CN113991856B - 一种微能网多适应性μPMU最优布点方法 - Google Patents

一种微能网多适应性μPMU最优布点方法 Download PDF

Info

Publication number
CN113991856B
CN113991856B CN202111269613.1A CN202111269613A CN113991856B CN 113991856 B CN113991856 B CN 113991856B CN 202111269613 A CN202111269613 A CN 202111269613A CN 113991856 B CN113991856 B CN 113991856B
Authority
CN
China
Prior art keywords
pmu
micro
energy network
bus
point distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111269613.1A
Other languages
English (en)
Other versions
CN113991856A (zh
Inventor
刘舒
武洁
方陈
苏向敬
柳劲松
符杨
魏新迟
田书欣
顾磊
时珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
State Grid Shanghai Electric Power Co Ltd
Original Assignee
Shanghai University of Electric Power
State Grid Shanghai Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power, State Grid Shanghai Electric Power Co Ltd filed Critical Shanghai University of Electric Power
Priority to CN202111269613.1A priority Critical patent/CN113991856B/zh
Publication of CN113991856A publication Critical patent/CN113991856A/zh
Priority to AU2022231757A priority patent/AU2022231757B2/en
Priority to PCT/CN2022/105723 priority patent/WO2023071300A1/zh
Application granted granted Critical
Publication of CN113991856B publication Critical patent/CN113991856B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00001Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the display of information or by user interaction, e.g. supervisory control and data acquisition systems [SCADA] or graphical user interfaces [GUI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/04Constraint-based CAD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/22Flexible AC transmission systems [FACTS] or power factor or reactive power compensating or correcting units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Linguistics (AREA)
  • Mathematical Physics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Small-Scale Networks (AREA)

Abstract

本发明涉及一种微能网多适应性μPMU最优布点方法,1)获取微能网系统网络拓扑结构,建立微能网μPMU布点数学模型;2)考虑ZIB、传统量测、单μPMU故障和单线路故障等因素对微能网μPMU布点的影响,结合上述建立的微能网μPMU布点数学模型,分别建立各因素影响下的优化布点模型;3)对各因素影响下的优化布点模型分别进行优化求解,获取配置成本最小情况下的微能网μPMU布点状态集合;4)对μPMU布点状态集合进行进一步筛选,获取微能网多适应性μPMU最优布点结果,并综合各影响因素案例,总结进行微能网μPMU最优布点的原则。与现有技术相比,本发明具有提高系统状态观测精度、综合考虑多种因素影响、保证微能网安全稳定运行等优点。

Description

一种微能网多适应性μPMU最优布点方法
技术领域
本发明涉及电力系统量测设备配置技术领域,尤其是涉及一种微能网多适应性μPMU最优布点方法。
背景技术
随着能源资源和环境问题日益突出,大力发展可再生能源已成为应对日益严峻的能源环境问题的必由之路。其中微能网因具有可再生能源消纳和能源使用效率高的优点而被广泛关注。微能网将电力、燃气、供热/供冷等多种能源环节与用户有机结合,通过该系统内多种能源之间的科学调度,实现能源高效利用、满足用户多种能源梯级利用、社会供能安全可靠等目的。微能网涵盖电力、天然气和热力等多种能源的转换、分配与协调,各种能源系统的耦合与互动是微能网的典型物理现象。作为微能网的核心与纽带,电力系统的监测与控制对保障微能网的安全稳定运行尤为重要。
电力系统监控通常基于SCADA系统实现,量测量包括节点电压幅值、支路电流或者功率等信息。但SCADA数据采集没有统一的时标,难以对全站数据进行统一时间断面处理;同时SCADA系统量测刷新速度较慢,难以对系统进行实时动态分析。相比之下,μPMU(微型同步相量测量单元)能够利用全球定位系统的秒脉冲信号为量测数据打上时间标记,保证了相量测量数据的同步性;之后将量测数据通过广域监测系统实时传送至电力系统调度中心,并借助主站系统将μPMU数据转换至统一时间坐标系,进而得到系统的同步相量量测信息。μPMU体积小、精度高,能够对大量数据进行存储和交互,并且允许对数据进行实时计算分析,故适用于微能网系统的监测控制,对保证微能网的安全稳定运行具有重要意义。
微能网中配置μPMU量测装置能有效地改善传统SCADA系统的精度和实时性问题。考虑目前μPMU装置造价仍相对昂贵,在所有母线均安装μPMU成本巨大不现实;同时μPMU能够测量所安装母线以及其邻接母线的电压相量,故可通过合理配置μPMU装置实现整个系统全局可观,满足系统状态量测要求。因此,需对微能网中μPMU的优化布点方法进行研究,在保证微能网系统状态全局可观性的情况下最小化配置成本。
目前已有学者对配电网中的PMU最优布点开展了研究,现有相关文献研究包括提出一种非支配排序遗传算法,从而找到布点的帕累托最优解并获得更好的测量冗余;或考虑现有测量、信道限制和突发事件对配电网PMU布点的影响;或提出一种基于电力系统的完全/不完全可观测性深度的PMU布点方法;或提出一种面向配电馈线高精度故障定位的配电网PMU最优布置方法。虽然已有上述大量配电网PMU布点研究存在,但均未考虑微能网中μPMU的优化布置,更未能系统地总结微能网μPMU最优布点原则。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种微能网多适应性μPMU最优布点方法。
本发明的目的可以通过以下技术方案来实现:
一种微能网多适应性μPMU最优布点方法,该方法包括以下步骤:
S1:在获取微能网系统网络拓扑结构的基础上,采用拓扑可观法,并以μPMU(microphasor measurement unit,微型相量测量单元)配置成本最少为目标和微能网电力系统全局可观为约束条件,建立微能网μPMU布点问题的数学模型。
S2:考虑ZIB(zero-injection bus,零注入母线)、传统量测、单μPMU故障和单线路故障因素对微能网μPMU布点的影响分析,并结合上述基础模型分别建立各因素影响下的优化布点模型。
S3:采用改进BPSO算法(binary particle swarm optimization,改进二进制粒子群优化算法)对上述各优化布点问题进行优化求解,得到配置成本最小情况下的微能网μPMU布点状态集合。
S4:基于SORI对μPMU布点状态集合进行进一步筛选,得到微能网多适应性μPMU最优布点结果,并综合各影响因素案例总结得出微能网μPMU最优布点的一般原则。
具体地,S1的具体内容包括:
本步骤描述了微能网μPMU布点问题的数学模型,通过优化μPMU布置的数量与位置,在满足微能网系统全局可观的条件下,实现配置成本最小化。拓扑分析方法是目前布点研究的常用方法,该方法基于图论思想,只需网络拓扑相关信息,简便易行。本发明采用拓扑分析法研究微能网中的μPMU布点,目标函数为μPMU配置成本最少,约束条件为微能网系统全局可观,配置成本最少的具体数学模型为:
式中:ci为成本系数;i为系统母线编号;N为系统母线总数;xi为二值变量,表示μPMU布点与否,具体定义为:
约束条件为微能网电力系统全局可观,当仅考虑电力系统影响因素时,约束条件为:
AX≥b (3)
式中:X=[x1,...,xN]T,表示微能网电力系统μPMU布点状态;b=[1,...,1]T,b代表系统各节点量测冗余度要求;A为二值联通矩阵,表示系统网络拓扑结构信息,其元素aij为:
定义Oi为母线i的观测冗余度,用以表示其被测量装置观测到的次数,公式为:
考虑系统全局可观表示系统任意母线状态均可观,则各母线的观测冗余度都应不小于1,则上式(3)等价为:
根据系统拓扑结构,母线测量冗余度有其固有上限约束,故无需额外添加上限约束。
本发明在微能网中布点μPMU使其状态可观,须考虑微能网多能系统的影响。微能网电力系统对与多能系统耦合、可再生能源和储能系统接入的母线状态监测格外敏感,要保证这些母线状态的高精度实时监测;同时也要考虑单μPMU故障的情况下母线的实时监测需求。故若母线i为多能系统耦合、可再生能源和储能系统接入处的母线,本发明将其称之为耦合母线,则其观测冗余度要求为:
Oi≥2 (7)
综上可得微能网电力系统μPMU布点约束条件表达式为:
具体地,S2的具体内容包括:
本步骤考虑ZIB、传统量测、单μPMU故障和单线路故障等因素对微能网μPMU布点的影响,其建模分析分别如下:
(1)ZIB影响
当ZIB及其相连的母线至多有一条不可观测时,则不可观测母线的状态信息可通过基尔霍夫电流定律获得,因此也被认为是可观测的。引入辅助二进制变量yij模拟ZIB对母线观测冗余度的影响,表达式为:
其中yij=1表示母线j为可观测ZIB,母线i为与母线j相连的唯一不可观测母线,此时母线i可通过上述ZIB规则计算得到其状态量,从而实现可观。由此,母线i的观测冗余度由μPMU和ZIB共同决定,公式如下:
式中为μPMU作用,而/>则表示ZIB对观测冗余度的作用。
(2)传统量测影响
微能网系统已通过传统SCADA量测进行监控,传统量测对微能网中μPMU的配置也产生影响,具体可分为以下三类:
2.1)母线电压量测
母线电压量测即测量母线电压相量的设备,具有母线电压量测的母线观测冗余度已经为1,即
考虑母线电压量测影响后的母线i观测冗余度表示为:
2.2)潮流电压量测
当一条支路某端的电压相量已知时,通过该支路中的潮流电压量测可计算出另一端母线的电压相量,即当母线i或j被μPMU测量时:
式中zi-j和zj-i为二进制变量,表示潮流电压量测对母线观测冗余度的影响。当i-j支路存在潮流电压量测且其中至少一个母线被μPMU测量时,则母线i、j观测冗余度的表达式为:
2.3)功率注入量测
功率注入量测为测量母线功率的装置,可为系统状态估计提供额外的功率平衡方程。通过引入辅助二进制变量zij模拟功率注入量测对母线观测冗余度的影响,表达式为:
式中zij=1表示可观测母线j为安装功率注入量测装置的母线,母线i为与母线j相连的唯一不可观测母线,此时母线i可通过功率注入量测计算得到其状态量,从而实现可观。此时,母线i的观测冗余度由μPMU和功率注入量测共同决定,公式为:
式中为μPMU作用;/>为功率注入量测对母线观测冗余度的作用。
(3)单μPMU故障影响
在单μPMU故障情况下,若要使得微能网系统仍保持全局可观性,则对应母线须由至少两个μPMU同时观测。将此规则应用于每条母线,则母线观测冗余度约束由式(8)转变为:
(4)单线路故障影响
线路故障导致μPMU可观测路径缺失,进而降低系统可观性。线路故障导致系统拓扑结构发生变化,进而二值联通矩阵A发生改变,从而对微能网μPMU布点产生影响,此故障影响下的网络拓扑元素为:
式中l表示故障线路,母线i与母线j为该线路的两端母线。则母线i的观测冗余度公式改变为:
故此时微能网μPMU布点约束条件变为:
具体地,S3的具体内容包括:
粒子群优化(particle swarm optimization,PSO)算法基于群鸟或群鱼的食物搜索行为。首先通过在搜索空间中随机放置实现粒子群初始化;其次通过迭代过程更新粒子群的速度与位置,得到新的优化解。在每次迭代中粒子向最佳位置移动,通过其自身先前的最佳经验和全部粒子先前的最佳经验联合获得。
在D维搜索空间中,第i个粒子的速度和位置数组给定为veli={veli1,veli2,…,velid,…,veliD}和Pi={Pi1,Pi2,…,Pid,...,PiD}。粒子i的速度和位置/>更新公式如下所示:
式中w为惯性权重系数;k为当前迭代次数;d为搜索空间的维度;ψ1和ψ2为学习因子;r1和r2是随机数,在第k次迭代中均匀分布在[0,1];pbest为自身先前的最佳经验,则表示前k次迭代中粒子i目标函数最小的X;gbest为所有粒子中先前的最佳经验,则表示为前k次迭代中所有粒子目标函数最小的X。
考虑μPMU最优布点问题中的决策变量取值0或1,故BPSO更适合最优布点问题。BPSO与PSO的主要区别是位置数组及其更新过程只考虑二进制量0或1。Sigmoid函数用于更新粒子的位置,其值取决于粒子的速度velid。Sigmoid函数的公式表示为:
S(velid)=1/(1+exp(-velid)) (24)
位置Pid的更新公式为:
式中r3为介于0和1之间的随机数。
在上述基础上,引入速度极限阈值和线性衰减惯性权重系数以提高粒子寻优能力并改进BPSO算法。设置速度极限阈值对于限制粒子搜索过程至关重要,否则粒子可能会不受控制地加速到搜索空间之外;同时为了控制群体的搜索速度,需要适当调整惯性权重系数w,以保持开发和探索间的平衡。故本发明引入线性衰减的惯性权重系数w,公式如下:
wk=wmax-(wmax-wmin)×k/kmax (26)
式中wk为第k次迭代的惯性权重系数;wmax和wmin分别为惯性权重系数最大值和最小值,分别设置为0.95和0.4;kmax为最大迭代次数,设置为1000。
基于改进BPSO算法开展优化,得到目标函数最小化情况下的微能网μPMU布点状态,具体步骤如下:
步骤1、输入微能网系统网络拓扑二值连通矩阵A;
步骤2、设置BPSO参数,包括迭代次数、粒子数、维度、惯性权重系数、学习因子和速度阈值;
步骤3、初始化粒子,若不满足约束,则重新初始化直至满足约束为止;
步骤4、粒子速度与位置迭代更新;
步骤5、判断终止条件,即迭代次数达设定上限终止,否则返回步骤4;
步骤6、输出目标函数最小的候选解集X。
具体地,S4的具体内容包括:
SORI(system observability redundancy index,系统观测冗余度指标)表示微能网电力系统中所有母线被观测次数的总和,以此来衡量微能网整体系统状态量测精度。通过改进BPSO优化算法得出微能网μPMU的布点情况后,可能出现μPMU布置个数相同但位置不一致的情况,故通过SORI值进行排序选出微能网μPMU布点最优解,得到系统状态量测精度最高情况下的μPMU布点方案。SORI的公式为:
基于上述微能网μPMU最优布点方案,将其分别应用于考虑各典型影响因素的微能网具体实例,进行μPMU多适应性的最优布点。
本发明提供的微能网多适应性μPMU最优布点方法,相较于现有技术至少包括如下有益效果:
(1)本发明提出的微能网多适应性μPMU最优布点方法,以μPMU配置成本最少为目标和微能网电力系统全局可观为约束条件,建立了微能网μPMU布点数学模型,在满足系统全局可观的基础上保障了布点的经济性;
(2)本发明所提出的微能网多适应性μPMU最优布点方法,综合考虑了ZIB、传统量测、单μPMU故障和单线路故障等典型因素对微能网μPMU布点的影响,总结形成微能网μPMU多适应性布点原则;
(3)本发明所提出的微能网多适应性μPMU最优布点方法基于改进BPSO算法进行优化求解,在一定程度上提高了求解速度;同时引入SORI反映系统量测精度,在相同配置成本的情况下提高了系统状态量测精度,得到μPMU最优布点方案。
附图说明
图1为改进BPSO算法流程图;
图2为本发明方法的流程示意图;
图3为实施例中由IEEE33节点系统改造而来的微能网系统图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
实施例
本发明涉及一种微能网多适应性μPMU最优布点方法,主要解决的技术问题包括以下几点:
(1)基于拓扑可观分析方法的微能网μPMU(micro phasor measurement unit,微型相量测量单元)优化布点问题。基于拓扑可观法研究实现微能网的全局可观性,建立微能网μPMU优化布点的数学模型;同时综合考虑ZIB(zero-injection bus,零注入母线)、传统量测、单μPMU故障和单线路故障等因素对μPMU布点的影响,并建立对应布点数学模型。
(2)微能网μPMU最优布点问题的有效求解。通过改进BPSO算法得到目标函数最小情况下的微能网μPMU布点方案备选集,再进而基于SORI得到微能网最优μPMU布点方案;最后依据上述方法并分别考虑各种典型因素影响,总结得出微能网μPMU多适应性的最优布点原则。
本实施方式整体技术方案包括:通过拓扑可观法研究微能网μPMU布点数学模型、考虑上述典型因素对μPMU布点的影响、采用的改进BPSO优化算法以及SORI概念的引入。
具体地,如图2所示,本发明微能网多适应性μPMU最优布点方法包括数据输入步骤、微能网μPMU布点模型构建步骤、改进BPSO算法优化求解步骤、最优μPMU布点方案筛选步骤以及结果输出步骤。
本实例以IEEE33节点系统改造而来的微能网系统为例,具体如图3所示。图中,母线6为风电系统接入母线,母线15为光伏系统接入母线,母线11与27通过热电联产与天然气系统耦合,母线14通过电锅炉装置与热力系统耦合,母线11为储能系统接入母线,即系统母线6、11、14、15、27皆为耦合母线。则微能网IEEE33节点电力系统μPMU布点约束条件表达式为:
结合上述各因素影响下的建模分析,可得在ZIB、传统量测与单线路故障下的微能网μPMU布点约束条件;结合式(18)可得在单μPMU故障影响下微能网μPMU布点约束条件:
在此基础上,采用BPSO优化算法分别仿真求解不同场景下的微能网μPMU最优布点,包括不同ZIB数量场景、不同传统量测数量场景、单μPMU故障场景和单线路故障情景,仿真结果如下:
(1)ZIB影响仿真结果
表1 ZIB对微能网μPMU布点影响
由表1可得,当系统中ZIB数量增加时,由于ZIB对系统的额外观测作用增大,实现微能网电力系统全局可观的μPMU数量将会减少;且在相同数量μPMU的基础上,增加ZIB,SORI值会增加,提高了系统状态估计精度。当ZIB的数量增到一定值时,ZIB对系统观测作用达到饱和,故μPMU配置数量不发生变化。
(2)传统量测影响仿真结果
表2传统量测对微能网μPMU布点影响
由表2分析可得当传统量测数量增多时,由于传统量测对系统的额外观测作用增大,则实现微能网全局可观的μPMU数量将会减少。
(3)单μPMU故障影响仿真结果
表3单μPMU故障对微能网μPMU布点影响
由表3分析可得,在微能网单μPMU故障情况下,由于μPMU故障导致测量到的母线观测冗余度降低,因此实现全系统可观所需的μPMU数量增多。
(4)单线路故障影响仿真结果
表4单线路故障对微能网μPMU布点影响
由表4可知,当微能网发生单线路故障时,由于μPMU可观测路径减少,导致实现微能网全局可观所需的μPMU数量增加。且当故障发生在与耦合母线相连线路时,由于耦合母线对量测冗余度要求更高,相应μPMU增加的数量更多。
综上所述,总结表1、2、3、4可得微能网μPMU多适应性典型布点原则,具体内容如表5所示。
表5微能网μPMU典型布点原则
本发明提出的微能网多适应性μPMU最优布点方法,以μPMU配置成本最少为目标和微能网电力系统全局可观为约束条件,建立了微能网μPMU布点数学模型,在满足系统全局可观的基础上保障了布点的经济性;综合考虑了ZIB、传统量测、单μPMU故障和单线路故障等典型因素对微能网μPMU布点的影响,总结形成微能网μPMU多适应性布点原则。另外,本发明基于改进BPSO算法进行优化求解,在一定程度上提高了求解速度;同时引入SORI反映系统量测精度,在相同配置成本的情况下提高了系统状态量测精度,得到μPMU最优布点方案。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的工作人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (1)

1.一种微能网多适应性μPMU最优布点方法,其特征在于,包括:
1)获取微能网系统网络拓扑结构,建立微能网μPMU布点数学模型;
2)考虑ZIB、传统量测、单μPMU故障和单线路故障因素对微能网μPMU布点的影响,其中,ZIB为零注入母线,结合步骤1)建立的微能网μPMU布点数学模型,分别建立各因素影响下的优化布点模型;
3)对各因素影响下的优化布点模型分别进行优化求解,获取配置成本最小情况下的微能网μPMU布点状态集合;
4)对μPMU布点状态集合进行进一步筛选,获取微能网多适应性μPMU最优布点结果,并综合各影响因素案例,总结进行微能网μPMU最优布点的原则;
步骤1)的具体内容为:
在获取微能网系统网络拓扑结构的基础上,采用拓扑可观法,并以μPMU配置成本最少为目标和微能网电力系统全局可观为约束条件,建立微能网μPMU布点数学模型;
传统量测包括母线电压量测、潮流电压量测和功率注入量测;
μPMU配置成本最少的表达式为:
式中:ci为成本系数;i为系统母线编号;N为系统母线总数;xi为二值变量,表示μPMU布点与否,其定义表达式为:
微能网电力系统全局可观的约束表达式为:
式中,Oi为母线i的观测冗余度,用以表示其被测量装置观测到的次数,公式为:
式中,aij为表示系统网络拓扑结构信息的二值连通矩阵A的元素,且有:
步骤3)中,采用改进BPSO算法对各因素影响下的优化布点模型分别进行优化求解,获取配置成本最小情况下的微能网μPMU布点状态集合;
采用改进BPSO算法对各因素影响下的优化布点模型分别进行优化求解,获取配置成本最小情况下的微能网μPMU布点状态集合,具体步骤包括:
31)输入微能网系统网络拓扑二值连通矩阵A;
32)设置改进BPSO算法参数,包括迭代次数、粒子数、维度、惯性权重系数、学习因子和速度阈值;
33)初始化粒子,若不满足约束,则重新初始化直至满足约束为止;
34)对粒子速度与位置进行迭代更新;
35)判断终止条件,即判断迭代次数达是否设定上限,若是则终止,否则返回步骤34);
36)输出目标函数最小的候选解集X;
步骤4)的具体内容为:
通过改进BPSO优化算法获取微能网μPMU的布点情况后,通过SORI值进行排序选出微能网μPMU布点最优解,得到系统状态量测精度最高情况下的μPMU布点方案;SORI的公式为:
基于上述微能网μPMU最优布点方案,将其分别应用于考虑各典型影响因素的微能网具体实例,进行μPMU多适应性的最优布点;
步骤2)中,考虑ZIB因素影响下的优化布点模型的表达式为:
式中,N为系统母线总数;yij=1表示母线j为可观测ZIB,母线i为与母线j相连的唯一不可观测母线,此时母线i通过ZIB规则计算得到其状态量,从而实现可观;由此,母线i的观测冗余度Oi由μPMU和ZIB共同决定,公式如下:
式中为μPMU作用,而/>则表示ZIB对观测冗余度的作用;
步骤2)中,考虑单μPMU故障因素影响下的优化布点模型的表达式为:
步骤2)中,考虑单线路故障因素影响下的优化布点模型的表达式为:
式中,l为故障线路,母线i与母线j为该线路的两端母线,则母线i的观测冗余度为:
此时微能网μPMU布点约束条件变为:
CN202111269613.1A 2021-10-29 2021-10-29 一种微能网多适应性μPMU最优布点方法 Active CN113991856B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202111269613.1A CN113991856B (zh) 2021-10-29 2021-10-29 一种微能网多适应性μPMU最优布点方法
AU2022231757A AU2022231757B2 (en) 2021-10-29 2022-07-14 Method for multi-adaptive optimal μPMU placement in micro-energy network
PCT/CN2022/105723 WO2023071300A1 (zh) 2021-10-29 2022-07-14 一种微能网多适应性μPMU最优布点方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111269613.1A CN113991856B (zh) 2021-10-29 2021-10-29 一种微能网多适应性μPMU最优布点方法

Publications (2)

Publication Number Publication Date
CN113991856A CN113991856A (zh) 2022-01-28
CN113991856B true CN113991856B (zh) 2024-03-12

Family

ID=79744130

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111269613.1A Active CN113991856B (zh) 2021-10-29 2021-10-29 一种微能网多适应性μPMU最优布点方法

Country Status (3)

Country Link
CN (1) CN113991856B (zh)
AU (1) AU2022231757B2 (zh)
WO (1) WO2023071300A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991856B (zh) * 2021-10-29 2024-03-12 国网上海市电力公司 一种微能网多适应性μPMU最优布点方法
CN114978918B (zh) * 2022-05-20 2024-01-30 东南大学 有限块长下保证电网可观测性的带宽分配方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013812A (zh) * 2007-02-07 2007-08-08 浙江大学 一种考虑高风险连锁故障路径的pmu配置方法
CN103632313A (zh) * 2013-12-05 2014-03-12 国家电网公司 一种基于pmu数据的电网动态可观方法
CN105406462A (zh) * 2015-10-30 2016-03-16 济南大学 基于系统拓扑模型的pmu配置方法
CN109902916A (zh) * 2019-01-15 2019-06-18 中国电力科学研究院有限公司 一种面向攻击的电力工控系统业务自恢复方法及系统
CN110086168A (zh) * 2019-05-21 2019-08-02 江苏方天电力技术有限公司 一种基于多源数据融合的配电网运行拓扑辨识方法
CN110676940A (zh) * 2019-10-21 2020-01-10 国网上海市电力公司 一种提高参数辨识精度的配电网pmu配置方法及系统
CN111313405A (zh) * 2020-02-29 2020-06-19 上海电力大学 一种基于多量测断面的中压配电网拓扑辨识方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104680249B (zh) * 2015-02-11 2018-04-27 南京邮电大学 一种基于改进离散粒子群算法的pmu配置方法
CN105305507A (zh) * 2015-09-29 2016-02-03 南方电网科学研究院有限责任公司 交直流互联电网的pmu布点优化方法和系统
US11245258B2 (en) * 2019-07-03 2022-02-08 Bigwood Technology, Inc. Optimal sparse placement of phasor measurement units and state estimation of key buses in distribution networks
CN113991856B (zh) * 2021-10-29 2024-03-12 国网上海市电力公司 一种微能网多适应性μPMU最优布点方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101013812A (zh) * 2007-02-07 2007-08-08 浙江大学 一种考虑高风险连锁故障路径的pmu配置方法
CN103632313A (zh) * 2013-12-05 2014-03-12 国家电网公司 一种基于pmu数据的电网动态可观方法
CN105406462A (zh) * 2015-10-30 2016-03-16 济南大学 基于系统拓扑模型的pmu配置方法
CN109902916A (zh) * 2019-01-15 2019-06-18 中国电力科学研究院有限公司 一种面向攻击的电力工控系统业务自恢复方法及系统
CN110086168A (zh) * 2019-05-21 2019-08-02 江苏方天电力技术有限公司 一种基于多源数据融合的配电网运行拓扑辨识方法
CN110676940A (zh) * 2019-10-21 2020-01-10 国网上海市电力公司 一种提高参数辨识精度的配电网pmu配置方法及系统
CN111313405A (zh) * 2020-02-29 2020-06-19 上海电力大学 一种基于多量测断面的中压配电网拓扑辨识方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于BPSO算法电力系统故障可观的PMU配置;李金灿;邹恩;;江西师范大学学报(自然科学版)(第02期);第122-125页 *

Also Published As

Publication number Publication date
AU2022231757A1 (en) 2023-05-18
AU2022231757B2 (en) 2024-02-29
WO2023071300A1 (zh) 2023-05-04
CN113991856A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN113991856B (zh) 一种微能网多适应性μPMU最优布点方法
Mosadeghy et al. A time-dependent approach to evaluate capacity value of wind and solar PV generation
CN110299762B (zh) 基于pmu准实时数据的主动配电网抗差估计方法
CN109802394A (zh) 一种计及分布式电源与电动汽车接入的概率潮流计算方法
CN107390547B (zh) 一种包含微网群的主动配电网性能测试方法
Resende et al. Application of dynamic equivalence techniques to derive aggregated models of active distribution network cells and microgrids
Angioni et al. Design and implementation of a substation automation unit
CN107480825A (zh) 一种计及容量可信度的光伏电站优化规划方法
Huang et al. An efficient probabilistic approach based on area grey incidence decision making for optimal distributed generation planning
Tao et al. Operational risk assessment of grid-connected PV system considering weather variability and component availability
Perez et al. Suitability of voltage stability study methods for real-time assessment
CN117200348B (zh) 一种考虑风光扰动的微电网群状态预测集计算方法
Khare et al. Optimal PMU placement using matrix modification based integer linear programming
CN112182499A (zh) 一种基于时序电量数据的低压配电网拓扑结构辨识方法
Song et al. Medium and long term load forecasting considering the uncertainty of distributed installed capacity of photovoltaic generation
Bao et al. A substation-oriented approach to optimal phasor measurement units placement
Wang et al. Approach to enhance the robustness on PMU-based power system dynamic equivalent modeling
Du et al. Hosting capacity assessment in distribution networks considering wind–photovoltaic–load temporal characteristics
CN109390946B (zh) 一种基于多参数规划理论的最优概率潮流快速计算方法
CN108964044B (zh) 一种通过海底电缆互联的海洋微电网群等值建模方法
Tan et al. Multi population genetic algorithm for allocation and sizing of distributed generation
Bai et al. Correlation analysis and prediction of power network loss based on mutual information and artificial neural network
Wu et al. A MOPSO based faulty section location method for distribution networks with PVs
Liu et al. Adaptive Optimal μPMU Placement in Micro Energy Internet
Hong et al. Study on fuzzy load flow with consideration of wind generation uncertainties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant