CN113999515B - 一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺 - Google Patents

一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺 Download PDF

Info

Publication number
CN113999515B
CN113999515B CN202111244093.9A CN202111244093A CN113999515B CN 113999515 B CN113999515 B CN 113999515B CN 202111244093 A CN202111244093 A CN 202111244093A CN 113999515 B CN113999515 B CN 113999515B
Authority
CN
China
Prior art keywords
glass fiber
fiber reinforced
polyurethane material
reinforced polyurethane
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111244093.9A
Other languages
English (en)
Other versions
CN113999515A (zh
Inventor
王小平
陈立
钱易强
肖苏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Jinglue Frp Co ltd
Original Assignee
Nanjing Jinglue Frp Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Jinglue Frp Co ltd filed Critical Nanjing Jinglue Frp Co ltd
Priority to CN202111244093.9A priority Critical patent/CN113999515B/zh
Publication of CN113999515A publication Critical patent/CN113999515A/zh
Application granted granted Critical
Publication of CN113999515B publication Critical patent/CN113999515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/043Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/521Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement before the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/545Perforating, cutting or machining during or after moulding
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D17/00Caps for supporting mine roofs
    • E21D17/006Caps for supporting mine roofs characterised by the material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺,涉及工程支护结构的技术领域。玻纤增强聚氨酯材料由包括如下重量份的组分制成:玻纤纱及其织物70‑85份,多元醇和异氰酸酯混合聚氨酯树脂15‑25份,碳基纳米材料0.2‑3份,分散剂1‑3份;支护梁按照如下步骤制备:将多元醇和异氰酸酯混合聚氨酯树脂、碳基纳米材料与分散剂混合均匀;将双组分聚氨酯树脂混合料渗透玻纤纱及其织物,得到预制体;将预制体在90‑180℃下固化,得到玻纤增强聚氨酯材料;将玻纤增强聚氨酯材料切割成支护梁。本申请有助于增强玻纤增强聚氨酯材料的抗弯强度,从而有助于减少玻纤增强聚氨酯材料制成的工字梁局部开裂。

