearson相关性系数,绘制相邻预制构件的位移响应、微应变响应、桥位温度监测数据相关性散点分布图,并计算Pearson相关性系数;
c、监测数据相关性系数短期预测
采用三次平滑指数方法(Holt-Winters)对监测数据Pearson相关性系数进行短期预测;所述步骤c中三次平滑指数方法Holt-Winters,首先对监测数据Pearson相关性系数实施周期性、随机性分解,然后实施数据过滤,最后是短期预测和对应的置信区间;
d、监测数据相关性系数短期预测误差
考虑平均值误差(ME)、平均值绝对误差(MAPE)、平均百分比误差(MPE)、均方误差(MSE)、均方根误差(RMSE)评价指标,分析监测数据Pearson相关性系数预测精度;
e、当Pearson相关性系数不能满足设定精度值时,重复步骤c、d,考虑更高次平滑指数,直到Pearson相关性系数分析误差满足设定精度值。
如图1所示,为一种基于监测数据的现役预制装配式梁板桥结构性能分析方法的流程图,包括监测数据预处理,参考试验值、理论设计值和极限值实施监测数据平滑处理,可考虑监测数据0—1正则化变换使其更加可视化;监测数据相关性分析,考虑预制梁板位移响应、微应变响应、桥位温度监测数据,分别绘制各预制梁板自身的位移响应或者微应变响应监测数据相关性散点分布图、计算Pearson相关性系数,绘制相邻预制梁板的位移响应(微应变响应、温度)监测数据相关性散点分布图,并计算Pearson相关性系数;监测数据Pearson相关性系数短期预测,考虑三次平滑指数方法(Holt-Winters),对监测数据相关性系数实施周期性、随机性分解,并进一步实施数据过滤(即预测训练),最后给出短期预测,并指出对应的置信区间;监测数据相关性系数短期预测误差分析,考虑平均值误差(ME)、平均值绝对误差(MAPE)、平均百分比误差(MPE)、均方误差(MSE)、均方根误差(RMSE)评价指标,及更高次平滑指数,监测数据Pearson相关性系数分析误差,确保预测精度。
图2为预制装配式梁板桥上部结构8日的原始监测数据示意图,D1~D5表示5片预制梁的位移响应监测数据,M1~M5表示5片预制梁的微应变响应监测数据,T1~T5表示两边1号边预制梁和5号边预制梁的温度监测数据。
图3为大桥部分超量卡死监测数据3日的D1、D2预处理后效果示意,D1和D2数据经过预处理,可以观察到原始数据中隐藏的周期性特征。
图4为大桥不同测量属性、不同取值监测数据的相关性。各片梁位移、微应变数值总体较为分散,部分数据(如D3和D4,M2和M1次之)集中于对角线区域,呈现线性变化,可以揭示出较强的相关性,即3号和4号预制梁由湿接缝紧密联系,能够较好分担交通荷载,横向分布特征较好;部分数据(如D4和M4)近似集中于对角线区域,局部呈现曲线变化,即而材料强度、刚度变化不同步,可以揭示4号梁具有较明显的材料劣化。
图5-8是图2中同一梁板5号梁位移和微应变Pearson相关系数,以及不同梁板3号梁和5号梁微应变Pearson相关系数的短期预测示意图;考虑三次平滑指数分析方法(Holt-Winters),不同时间序列数据均可分解为周期性数组和非周期性数组,其中非周期性(随机性)明显大于周期性数据,也就增大了后续的精准预测难度。就周期性而言,微应变数据从凌晨开始显著增大,至上午7点左右达到最大峰值,而后至晚上20点左右则一直显著降低,说明交通量繁忙时段在7点左右,晚上20点以后则明显减少,结合视频监控,与该路段交通量通行情况一致。图6和图8中(左侧子图),粗线表示平滑指数预测,与细线大部分重合,说明预测精度尚好,即该方法可以用于接下来的预测分析。图6和图8中(右侧子图),粗线为短期预测效果,阴影则是置信区间,该预测结果可以为更合理的养管决策提供参考。
本实施例并非对本发明的形状、材料、结构等作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均属于本发明技术方案的保护范围。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (3)

1.一种基于监测数据的预制装配式桥梁结构性能分析方法,其特征在于,包括如下步骤:
针对现役预制装配式桥梁结构各预制构件位移响应、微应变响应、桥位温度监测数据,将现役预制装配式桥梁结构各预制构件位移、微应变对应的试验值、理论设计值、极限值作为参考数值,通过监测数据与参考数值对比,当监测数据超过参考数值时,对结构安全性做出宏观判断,并将参考数值替换部分超量程卡死监测数据;
b、监测数据相关性分析模型
针对现役预制装配式桥梁结构各预制构件位移响应、微应变响应、桥位温度监测数据,分别绘制各预制构件自身的位移响应或者微应变响应监测数据相关性散点分布图、计算Pearson相关性系数,绘制相邻预制构件的位移响应、微应变响应、桥位温度监测数据相关性散点分布图,并计算Pearson相关性系数;
c、监测数据相关性系数短期预测
采用三次平滑指数方法(Holt-Winters)对监测数据Pearson相关性系数进行短期预测;
d、监测数据相关性系数短期预测误差
考虑平均值误差(ME)、平均值绝对误差(MAPE)、平均百分比误差(MPE)、均方误差(MSE)、均方根误差(RMSE)评价指标,分析监测数据Pearson相关性系数预测精度;
e、当Pearson相关性系数分析误差不能满足设定精度值时,重复步骤c、d,考虑更高次平滑指数,直到Pearson相关性系数分析误差满足设定精度值。
2.根据权利要求1所述的一种基于监测数据的现役预制装配式桥梁结构性能分析预测方法,其特征在于,所述步骤a中对初步预处理后的各预制构件响应监测数据实施0—1正则化变换,使得不同属性监测数据值处于同一取值区间[0,1],所述不同监测项包括不同单位、不同属性、不同取值范围。
3.根据权利要求1所述的一种基于监测数据的现役预制装配式桥梁结构性能分析预测方法,其特征在于,所述步骤c中所述的三次平滑指数方法(Holt-Winters),包括首先对各预制构件监测数据Pearson相关性系数实施周期性、随机性分解,然后实施数据过滤,最后是短期预测和对应的置信区间。
CN202111200614.0A 2021-10-15 2021-10-15 一种基于监测数据的预制装配式桥梁结构性能分析方法 Pending CN114004467A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111200614.0A CN114004467A (zh) 2021-10-15 2021-10-15 一种基于监测数据的预制装配式桥梁结构性能分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111200614.0A CN114004467A (zh) 2021-10-15 2021-10-15 一种基于监测数据的预制装配式桥梁结构性能分析方法

Publications (1)

Publication Number Publication Date
CN114004467A true CN114004467A (zh) 2022-02-01

Family

ID=79922925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111200614.0A Pending CN114004467A (zh) 2021-10-15 2021-10-15 一种基于监测数据的预制装配式桥梁结构性能分析方法

Country Status (1)

Country Link
CN (1) CN114004467A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610055A (zh) * 2011-12-19 2012-07-25 大连海事大学 隧道自动监测多元信息无线智能报警系统
CN105865735A (zh) * 2016-04-29 2016-08-17 浙江大学 一种基于视频监控的桥梁振动测试与动力特性识别方法
CN109388888A (zh) * 2018-10-10 2019-02-26 中交基础设施养护集团有限公司 一种基于车辆荷载空间分布的桥梁结构使用性能预测方法
CN110567662A (zh) * 2019-10-16 2019-12-13 云南大学 一种基于工程比拟的桥梁短期监测评估方法
CN111256924A (zh) * 2020-03-06 2020-06-09 东南大学 一种大跨度高铁桥梁伸缩缝智能监测方法
CN111814110A (zh) * 2020-05-22 2020-10-23 广东省建筑科学研究院集团股份有限公司 一种桥梁健康监测数据控制图分析方法
CN111967185A (zh) * 2020-08-10 2020-11-20 哈尔滨工业大学 基于索力和位移分布相关性建模的斜拉桥状态评估方法
CN112762885A (zh) * 2020-12-22 2021-05-07 华设设计集团股份有限公司 一种基于监测数据的桥梁实时挠度校验系数计算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102610055A (zh) * 2011-12-19 2012-07-25 大连海事大学 隧道自动监测多元信息无线智能报警系统
CN105865735A (zh) * 2016-04-29 2016-08-17 浙江大学 一种基于视频监控的桥梁振动测试与动力特性识别方法
CN109388888A (zh) * 2018-10-10 2019-02-26 中交基础设施养护集团有限公司 一种基于车辆荷载空间分布的桥梁结构使用性能预测方法
CN110567662A (zh) * 2019-10-16 2019-12-13 云南大学 一种基于工程比拟的桥梁短期监测评估方法
CN111256924A (zh) * 2020-03-06 2020-06-09 东南大学 一种大跨度高铁桥梁伸缩缝智能监测方法
CN111814110A (zh) * 2020-05-22 2020-10-23 广东省建筑科学研究院集团股份有限公司 一种桥梁健康监测数据控制图分析方法
CN111967185A (zh) * 2020-08-10 2020-11-20 哈尔滨工业大学 基于索力和位移分布相关性建模的斜拉桥状态评估方法
CN112762885A (zh) * 2020-12-22 2021-05-07 华设设计集团股份有限公司 一种基于监测数据的桥梁实时挠度校验系数计算方法

Similar Documents

Publication Publication Date Title
Srikanth et al. Deterioration models for prediction of remaining useful life of timber and concrete bridges: A review
CN111967185B (zh) 基于索力和位移分布相关性建模的斜拉桥状态评估方法
CN112347668A (zh) 基于概率断裂力学的钢桥面板疲劳可靠度评估方法
CN105809287A (zh) 一种高压输电线路覆冰过程综合预测方法
Lei et al. A deep reinforcement learning framework for life-cycle maintenance planning of regional deteriorating bridges using inspection data
CN109544926B (zh) 一种基于路口相关性的交通流量修复方法
Wang et al. Evaluation and Bayesian dynamic prediction of deterioration of structural performance
CN112434890A (zh) 基于CEEMDAN-BiLSTM的隧道沉降时间序列的预测方法
CN116415777A (zh) 一种城市桥梁群健康监测系统
Zhang et al. Mixed Skewness Probability Modeling and Extreme Value Predicting for Physical System Input/Output Based on Full Bayesian Generalized Maximum-Likelihood Estimation
CN101382474B (zh) 一种桥梁结构安全的安全预警方法
Hou et al. Modeling vehicle load for a long-span bridge based on weigh in motion data
CN114004467A (zh) 一种基于监测数据的预制装配式桥梁结构性能分析方法
CN108108839B (zh) 基于逆向模糊层次分析的电网信息系统设备状态预警方法
CN117763555A (zh) 一种基于区块链的配电网数据安全防护和评估方法
Yang et al. A method for time‐varying reliability calculation of RC bridges considering random deterioration process
CN108280299B (zh) 桁架结构灵敏度分析方法
Qu et al. Outlier Detection and Forecasting for Bridge Health Monitoring Based on Time Series Intervention Analysis.
Yang et al. Time-dependent reliability calculation method of RC bridges based on the dual neural network
CN114547868A (zh) 一种基于bim的斜拉桥性能在线评估预测方法
Jin et al. Multidimensional tensor strategy for the inverse analysis of in-service bridge based on SHM data
CN113901665A (zh) 一种基于条件穿越率的时变可靠度准确分析方法
CN113239436A (zh) 一种钢桥状态等级评估与预测方法
Choi et al. Development of Data-based Hierarchical Learning Model for Predicting Condition Rating of Bridge Members over Time
Tang et al. Predicting bottlenecks in manufacturing shops through capacity and demand observations from multiple perspectives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination