CN113991886B - 电动汽车无线充电耦合线圈双边lcc拓扑网络参数设计方法 - Google Patents

电动汽车无线充电耦合线圈双边lcc拓扑网络参数设计方法 Download PDF

Info

Publication number
CN113991886B
CN113991886B CN202111087515.6A CN202111087515A CN113991886B CN 113991886 B CN113991886 B CN 113991886B CN 202111087515 A CN202111087515 A CN 202111087515A CN 113991886 B CN113991886 B CN 113991886B
Authority
CN
China
Prior art keywords
primary
wireless charging
coupling coil
inductance
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111087515.6A
Other languages
English (en)
Other versions
CN113991886A (zh
Inventor
姚为正
甘江华
宣毅
陈天锦
刘向立
张晓丽
刘天强
刘超
李媛
田丽敏
蔡思淇
崔宁豪
秦力
赵瑞霞
高昂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuji Group Co Ltd
State Grid Zhejiang Electric Power Co Ltd
XJ Electric Co Ltd
Xuji Power Co Ltd
Original Assignee
Xuji Group Co Ltd
State Grid Zhejiang Electric Power Co Ltd
XJ Electric Co Ltd
Xuji Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuji Group Co Ltd, State Grid Zhejiang Electric Power Co Ltd, XJ Electric Co Ltd, Xuji Power Co Ltd filed Critical Xuji Group Co Ltd
Priority to CN202111087515.6A priority Critical patent/CN113991886B/zh
Publication of CN113991886A publication Critical patent/CN113991886A/zh
Application granted granted Critical
Publication of CN113991886B publication Critical patent/CN113991886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/373Design optimisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,确定无线充电耦合线圈谐振频率f;设定原边线圈自感与原边串联补偿电感的比值为α,副边线圈自感与副边串联补偿电感的比值为β;在满足第一、第二约束条件的情况下,选择若干组α、β、原/副边并联补偿电容和原/副边串联补偿电容,分别计算对应的功率传输效率,选择功率传输效率最高时对应的一组参数作为双边LCC拓扑网络参数。该方法根据整个系统效率随线圈自感与补偿电感之间比例系数的变化规律,确定整个补偿网络的参数值,对双边LCC拓扑网络参数设计进行优化,实现电动汽车无线充电系统的高效率、高密度传输。

Description

电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法
技术领域
本发明涉及电动汽车无线充电技术领域,尤其涉及一种电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法。
背景技术
无线电能传输技术主要是利用机械波、电场或磁场等中间介质来传输电能,供电系统与充电负载无需通过金属导线连接。其中磁耦合谐振式无线能量传输技术采用交变磁场作为空间能量传递的媒介,能量传输方式具有良好的穿透性、无严格的方向性,能同时给有效区域内多个相近谐振频率的接收端供电,而其他频率不匹配的物体几乎不受影响,因此具有传输距离较远、效率高、功率密度大等诸多优点,已经成为了当今无线输电领域的研究热点。
耦合机构的补偿电路主要用于实现发射端和接受端线圈的频率补偿,保证谐振频率接近,提升系统性能。不同类型的补偿电容或补偿电感电压电流应力存在很大差异,因此补偿电路的拓扑选择是该环节的设计重点。
LCC补偿型无线充电系统电路要优于SS、SP、PS和PP等四种基本补偿拓扑。双边LCC拓扑虽然补偿元件较多,但补偿元件应力相对较小,且其传输效率较高,具有线圈恒流、输出恒流等特性,其对参数敏感程度相对较低,具有较高的功率传输能力、较好的抗偏移特性。双边LCC拓扑由于匹配自身电感补偿电容的加入,自感与谐振补偿电感并无直接联系,增加补偿拓扑参数配置灵活性。因此,中小功率等级无线充电系统的补偿网络拓扑选取双边LCC拓扑。
目前,较多人研究双边LCC拓扑补偿网络中谐振电感和谐振电容的选择以及主要器件的参数选择影响,但并未考虑双边LCC拓扑补偿网络的参数设计问题。
发明内容
针对现有技术中存在的问题,本发明提供一种电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,实现电动汽车无线充电系统的高效率、高密度传输。
为达到上述目的,本发明提供了一种电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,包括:
确定无线充电耦合线圈谐振频率f,确定无线充电耦合线圈原、副边线圈自感;
设定原边线圈自感与原边串联补偿电感的比值为α,副边线圈自感与副边串联补偿电感的比值为β;
构建第一约束条件:加入原边串联补偿电感、原边并联补偿电容、原边串联补偿电容、副边串联补偿电感、原边并联补偿电容、副边串联补偿电容后无线充电耦合线圈处于谐振工作状态;
构建第二约束条件:α、β的设置,极限偏移情况下的满足传输功率要求;
在满足第一、第二约束条件的情况下,选择若干组α、β、原/副边并联补偿电容和原/副边串联补偿电容,分别计算对应的功率传输效率,选择功率传输效率最高时对应的α、β、原/副边并联补偿电容和原/副边串联补偿电容作为双边LCC拓扑网络参数。
进一步地,所述第一约束条件为:
其中ω为无线充电耦合线圈谐振频率角频率,为2πf,Lp和Ls为无线充电耦合线圈原、副边线圈自感,Cps为原边串联补偿电容,Css为副边串联补偿电容,Lrp为原边串联补偿电感,Lrs为副边串联补偿电感,Lrp=α·Lp,Lrs=β·Ls。CP为原边并联补偿电容,Cs为副边并联补偿电容。
进一步地,所述第二约束条件为:
其中Po为传输功率,ω为无线充电耦合线圈谐振频率角频率,为2πf,βp和βs分别为原、副边H桥的移项角,k充电耦合线圈原、副边线圈耦合系数,Vdp、Vds分别为高频逆变电源输入电压及副边整流输出电压。
进一步地,极限偏移情况下,即k最小的情况下,传输功率Po满足最输功率阈值要求。
进一步地,功率传输效率为:
P1为地端全桥通态损耗、P2为车端全桥通态损耗、P3为电容损耗、P4为辅电损耗、P5为其他损耗。
进一步地,无线充电耦合线圈谐振频率f的取值范围为81.38kHz-90kHz。
进一步地,无线充电耦合线圈谐振频率f的取值为85kHz。
进一步地,α、β的取值范围均为1~5。
本发明的上述技术方案具有如下有益的技术效果:
(1)本发明的电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,根据整个系统效率随线圈自感与补偿电感之间比例系数的变化规律,确定整个补偿网络的参数值,对双边LCC拓扑网络参数设计进行优化,实现电动汽车无线充电系统的高效率、高密度传输。
(2)本发明构建谐振约束条件以及抗偏移约束条件,从功率输出的角度进行优化,从而保证电动汽车无线充电系统具有较高的功率传输能力,较高传输效率,较好的抗偏移。
附图说明
图1是本发明的双边LCC补偿网络主电路拓扑示意图;
图2是本发明的双边LCC补偿网络基波等效电路;
图3是本发明的双边LCC拓扑网络参数设计方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
如图1、2所示,双边LCC拓扑网络首先确定原副边基础电路,包括高频逆变电源、原边整流H桥、原边电感、副边电感、副边整流H桥。
在基础电路的基础上,增加了原/副边串联补偿电感、原/副边并联补偿电容、原/副边串联补偿电容,需要确定参数原/副边串联补偿电感、原/副边并联补偿电容、原/副边串联补偿电容的相关参数。
图1、2中,下标的定义:第一个p是primary,原边。第一个s是secondary,副边。第二个p是parallel,并联。第二个s是series,串联。即Lp为原边线圈自感,Ls为副边边线圈自感,Cps为原边串联补偿电容,Css为副边串联补偿电容,Lrp为原边串联补偿电感,Lrs为副边串联补偿电感,CP为原边并联补偿电容,Cs为副边并联补偿电容。S1-S4为四个SIC MOSFET构成H桥;S5-S8是副边四个SIC MOSFET构成H桥。Udp为高频逆变电源输入电压,Uds为副边整流输出电压,u1、u2为双边LCC补偿网络输入和输出电压,其中U1、U2分别为u1、u2的基波分量的有效值;M为线圈之间的互感,RL为接收端的直流等效负载,RE为接收端交流等效负载。设定原边线圈自感与原边串联补偿电感的比值为α,副边线圈自感与副边串联补偿电感的比值为β。
耦合线圈处于谐振工作状态,使系统参数配置如下:
耦合线圈的传输功率其传输功率为:
其中βp和βs分别为原副边H桥的移项角。双边LCC拓扑补偿电感感值小于原副边线圈感值,更小的电感值意味着更小的体积和重量,因此,采用双边LCC拓扑补偿网络有着更高的功率密度。在极限偏移情况下,耦合机构最大工作气隙,最大偏移时对应最小传输功率。也就是充电耦合线圈原、副边线圈耦合系数k最小的情况下,对应的最小传输功率应当满足传输功率的要求,不低于最低传输功率。
假设地端全桥通态损耗为P1、车端全桥通态损耗P2、电容损耗P3、辅电损耗P4、其他损耗为P5。
则系统效率为:
根据整个系统效率随电感比值系数的变化规律,确定最大效率点对应的比值系数,进而确定整个补偿网络的参数值,实现对系统耦合机构拓扑补偿网络的参数优化。从而保证电动汽车无线充电系统具有较高的功率传输能力,较高传输效率,较好的抗偏移。
结合图3,电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,包括如下步骤:
(1)确定无线充电耦合线圈谐振频率f,进而确定无线充电耦合线圈原、副边线圈自感。
(2)设定原边线圈自感与原边串联补偿电感的比值为α,副边线圈自感与副边串联补偿电感的比值为β。
(3)构建第一约束条件:加入原边串联补偿电感Lrp、原边串联补偿电容Cps、原边并联补偿电容CP、副边串联补偿电感Lrs、副边并联补偿电容Css、副边并联补偿电容Cs后无线充电耦合线圈处于谐振工作状态;
所述第一约束条件为:
其中ω为无线充电耦合线圈谐振频率角频率,为2πf,Lp和Ls为无线充电耦合线圈原、副边线圈自感,Cps为原边串联补偿电容,Css为副边串联补偿电容,Lrp为原边串联补偿电感,Lrs为副边串联补偿电感,Lrp=α·Lp,Lrs=β·Ls。CP为原边并联补偿电容,Cs为副边并联补偿电容。
(4)构建第二约束条件:α、β的设置,极限偏移情况下的满足传输功率要求。
所述第二约束条件为:
其中Po为传输功率,ω为无线充电耦合线圈谐振频率角频率,为2πf,βp和βs分别为原、副边H桥的移项角,k充电耦合线圈原、副边线圈耦合系数,Vdp、Vds分别为高频逆变电源输入电压及副边整流输出电压。
(5)在满足第一、第二约束条件的情况下,选择若干组α、β、原边串联补偿电容Cps、副边串联补偿电容Css、原边并联补偿电容CP、副边并联补偿电容Cs分别计算对应的功率传输效率,选择功率传输效率最高时对应的α、β、原边串联补偿电容Cps、副边串联补偿电容Css、原边并联补偿电容CP、副边并联补偿电容Cs作为双边LCC拓扑网络参数。
计算应用该组α、β、原边串联补偿电容Cps、副边串联补偿电容Css、原边并联补偿电容CP、副边并联补偿电容Cs参数后,系统的传输功率Po、地端全桥通态损耗为P1、车端全桥通态损耗P2、电容损耗P3、辅电损耗P4、其他损耗为P5。
则功率传输效率为:
综上所述,本发明涉及一种电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,确定无线充电耦合线圈谐振频率f;设定原边线圈自感与原边串联补偿电感的比值为α,副边线圈自感与副边串联补偿电感的比值为β;在满足第一、第二约束条件的情况下,选择若干组α、β、原/副边并联补偿电容和原/副边串联补偿电容,分别计算对应的功率传输效率,选择功率传输效率最高时对应的一组参数作为双边LCC拓扑网络参数。该方法根据整个系统效率随线圈自感与补偿电感之间比例系数的变化规律,确定整个补偿网络的参数值,对双边LCC拓扑网络参数设计进行优化,实现电动汽车无线充电系统的高效率、高密度传输。
应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

Claims (8)

1.一种电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,包括:
确定无线充电耦合线圈谐振频率f,确定无线充电耦合线圈原、副边线圈自感;
设定原边线圈自感与原边串联补偿电感的比值为α,副边线圈自感与副边串联补偿电感的比值为β;
构建第一约束条件:加入原边串联补偿电感、原边并联补偿电容、原边串联补偿电容、副边串联补偿电感、副边并联补偿电容和副边串联补偿电容后无线充电耦合线圈处于谐振工作状态;
构建第二约束条件:α、β的设置,极限偏移情况下的满足传输功率要求;
在满足第一、第二约束条件的情况下,选择若干组α、β、原/副边并联补偿电容和原/副边串联补偿电容,分别计算对应的功率传输效率,选择功率传输效率最高时对应的α、β、原/副边并联补偿电容和原/副边串联补偿电容作为双边LCC拓扑网络参数。
2.根据权利要求1所述的电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,所述第一约束条件为:
其中ω为无线充电耦合线圈谐振频率角频率,为2πf,Lp和Ls为无线充电耦合线圈原、副边线圈自感,Cps为原边串联补偿电容,Css为副边串联补偿电容,Lrp为原边串联补偿电感,Lrs为副边串联补偿电感,Lrp=α·Lp,Lrs=β·Ls,CP为原边并联补偿电容,Cs为副边并联补偿电容。
3.根据权利要求1或2所述的电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,所述第二约束条件为:
其中Po为传输功率,ω为无线充电耦合线圈谐振频率角频率,为2πf,βp和βs分别为原、副边H桥的移项角,k充电耦合线圈原、副边线圈耦合系数,Vdp、Vds分别为高频逆变电源输入电压及副边整流输出电压。
4.根据权利要求3所述的电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,极限偏移情况下,即k最小的情况下,传输功率Po满足最输功率阈值要求。
5.根据权利要求3所述的电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,功率传输效率为:
P1为地端全桥通态损耗、P2为车端全桥通态损耗、P3为电容损耗、P4为辅电损耗、P5为其他损耗。
6.根据权利要求1或2所述的电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,无线充电耦合线圈谐振频率f的取值范围为81.38kHz-90kHz。
7.根据权利要求6所述的电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,无线充电耦合线圈谐振频率f的取值为85kHz。
8.根据权利要求1或2所述的电动汽车无线充电耦合线圈双边LCC拓扑网络参数设计方法,其特征在于,α、β的取值范围均为1~5。
CN202111087515.6A 2021-09-16 2021-09-16 电动汽车无线充电耦合线圈双边lcc拓扑网络参数设计方法 Active CN113991886B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111087515.6A CN113991886B (zh) 2021-09-16 2021-09-16 电动汽车无线充电耦合线圈双边lcc拓扑网络参数设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111087515.6A CN113991886B (zh) 2021-09-16 2021-09-16 电动汽车无线充电耦合线圈双边lcc拓扑网络参数设计方法

Publications (2)

Publication Number Publication Date
CN113991886A CN113991886A (zh) 2022-01-28
CN113991886B true CN113991886B (zh) 2024-06-21

Family

ID=79735959

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111087515.6A Active CN113991886B (zh) 2021-09-16 2021-09-16 电动汽车无线充电耦合线圈双边lcc拓扑网络参数设计方法

Country Status (1)

Country Link
CN (1) CN113991886B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114726111A (zh) * 2022-05-07 2022-07-08 浙江大学 一种适用于多模块无线充电系统的电压优化联合控制方法
CN115246330B (zh) * 2022-07-21 2024-06-21 广西电网有限责任公司电力科学研究院 电动汽车无线充电原边拓扑自适应控制方法及系统
CN116345719B (zh) * 2023-03-31 2024-05-14 重庆大学 一种多元耦合bd-ipt系统及其效率最大化控制方法
CN116885860B (zh) * 2023-09-06 2023-12-29 哈尔滨理工大学 一种水下无线充电系统的控制方法
CN117811233A (zh) * 2023-12-29 2024-04-02 浙江大学 一种全周转向式非接触电能传输连接器装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683524A (zh) * 2012-08-29 2014-03-26 通用电气公司 无接触功率传递系统
CN106533185A (zh) * 2016-12-29 2017-03-22 哈尔滨工业大学 无线电能传输系统补偿拓扑结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102179796B1 (ko) * 2019-05-27 2020-11-17 숭실대학교산학협력단 정전류(cc)/정전압(cv) 충전을 위한 초고주파 무선 충전기 및 이의 제어방법
CN110422061B (zh) * 2019-07-18 2020-11-17 华中科技大学 一种无线双向电能变换拓扑及其控制方法
CN111835092B (zh) * 2020-07-27 2021-05-18 北京理工大学 一种无线充电系统的双边lcc补偿网络调节方法及系统

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103683524A (zh) * 2012-08-29 2014-03-26 通用电气公司 无接触功率传递系统
CN106533185A (zh) * 2016-12-29 2017-03-22 哈尔滨工业大学 无线电能传输系统补偿拓扑结构

Also Published As

Publication number Publication date
CN113991886A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN113991886B (zh) 电动汽车无线充电耦合线圈双边lcc拓扑网络参数设计方法
CN109617250B (zh) 一种基于组合型拓扑的抗偏移无线电能传输系统
WO2018126617A1 (zh) 一种恒流恒压复合拓扑的无线充电电路
CN106992683B (zh) 一种电压源与电流源复合激励非接触变换电路
WO2022116413A1 (zh) 一种可切换无线电能传输线圈与补偿电容的可变电路拓扑
CN109474082B (zh) 一种基于变补偿网络结构的双向无线电能传输系统及方法
KR20170059391A (ko) 무선 충전기용 양면 lcc 컨버터 및 그 구현방법
CN110896249A (zh) 一种非对称四线圈谐振器以及具有非对称四线圈谐振器的无线电能传输系统
CN110912280A (zh) 基于双向倍压电路的无线电能传输系统
CN210780552U (zh) 对称谐振腔的双向dc-dc变换器
CN108667300A (zh) 一种激磁电感可变llc谐振变压器
Elkhateb et al. DC-to-DC converter topologies for wireless power transfer in electric vehicles
CN110943544B (zh) 一种分数阶并联-串联型电磁场双耦合无线电能传输系统
CN113904460A (zh) 一种无线能量接收装置及多级导轨式无线能量传输系统
CN115693981A (zh) 一种具有紧凑接收端的无线电能传输补偿拓扑结构及系统
CN107565707B (zh) 磁耦合电能传输线圈最优切换设计方法
CN112874331B (zh) 带有可切换中继线圈的电动汽车无线充电磁耦合器
CN112202252B (zh) 带有原边阻抗变换网络的非接触单管谐振变换器
CN115714542A (zh) 一种用于无线充电系统的双边lcc补偿网络参数调谐方法
CN214255867U (zh) 一种多米诺骨牌结构的多负载无线电能传输系统
CN113794288A (zh) 一种双并联电感的无线电能传输补偿拓扑结构
CN110912277B (zh) 一种分数阶串联型电磁场双耦合无线电能传输系统
CN108711950B (zh) 提高远距离无线输电电压增益的电路拓扑及其设计方法
CN211296333U (zh) 一种分数阶串联型电磁场双耦合无线电能传输系统
CN114552800A (zh) 一种接收端高阶lc补偿的磁谐振无线电能传输系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant