CN114000002B - 一种自润滑镍基合金及其成形方法 - Google Patents

一种自润滑镍基合金及其成形方法 Download PDF

Info

Publication number
CN114000002B
CN114000002B CN202111148179.1A CN202111148179A CN114000002B CN 114000002 B CN114000002 B CN 114000002B CN 202111148179 A CN202111148179 A CN 202111148179A CN 114000002 B CN114000002 B CN 114000002B
Authority
CN
China
Prior art keywords
nickel
based alloy
graphite
powder
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111148179.1A
Other languages
English (en)
Other versions
CN114000002A (zh
Inventor
夏木建
李年莲
林岳宾
刘爱辉
王华玲
朱雨富
周广宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huaiyin Institute of Technology
Original Assignee
Huaiyin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huaiyin Institute of Technology filed Critical Huaiyin Institute of Technology
Priority to CN202111148179.1A priority Critical patent/CN114000002B/zh
Publication of CN114000002A publication Critical patent/CN114000002A/zh
Application granted granted Critical
Publication of CN114000002B publication Critical patent/CN114000002B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0005Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with at least one oxide and at least one of carbides, nitrides, borides or silicides as the main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0084Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明公开了一种自润滑镍基合金及其成形方法,该合金包括镍基合金基体,镍基合金基体上分布有镀铝层的石墨/La2O3,将球磨后的石墨/纳米La2O3镀铝层后,再与镍基合金球磨形成复合粉末,采用高能激光束对复合粉末进行扫描熔化与凝固,促使在铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相,提高了石墨与镍基合金的界面润湿性能,同时因石墨的低摩、La2O3与Al4C3增强相的减磨功能,实现了镍基合金摩擦系数与磨损率的双重降低。

Description

一种自润滑镍基合金及其成形方法
技术领域
本发明涉及基合金及其制备方法,特别地涉及一种自润滑镍基合金及其制备方法。
背景技术
镍基合金因具有良好的力学性能及耐腐蚀性能等优点,在海水热交换、火力发电废水处理装备、能源、石油化工等领域得到广泛应用,如发动机涡轮部件、连铸机辊子、挤压模具等。而在高温、高载荷、交变应变等复杂的工况条件下,镍基合金易发生摩擦磨损现象,同时润滑油、润滑脂在此复杂的工况下因老化、难以成膜而极易失效。石墨因自身独特的层状结构而作为传统润滑剂具有很好的减摩效果,且化学性质稳定,具有耐高温、抗腐蚀性能,但石墨与镍基合金的界面润湿性差,且易团聚,导致其在基体中分布不均、孔隙较多,使材料力学性能降低。石墨在高温摩擦过程中易发生氧化,降低其减摩功能;另一方面,对于激光加工过程中,石墨的高激光系数率极易致使其气化,降低了镍基合金基体上石墨的含量,进而减弱其减摩功能。目前多采用在石墨表面沉积金属镀层(如,Ni)以提高其与镍基合金的界面润湿性能,并改善其在基体中的分散性,一定程度上提高材料的力学性能。但金属镀层与石墨间无相互作用,致使镀层与石墨间的界面润湿性不足,同时仍无法解决石墨在高温摩擦过程中易发生氧化,难以有效提高镍基合金的摩擦性能,限制了镍基合金的广泛应用。
发明内容
发明目的:本发明的目的是提供一种摩擦系数低、磨损率低、具有自润滑性能的镍基合金。
本发明的另一目的是提供该镍基合金的制备方法。
技术方案:本发明所述的自润滑镍基合金,包括镍基合金基体,所述镍基合金基体上分布有镀铝层的石墨/La2O3
进一步地,镀铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相是通过高能激光束作用形成的。
所述的自润滑镍基合金的成形方法,包括以下步骤:
(1)将石墨与纳米La2O3粉末在氩气环境中进行球磨混合;
(2)采用电弧离子镀工艺,在石墨与纳米La2O3混合粉末沉积铝薄膜层;
(3)将上述步骤中镀铝的石墨/纳米La2O3混合粉末、镍基合金粉末在氩气环境中进行球磨混合,获得混合均匀的镍基合金复合材料粉末;
(4)利用高能激光束对所述镍基合金复合材料粉末进行扫描熔化,在铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相,获得自润滑镍基合金。
进一步地,镍基合金为Ni-Cr合金、Ni-Cr-Mo、Ni-Cr-Fe、Ni-Cr-Fe-Al-B-Si合金中的一种;步骤(1)中石墨与纳米La2O3粉末的质量比为1∶1~5∶1;步骤(2)中沉积铝薄膜层厚度为10~100μm;步骤(3)中镀铝的石墨/纳米La2O3混合粉末、镍基合金粉末的质量比为1∶40~1∶100;步骤(4)中高能激光束的扫描功率为180~350W,扫描加工时采用高纯氩气为保护气氛。
发明原理:本发明依据镍基合金在服役过程中摩擦学性能需求,基于石墨优异的低摩特性,将石墨与纳米La2O3粉末球磨混合后,根据铝对激光的高反射率特征,在混合粉末表面镀铝层以避免激光成形过程中石墨气化,再与镍基合金球磨形成复合粉末;其次,基于高能激光束下C-Al间、Ni-Al间的冶金特性,在氩气保护下,借助高能激光束在上述球磨的复合粉末进行扫描熔化与凝固成形具有在铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相,镀铝层内外侧发生的原位反应进一步增强了石墨/镍基合金间的界面润湿性,同时,石墨表面的镀铝层避免了石墨在摩擦过程中的氧化而保持较低的摩擦系数,且形成的增强相能提高镍基合金的耐磨性;另一方面,纳米La2O3粉末的热稳定高,在摩擦过程中能提高镍基合金摩擦层的抗氧化性,以进一步提高镍基合金的耐磨性。
有益效果:本发明与现有技术相比,其显著优点是:
1、本发明基于氩气保护下高能激光束约束下C-Al间、Ni-Al间的冶金特性及反应机理,高能激光束对球磨的复合粉末进行扫描熔化与凝固成形具有在铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相,促使镀铝层内、外侧分别与石墨与镍基合金发生的界面反应,显著增强了石墨/镍基合金间的界面润湿性;另一方面,反应过程中所形成的增强相能有效提高镍基合金的耐磨性;
2、本发明依据铝对激光束的高反射特性,在经球磨的石墨与纳米La2O3混合粉末表面沉积铝层,避免石墨直接吸收激光能量而发生气化,将石墨仍保留在镍基合金基体中,在摩擦过程中保持较低的摩擦系数;同时,在摩擦过程中铝镀层能先与氧结合发生氧化,避免石墨的氧化,进一步发挥石墨的低摩特性,降低镍基合金的摩擦系数;
3、基于La2O3的高熔点、高化学稳定性等优异特性,在摩擦过程中纳米La2O3能提高镍基合金摩擦层的抗氧化性,以促进镍基合金耐磨性的提高。
附图说明
图1是实施例1制得的自润滑镍基合金的物相谱图;
图2是实施例3制得的自润滑镍基合金的摩擦系数;
图3是实施例1-4制得的自润滑镍基合金的磨损率。
具体实施方式
实施例1
(1)将质量比为1∶1的石墨与纳米La2O3粉末在氩气环境中进行球磨混合;
(2)采用电弧离子镀工艺,在上述步骤中所述石墨与纳米La2O3混合粉末沉积厚度为10μm的铝薄膜层;
(3)将上述步骤中所述镀铝的石墨/纳米La2O3混合粉末、Ni-Cr合金粉末按照质量分数为1∶40进行称量后,放置于球磨罐中,在氩气环境中进行球磨混合,获得混合均匀的镍基合金复合材料粉末;
(4)利用扫描功率为180W高能激光束对上述步骤中所述镍基合金复合材料粉末进行扫描熔化在铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相,获得自润滑镍基合金。
从图1可发现,复合材料的物相谱图中除镍基合金衍射峰外,还发现了镀铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相,说明本发明提供自润滑镍基合金及成形方法能增强石墨与镍基合金的界面的润湿性能。
实施例2
本实施例与实施例1的区别是:步骤1中石墨与纳米La2O3粉末设定为3∶1,;步骤4中高能激光束扫描功率为250W。
实施例3
本实施例与实施例2的区别是:步骤3中镀铝的石墨/纳米La2O3混合粉末、Ni-Cr合金粉末的质量分数为1∶70;步骤4中高能激光束扫描功率为350W。
实施例4
本实施例与实施例3的区别是:步骤2中石墨与纳米La2O3混合粉末沉积厚度为100μm铝薄膜层;步骤3中镍基合金为Ni-Cr-Mo。
图2中自润滑镍基合金的摩擦系数稳定值约为0.23,低于粉末冶金制备的镀Ni石墨增强NiCr合金的最优摩擦系数(约0.31)。另一方面,从图3中可发现实施例1-4的自润滑镍基合金的在2.81~1.92×10-5mm3/N·m范围,低于粉末冶金制备的镀Ni石墨增强NiCr合金的最低磨损率3.2×10-5mm3/N·m,这是因为铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相在摩擦过程中的强化作用,同时,纳米La2O3粉末增加了镍基合金摩擦层的抗氧化性,致使镍基合金的磨损率较低,进一步说明本发明提供的自润滑镍基合金的成形方法能有效提高镍基合金的摩擦性能。

Claims (4)

1.一种自润滑镍基合金,其特征在于,包括镍基合金基体,镍基合金基体上分布有镀铝层的石墨/La2O3
制备方法如下:
(1)将石墨与纳米La2O3粉末在氩气环境中进行球磨混合;
(2)采用电弧离子镀工艺,在石墨与纳米La2O3混合粉末沉积铝薄膜层;
(3)将上述步骤中镀铝的石墨/纳米La2O3混合粉末、镍基合金粉末在氩气环境中进行球磨混合,获得混合均匀的镍基合金复合材料粉末;
(4)利用高能激光束对所述镍基合金复合材料粉末进行扫描熔化,在铝层内侧与石墨反应生成Al4C3增强相、铝层外侧与镍形成NiAl相,获得自润滑镍基合金,
所述步骤(1)中石墨与纳米La2O3粉末的质量比为1∶1~5∶1,
所述步骤(2)中沉积铝薄膜层厚度为10~100μm,
所述步骤(3)中镀铝的石墨/纳米La2O3混合粉末、镍基合金粉末的质量比为1∶40~1∶100。
2.根据权利要求1所述的自润滑镍基合金,其特征在于,铝层外侧与镍形成NiAl相是通过高能激光束作用形成的。
3.根据权利要求1所述的自润滑镍基合金的成形方法,其特征在于,所述镍基合金为Ni-Cr合金、Ni-Cr-Mo、Ni-Cr-Fe、Ni-Cr-Fe-Al-B-Si合金中的一种。
4.根据权利要求1所述的自润滑镍基合金的成形方法,其特征在于,所述步骤(4)中高能激光束的扫描功率为180~350W,扫描加工时采用高纯氩气为保护气氛。
CN202111148179.1A 2021-09-28 2021-09-28 一种自润滑镍基合金及其成形方法 Active CN114000002B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111148179.1A CN114000002B (zh) 2021-09-28 2021-09-28 一种自润滑镍基合金及其成形方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111148179.1A CN114000002B (zh) 2021-09-28 2021-09-28 一种自润滑镍基合金及其成形方法

Publications (2)

Publication Number Publication Date
CN114000002A CN114000002A (zh) 2022-02-01
CN114000002B true CN114000002B (zh) 2022-11-18

Family

ID=79921986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111148179.1A Active CN114000002B (zh) 2021-09-28 2021-09-28 一种自润滑镍基合金及其成形方法

Country Status (1)

Country Link
CN (1) CN114000002B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114000013B (zh) * 2021-10-15 2022-05-27 中国航发北京航空材料研究院 一种自润滑铝基复合材料及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445404C (zh) * 2006-05-26 2008-12-24 南京理工大学 宽温带自润滑镍铬合金基复合材料及其制备方法
US20160101433A1 (en) * 2014-10-14 2016-04-14 Siemens Energy, Inc. Laser pre-processing to stabilize high-temperature coatings and surfaces
CN107904439B (zh) * 2017-11-16 2020-01-07 淮阴工学院 一种原位纳米多相复合强韧化钛基复合材料及其制备方法
CN110756797B (zh) * 2019-10-18 2021-12-28 山东农业工程学院 纳米稀土氧化物改性的合金化材料、合金化层及其制备方法
CN112663054B (zh) * 2021-01-13 2023-07-21 山东建筑大学 一种钛合金激光制备镍包石墨粉改性防护层的方法

Also Published As

Publication number Publication date
CN114000002A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN113913667B (zh) 一种高熵合金、制备方法及激光熔覆方法
Zhao et al. Microstructure and tribological properties of laser cladded self-lubricating nickel-base composite coatings containing nano-Cu and h-BN solid lubricants
EP2524749B1 (en) Metallurgical composition of particulate materials, self-lubricating sintered product and process for obtaining self-lubricating sintered products
JP4207218B2 (ja) 金属多孔体とその製造方法及びそれを用いた金属複合材
JP3839740B2 (ja) 摺動材料
CA2896386A1 (en) Process for producing chromium nitride-containing spraying powders
CN114000002B (zh) 一种自润滑镍基合金及其成形方法
CN108504886A (zh) 一种TiC-C镍基合金自润滑复合材料的制备方法
Tailor et al. A review on plasma sprayed Al-SiC composite coatings
EP2339045B1 (en) Wear resistant device and process therefor
Guo et al. Microstructure and tribological properties of a HfB 2-containing Ni-based composite coating produced on a pure Ti substrate by laser cladding
CN114930040A (zh) 使用合金和/或材料制造滑动轴承的滑动层的方法
CN102102155A (zh) 高致密的镍铝基自润滑材料的制备方法
JP2614732B2 (ja) 低摩擦構造及びその製造方法
Khan et al. Evaluation of die-soldering and erosion resistance of high velocity oxy-fuel sprayed MoB-based cermet coatings
CN111001811B (zh) 一种以Cu@Ni核壳结构为润滑相的宽温域Ni3Al基自润滑复合材料及其制备方法
JPH0280813A (ja) 複層鉄銅鉛系合金軸受材料
CN112458333B (zh) 一种双相陶瓷减磨铜合金及其制备方法
CN103320740A (zh) 一种用于高速电弧喷涂制备NiCrBMoSiFe-Ni/C非晶纳米晶自润滑减摩涂层的粉芯丝材
Tabrez et al. Nickel metal matrix composites reinforced with solid lubricants: A comprehensive review
JP2002020882A (ja) 摺動部材及びその製造方法
JP2005015827A (ja) アルミニウム摺動部材およびその製造方法
CN1219098C (zh) 一种高温耐磨耐蚀Ni-Mo-Si金属硅化物合金材料
Imak et al. Production of Ni-Co-bronze composites with different tic composition by hot pressing
Mohamad et al. Phase analysis and microstructure study of sintered Ni-Cr composites containing MoS2, Ag and CaF2 additives as solid lubricants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20220201

Assignee: Jiangsu Huichuang science and Education Development Co.,Ltd.

Assignor: HUAIYIN INSTITUTE OF TECHNOLOGY

Contract record no.: X2022320000370

Denomination of invention: A Self lubricating Nickel Base Alloy and Its Forming Method

Granted publication date: 20221118

License type: Common License

Record date: 20221213