Description

一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺
技术领域
本发明涉及工程支护结构的技术领域,尤其是涉及一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺。
背景技术
在挖掘矿山隧道时,需要对隧道的顶部进行支护,一般采用矿用11号工字梁对隧道的顶部进行支护,矿用11号工字梁是金属钢材,矿用11号工字梁的实际使用长度是5米/根,矿用11号工字梁每米标准重量≥26公斤,每根5米长度的矿用11号工字梁的重量达到130公斤。由于矿用11号工字梁的重量较大,将矿用11号工字梁从地面向矿山隧道掘进施工现场运输时,施工人员的劳动强度较大,不利于提高施工效率和安全性。
为了减轻施工人员的劳动强度,国内一些施工单位希望采用一种“比强度和比模量比较高”、“轻质高强”的非金属材料来替代现有的金属矿用11号工字梁,以对隧道的顶部进行支护。相比于矿用11号工字梁,选择玻纤增强聚氨酯材料制成的工字梁对隧道进行支护,玻纤增强聚氨酯材料的质量较轻,抗弯强度满足实际使用需求,有助于降低施工人员的劳动强度。相关技术中,玻纤增强聚氨酯材料采用聚氨酯树脂和连续玻璃纤维及其织物“拉挤成型工艺”复合而成,高含量的连续玻璃纤维及其织物通过拉挤工艺儿获得了刚度比较高的非金属工字梁。
但是,当连续玻璃纤维的含量过高或过低时,都会造成玻纤增强聚氨酯材料制成品的抗弯强度下降,容易导致玻纤增强聚氨酯材料制成的工字梁局部开裂。
发明内容
为了减少玻纤增强聚氨酯材料制成的工字梁局部开裂,本申请提供一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺。
第一方面,本申请提供一种玻纤增强聚氨酯材料,采用如下的技术方案:
一种玻纤增强聚氨酯材料,由包括如下重量份的组分制成:玻纤纱及其织物70-85份,多元醇和异氰酸酯混合聚氨酯树脂15-25份,碳基纳米材料0.2-3份,分散剂1-3份。
通过采用上述技术方案,将多元醇和异氰酸酯混合聚氨酯树脂与碳基纳米材料、分散剂混合得到的混合料,在一定的注射压力下渗透到玻纤纱及其织物上,再通过加热的成型模具型腔固化成型而制得所需的玻纤增强聚氨酯材料工字梁。玻纤纱及其织物增强聚氨酯材料的刚度,碳基纳米材料和聚氨酯相互渗透,碳基纳米材料与聚氨酯之间产生协同氢键作用和化学结合力,在协同氢键作用和化学结合力的共同作用下,有助于提高玻纤增强聚氨酯材料的抗弯强度,从而有助于减少玻纤增强聚氨酯材料制成的工字梁局部断裂。由于碳基纳米材料是粉末,需要在聚氨酯中均匀分散,本申请还加入分散剂,有助于碳基纳米材料在聚氨酯中分散的更均匀,有助于提高玻纤增强聚氨酯材料的抗弯强度。
优选的,所述碳基纳米材料包括单壁石墨烯碳纳米管。
通过采用上述技术方案,单壁石墨烯碳纳米管具有单层石墨烯卷曲而成的管状结构,相比于多壁碳纳米管和毫米级碳纤维,仅需要添加极少量的单壁石墨烯碳纳米管,即可改善或提高玻纤增强聚氨酯材料的抗弯强度,有助于降低生产成本。而且,相比于同体积的钢,单壁石墨烯碳纳米管的强度更高,重量更低,有助于降低玻纤增强聚氨酯材料的重量。
另外,单壁石墨烯碳纳米管还可以提高玻纤增强聚氨酯材料的导电性,使得玻纤增强聚氨酯材料具有一定的抗静电的能力。
优选的,所述单壁石墨烯碳纳米管的长径比为(1000-4000):1。
通过采用上述技术方案,单壁石墨烯碳纳米管的长径比,对单壁石墨烯碳纳米管的强度具有重要影响,长径比为(1000-4000):1的单壁石墨烯碳纳米管,具有极高的强度,有助于进一步提高玻纤增强聚氨酯材料的各项力学性能。
优选的,所述分散剂选用BYK-163、BYK-164、BYK-2152、BYK-P9912分散剂中的一种或多种。
通过采用上述技术方案,BYK-163、BYK-164、BYK-2152、BYK-P9912均具有较好的分散效果。
优选的,所述玻纤纱及其织物包括玻璃纤维纱和玻纤织物,所述玻璃纤维纱和玻纤织物的重量比为(5-6):1。
通过采用上述技术方案,玻璃纤维纱可以增强玻纤增强聚氨酯材料的纵向拉伸强度,玻纤织物中的玻璃纤维的方向互相交错,有助于增强玻纤增强聚氨酯材料的横向拉伸强度和弹性模量,从而,将玻璃纤维纱和玻纤织物按照铺层设计要求来分布使用,有助于提高玻纤增强聚氨酯材料的抗弯强度和其他力学性能。
第二方面,本申请提供一种支护梁,采用如下的技术方案:
一种支护梁,由上述玻纤增强聚氨酯材料制成。
通过采用上述技术方案,采用上述玻纤增强聚氨酯材料制成的支护梁,具有较高的抗弯强度,有助于减少支护梁局部开裂。
优选的,所述支护梁包括腹板和设于腹板上、下的翼板,所述翼板与腹板固定连接,所述腹板的高度为110-120mm,所述腹板的厚度为15-20mm,所述翼板的厚度为16-18mm。
通过采用上述技术方案,腹板和翼板组成工字型的支护梁,将腹板的高度和翼板的厚度控制在上述范围内,既有助于减少对支护梁抗弯强度的影响,又有助于减少玻纤增强聚氨酯材料的用量,可以降低支护梁的重量。
第三方面,本申请提供一种支护梁的制备工艺,采用如下的技术方案:
一种支护梁的制备工艺,包括如下步骤:
混合阶段:将多元醇和异氰酸酯混合聚氨酯树脂、碳基纳米材料与分散剂混合均匀,得到双组分聚氨酯树脂混合料;
渗透阶段:将玻纤纱及其织物有序引入注胶模具内,将双组分聚氨酯树脂混合料通过注胶机在一定的注射压力的作用下注入专门设计的注胶模具型腔内,在注胶模具型腔内双组分聚氨酯树脂混合料在极短暂的时间之内将玻纤纱及其织物完全渗透好而得到预制体;
固化阶段:将预制体通过拉挤成型生产线的牵引装置牵引至成型模具内,将成型模具的温度调节至90-180℃,待预制体固化后,得到玻纤增强聚氨酯材料;
定型阶段:将玻纤增强聚氨酯材料从成型模具中拉出,所制得的玻纤增强聚氨酯材料自然冷却、定长切割后,,即得到所需长度尺寸的支护梁。
通过采用上述技术方案,本申请先将多元醇和异氰酸酯混合聚氨酯树脂、碳基纳米材料与分散剂混合,有助于碳基纳米材料分散在双组分聚氨酯树脂混合料中,当玻纤纱及其织物与双组分聚氨酯树脂混合料混合后,碳基纳米材料在玻纤纱及其织物上分布的更加均匀,有助于提高玻纤增强聚氨酯材料的抗弯强度,使得制备的支护梁不易开裂。
优选的,在固化阶段,整个成型模具的加热温度区包括一区、二区和三区,一区加热温度为90-100℃,二区加热温度为160-170℃,三区加热温度为170-180℃,预制体依次通过一区、二区和三区。
通过采用上述技术方案,将预制体通过温度依次升高的三个加热温度区,有助于逐渐提高预制体的温度,使得预制体受热更加均匀,固化反应速度更均匀和合理性,可避免工字梁在此过程中出现外观质量和内在质量不良现象,进一步提高玻纤增强聚氨酯材料的抗弯强度和其他各项力学性能。
综上所述,本申请具有以下有益效果:
1、由于本申请加入碳基纳米材料和分散剂,分散剂有助于碳基纳米材料分散,碳基纳米材料有助于增强玻纤增强聚氨酯材料的抗弯强度,从而有助于减少玻纤增强聚氨酯材料制成的工字梁局部断裂;
2、本申请中优选采用单壁石墨烯碳纳米管,有助于显著提高玻纤增强聚氨酯材料的抗弯强度和抗静电的能力,还有助于降低生产成本;
3、本申请的支护梁采用玻纤增强聚氨酯材料制备,具有较高的抗弯强度,有助于减少支护梁局部开裂;
4、本申请的制备工艺,先将多元醇和异氰酸酯混合聚氨酯树脂、碳基纳米材料与分散剂混合,有助于碳基纳米材料分散在双组分聚氨酯树脂混合料中,有助于提高玻纤增强聚氨酯材料的抗弯强度,使得制备的支护梁不易开裂。
附图说明
图1是本申请实施例1的支护梁的截面形状示意图;
图2是本申请的悬臂梁式弯曲强度性能测试试验的正视图;
图3是本申请的悬臂梁式弯曲强度性能测试试验的左视图。
附图标记说明:
1、腹板;2、翼板;3、样品梁;4、样品梁金属支点;5、测试样品梁金属支点;6、金属支点;7、金属压板;8、传感器。
具体实施方式
以下结合实施例对本申请作进一步详细说明。
本申请的原料均通过市售获得。其中,玻璃纤维纱是巨石集团提供的聚氨酯拉挤型专用玻璃纤维纱,玻纤织物是由南京强晟玻纤复合材料有限公司提供的玻璃纤维多轴向编织毡,玻纤织物为玻璃纤维布;TUBALLTM单壁碳纳米管由OCSiAl公司提供;多壁碳纳米管由嘉兴纳科新材料科技有限公司提供,长径比为3125:1;多元醇和异氰酸酯混合聚氨酯树脂由南京聚发新材料有限公司提供,型号为Urepul2104P。
本申请的分散剂可以选用德国毕克公司的BYK-163、BYK-164、BYK-2152、BYK-P9912分散剂中的一种或多种。
实施例
实施例1
本实施例提供一种支护梁,本实施例的支护梁采用玻纤增强聚氨酯材料制备而成。玻纤增强聚氨酯材料包括如下重量的组分:玻纤纱及其织物82kg,多元醇和异氰酸酯混合聚氨酯树脂20kg,碳基纳米材料1kg,分散剂2kg。其中,碳基纳米材料选用TUBALLTM单壁碳纳米管,碳基纳米材料的长径比为3125:1;玻纤纱及其织物包括玻璃纤维纱70kg和玻纤织物12kg,分散剂选用BYK-163。
本实施例的支护梁按照如下步骤进行制备:
混合阶段:将多元醇和异氰酸酯混合聚氨酯树脂、碳基纳米材料与分散剂加入搅拌机中,搅拌均匀后,得到双组分聚氨酯树脂混合料;
渗透阶段:将玻纤纱及其织物有序引入注胶模具内,再将双组分聚氨酯树脂混合料加入注胶机中,注胶机将双组分聚氨酯树脂混合料注入注胶模具的型腔中,在“注胶模具”型腔内,双组分聚氨酯树脂混合料在将玻纤纱及其织物浸透4-5min后,即得到所需的预制体;
固化阶段:将预制体通过拉挤成型生产线的牵引装置牵引至至成型模具内,将预制体依次匀速通过成型模具的一区、二区和三区,一区加热温度为90-100℃,二区加热温度为160-170℃,三区加热温度为170-180℃,预制体在成型模具内的时间为12-16min,预制体固化后,得到玻纤增强聚氨酯材料;
定型阶段:将玻纤增强聚氨酯材料从成型模具中拉出,将玻纤增强聚氨酯材料自然冷却后,进行随机定长切割,然后得到支护梁。
参照图1,支护梁包括腹板1和两个翼板2,腹板1位于两个翼板2之间,两个翼板2平行且均与腹板1垂直,两个翼板2均与腹板1一体成型,腹板1的高度为120mm,腹板1的厚度为20mm,翼板2的厚度为18mm,翼板2的宽度为80mm。
实施例2-10
如表一所示实施例2-10与实施例1的区别之处在于,原料的配比不同。
表一 实施例2-10的原料重量百分比配比表
Figure BDA0003320303810000051
Figure BDA0003320303810000061
实施例11
本实施例与实施例1的区别之处在于,玻纤纱及其织物包括玻璃纤维纱67kg和玻纤织物13kg。
实施例12
本实施例与实施例1的区别之处在于,玻纤纱及其织物包括玻璃纤维纱68.6kg和玻纤织物11.4kg。
实施例13
本实施例与实施例1的区别之处在于,碳基纳米材料的长径比为1000:1。
实施例14
本实施例与实施例1的区别之处在于,碳基纳米材料的长径比为4000:1。
实施例15
本实施例与实施例1的区别之处在于,碳基纳米材料选用多壁碳纳米管。
实施例16
本实施例与实施例1的区别之处在于,腹板1的高度为110mm。
实施例17
本实施例与实施例1的区别之处在于,腹板1的厚度为15mm。
实施例18
本实施例与实施例1的区别之处在于,翼板2的厚度为16mm。
对比例
对比例1
本对比例提供一种支护梁,本对比例与实施例的区别在于不含碳基纳米材料。在混合阶段,将多元醇和异氰酸酯混合聚氨酯树脂与分散剂加入搅拌机中,搅拌均匀后,得到混合黑料。
对比例2
本对比例提供一种支护梁,本对比例与实施例的区别在于不含分散剂。在混合阶段,将多元醇和异氰酸酯混合聚氨酯树脂与碳基纳米材料加入搅拌机中,搅拌均匀后,得到混合黑料。
对比例3
本对比例提供一种支护梁,按照如下步骤制备:
将20kg碳基纳米材料涂在玻纤纱及其织物上,得到改性玻纤材料;
将改性玻纤材料穿过模具,再将20kg聚氨酯注入注胶模具中,将模具升温至75℃,待聚氨酯固化后,得到玻纤增强聚氨酯材料;
拆下注胶模具,将玻纤增强聚氨酯材料自然冷却至室温后,即得到支护梁;
其中,玻纤纱及其织物包括68kg玻璃纤维纱和12kg玻纤织物;聚氨酯采用制备例1制备的聚氨酯;碳基纳米材料选用制备例7制备的碳基纳米材料。
悬臂梁式弯曲强度性能测试试验
针对实施例1-18和对比例1-3提供的支护梁,进行如下测试。
参照图2和图3,将实施例1-18和对比例1-3提供的支护梁,均切割成1.5米长的测试用样品梁3,将两根样品梁3沿同一直线水平放置在测试用金属样品梁金属支点4上进行悬臂集中荷载测试,金属样品梁金属支点4固定在测试样品梁金属支点5上,两根样品梁3中间有20mm的孔隙,样品梁3的测试端至1米处专门设计加工了一个金属支点6以便将测试样品梁3固定牢固,样品梁3在这个金属支点6的另一端再向后伸出400mm,测试时两根样品梁3通过一个专门设计的金属压板7同时向两根样品梁3的上椽端头施加垂直向下的施加压力,金属压板7上安装有记录压力的传感器8,记录样品梁3的荷载分别为10KN、20KN、30KN、40KN、50KN和60KN时,样品梁3的挠度和损坏情况。测试结果如表二所示。
表二 实施例1-18和对比例1-3的测试结果表
Figure BDA0003320303810000071
Figure BDA0003320303810000081
结合实施例1和对比例1-3并结合表二可以看出,相比于实施例1的样品梁3,在相同的荷载下,对比例1-3的样品梁3的挠度均较小,且当荷载为60KN时,对比例1-3的样品梁3均损坏。这说明,在碳基纳米材料和分散剂同时存在下,采用本申请的制备工艺制备的支护梁具有更高的抗弯强度,同时说明,碳基纳米材料和分散剂有助于改善玻纤增强聚氨酯材料的抗弯强度。
结合实施例1-10并结合表二可以看出,实施例1-10的样品梁3的弯曲强度和弯曲模量均较大。这说明,在本申请的原料配比范围内,均有助于制备出抗弯强度较高的玻纤增强聚氨酯材料。
结合实施例1和实施例11-12并结合表二可以看出,相比于实施例1的样品梁3,在相同的荷载下,实施例11-12的样品梁3的挠度变化较小。这说明,在本申请的玻璃纤维纱和玻纤织物的重量比范围内,有助于进一步提高玻纤增强聚氨酯材料的抗弯强度。
结合实施例1和实施例13-14并结合表二可以看出,在相同的荷载下,实施例1和实施例13-14的样品梁3均具有较大的挠度。这说明,在本申请的单壁石墨烯碳纳米管的长径比范围内,均有助于制备出抗弯强度较高的玻纤增强聚氨酯材料。
结合实施例1和实施例15并结合表二可以看出,相比于实施例1,在相同的荷载下,实施例15的支护梁挠度减小。这说明,选用单壁石墨烯碳纳米管,有助于提高玻纤增强聚氨酯材料的抗弯强度。
结合实施例1和实施例16-18并结合表二可以看出,在相同的荷载下,实施例1和实施例16-18的样品梁3均具有较大的挠度。这说明,在本申请的腹板1和翼板2的尺寸下,均有助于制备出抗弯强度较高的支护梁。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (1)

1.一种玻纤增强聚氨酯材料,其特征在于,由包括如下重量份的组分制成:玻纤纱及其织物82kg,多元醇和异氰酸酯混合聚氨酯树脂20kg,碳基纳米材料1kg,分散剂2kg。其中,碳基纳米材料选用TUBALLTM单壁碳纳米管,碳基纳米材料的长径比为3125:1;玻纤纱及其织物包括玻璃纤维纱70kg和玻纤织物12kg,分散剂选用BYK-163;所述多元醇和异氰酸酯混合聚氨酯树脂是多元醇和异氰酸酯反应得到的聚氨酯树脂,所述玻纤增强聚氨酯材料的制备方法包括如下步骤,
混合阶段:将多元醇和异氰酸酯混合聚氨酯树脂、碳基纳米材料与分散剂加入搅拌机中,搅拌均匀后,得到混合料;
渗透阶段:将玻纤纱及其织物有序引入注胶模具内,再将混合料加入注胶机中,注胶机将混合料注入注胶模具的型腔中,在“注胶模具”型腔内,混合料在将玻纤纱及其织物浸透4-5min后,即得到所需的预制体;
固化阶段:将预制体通过拉挤成型生产线的牵引装置牵引至至成型模具内,将预制体依次匀
速通过成型模具的一区、二区和三区,一区加热温度为90-100℃,二区加热温度为160-170℃,三区加热温度为170-180℃,预制体在成型模具内的时间为12-16min,预制体固化后,得到玻纤增强聚氨酯材料;
所述玻纤增强聚氨酯材料用于制备支护梁,将玻纤增强聚氨酯材料从成型模具中拉出,将玻纤增强聚氨酯材料自然冷却后,进行随机定长切割,然后得到支护梁;
所述支护梁包括腹板(1)和两个翼板(2),腹板(1)位于两个翼板(2)之间,两个翼板(2)平行且均与腹板(1)垂直,两个翼板(2)均与腹板(1)一体成型,腹板(1)的高度为120mm,腹板(1)的厚度为20mm,翼板(2)的厚度为18mm,翼板(2)的宽度为80mm。
CN202111244093.9A 2021-12-10 2021-12-10 一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺 Active CN113999515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111244093.9A CN113999515B (zh) 2021-12-10 2021-12-10 一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111244093.9A CN113999515B (zh) 2021-12-10 2021-12-10 一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺

Publications (2)

Publication Number Publication Date
CN113999515A CN113999515A (zh) 2022-02-01
CN113999515B true CN113999515B (zh) 2023-04-07

Family

ID=79923989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111244093.9A Active CN113999515B (zh) 2021-12-10 2021-12-10 一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺

Country Status (1)

Country Link
CN (1) CN113999515B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117624872A (zh) * 2023-11-10 2024-03-01 山东众甫新材料有限公司 一种新型矿用复材支护带及其制备工艺

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662633A (zh) * 2020-06-24 2020-09-15 广东达尔新型材料有限公司 一种防静电耐磨聚氨酯地坪涂料及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381352A (en) * 1981-08-12 1983-04-26 Basf Wyandotte Corporation Process for reinforced reaction injection molding of polyurethanes
WO2009002530A1 (en) * 2007-06-28 2008-12-31 Cabot Corporation Light to heat conversion layer incorporating modified pigment
JP2014520905A (ja) * 2011-06-29 2014-08-25 ダウ グローバル テクノロジーズ エルエルシー 難燃性組成物、難燃性組成物を含む繊維強化ポリウレタン系複合材物品およびその使用
WO2013084967A1 (ja) * 2011-12-08 2013-06-13 ディーエイチ・マテリアル株式会社 ラジカル重合性樹脂組成物、成形材料及び成形品
US20130216390A1 (en) * 2012-02-20 2013-08-22 Bayer Materialscience Llc Reinforced composites produced by a vacuum infusion or pultrusion process
US20130256605A1 (en) * 2012-03-29 2013-10-03 Bayer Materialscience Llc Composites having high levels of carbon nanotubes and a process for their production
DE102013104764A1 (de) * 2013-05-08 2014-11-13 Contitech Antriebssysteme Gmbh Verfahren zur Fertigung eines PU-Riemens mit Zugträgern
CN104130566B (zh) * 2013-06-07 2016-06-22 郑州精益达汽车零部件有限公司 一种聚氨酯树脂团状模塑料及其制备方法
JP5853124B2 (ja) * 2013-08-30 2016-02-09 住友理工株式会社 導電性シャフトおよびそれを用いたoa機器用導電性ロール、並びに導電性シャフトの製法
CN107345061B (zh) * 2016-05-04 2021-06-25 科思创德国股份有限公司 拉挤成型聚氨酯复合材料及其制备方法
CN106183239B (zh) * 2016-07-20 2018-07-10 刘子寒 一种高分子复合电热膜及其制备方法
CN107043449A (zh) * 2017-04-06 2017-08-15 吉林大学 一种车用碳纳米管增强型聚氨酯泡沫的制备方法
CN107523038B (zh) * 2017-09-20 2021-03-16 上海高铁电气科技有限公司 一种石墨烯聚氨酯复合材料及其制备方法
CN108329681A (zh) * 2018-03-02 2018-07-27 山西凝固力新型材料有限公司 一种双向增强的聚氨酯拉挤板及其制备方法
CN109233256A (zh) * 2018-09-30 2019-01-18 山东诺威聚氨酯股份有限公司 玻纤增强用于汽车防撞杆的tpu材料及其制备方法
JP7185779B2 (ja) * 2018-11-19 2022-12-07 ブライト ライト ストラクチャーズ エルエルシー sp2炭素含有材料を内部に有する樹脂層を含む熱放出性の低い高強度の部材
CN111440431B (zh) * 2020-01-20 2022-10-04 南京经略复合材料有限公司 一种玻璃纤维增强双组份聚氨酯材料、含有该材料的异形工字钢及应用
CN111440430B (zh) * 2020-01-20 2022-10-04 南京经略复合材料有限公司 一种玻璃纤维增强双组份聚氨酯材料及应用
CN111234284A (zh) * 2020-03-22 2020-06-05 江苏众成复合材料有限责任公司 一种复合材料太阳能光伏组件框架

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111662633A (zh) * 2020-06-24 2020-09-15 广东达尔新型材料有限公司 一种防静电耐磨聚氨酯地坪涂料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Zunfeng Liu,等.Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites.《J. Phys. Chem. C》.2007,第第111卷卷第13696-13700页. *
沈业鹏,等.PUR-T/SWCNTs 复合导电薄膜对有机气体的响应行为.《工程塑料应用》.2019,第第47卷卷(第第11期期),第111-115页. *

Also Published As

Publication number Publication date
CN113999515A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
Sánchez et al. Effect of the carbon nanotube functionalization on flexural properties of multiscale carbon fiber/epoxy composites manufactured by VARIM
Yazdani et al. Carbon nano-tube and nano-fiber in cement mortar: effect of dosage rate and water-cement ratio
Rahman et al. Effect of NH2-MWCNTs on crosslink density of epoxy matrix and ILSS properties of e-glass/epoxy composites
Godara et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites
Garcia et al. Joining prepreg composite interfaces with aligned carbon nanotubes
Chou et al. An assessment of the science and technology of carbon nanotube-based fibers and composites
Fenner et al. Hybrid nanoreinforced carbon/epoxy composites for enhanced damage tolerance and fatigue life
Bortz et al. Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates
CN113999515B (zh) 一种玻纤增强聚氨酯材料、支护梁及支护梁的制备工艺
Rahaman et al. Carbon nanomaterials grown on E-glass fibers and their application in composite
US20130059947A1 (en) Carbon nanotube-reinforced nanocomposites
Lin et al. Mechanical properties of carbon nanotube fibers reinforced epoxy resin composite films prepared by wet winding
Feng et al. Effect of growth temperature on carbon nanotube grafting morphology and mechanical behavior of carbon fibers and carbon/carbon composites
Chen et al. Fabrication and evaluation of polyamide 6 composites with electrospun polyimide nanofibers as skeletal framework
CN101722698B (zh) 高性能无机纳米材料制备超强聚乙烯无纬布工艺
Natarajan Processing-structure-mechanical property relationships in direct formed carbon nanotube articles and their composites: A review
Cha et al. Strengthening effect of melamine functionalized low-dimension carbon at fiber reinforced polymer composites and their interlaminar shear behavior
Zhang et al. High performance carbon nanotube based composite film from layer-by-layer deposition
Mikhalchan et al. Carbon nanotube fibres for CFRP-hybrids with enhanced in-plane fracture behaviour
CN102504523B (zh) 一种高韧性聚氨酯复合绝缘子芯棒及其制备方法
Gowayed Types of fiber and fiber arrangement in fiber-reinforced polymer (FRP) composites
Zhang et al. Mechanical properties and failure mechanism of spreading carbon fiber reinforced different lateral dimension of graphene oxide modified epoxy composites
Truong et al. Effect of short multi-walled carbon nanotubes on the mode I fracture toughness of woven carbon fiber reinforced polymer composites
Wei et al. The effect of rolling process on the mechanical and electrical properties of CNTs-enhanced GFRP
Houllé et al. Mechanical enhancement of C/C composites via the formation of a machinable carbon nanofiber interphase

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant