CN113981411B - 一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法 - Google Patents

一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法 Download PDF

Info

Publication number
CN113981411B
CN113981411B CN202111250868.3A CN202111250868A CN113981411B CN 113981411 B CN113981411 B CN 113981411B CN 202111250868 A CN202111250868 A CN 202111250868A CN 113981411 B CN113981411 B CN 113981411B
Authority
CN
China
Prior art keywords
boron
diamond film
doped diamond
self
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111250868.3A
Other languages
English (en)
Other versions
CN113981411A (zh
Inventor
张静
于翔
赵志岩
裴敬轩
张志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Material Institute of Shandong Academy of Sciences
Original Assignee
New Material Institute of Shandong Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Material Institute of Shandong Academy of Sciences filed Critical New Material Institute of Shandong Academy of Sciences
Priority to CN202111250868.3A priority Critical patent/CN113981411B/zh
Publication of CN113981411A publication Critical patent/CN113981411A/zh
Application granted granted Critical
Publication of CN113981411B publication Critical patent/CN113981411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0254Physical treatment to alter the texture of the surface, e.g. scratching or polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/279Diamond only control of diamond crystallography
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种表面包括纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法,自支撑掺硼金刚石膜厚度为450‑550μm,表面分布有垂直于自支撑掺硼金刚石膜表面的纳米锥尖结构,所述纳米锥尖的长度为200‑500nm,相邻纳米锥尖之间的间距为10‑200nm,本发明是以金属钼为基底,使用热丝化学气相沉积设备沉积得到自支撑掺硼金刚石膜;随后,使用氧离子反应离子刻蚀技术对自支撑掺硼金刚石膜进行刻蚀得到表面具有纳米锥尖结构的自支撑掺硼金刚石膜。本发明中,自支撑掺硼金刚石膜与纳米锥尖结合的方式来极大地提高了掺硼金刚石膜的电化学导电性能,同时本发明的制备方法新颖、简单有效、成本低,具有广泛的市场应用前景。

Description

一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备 方法
技术领域
本发明是关于半导体材料技术领域,特别是关于一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法。
背景技术
掺硼金刚石(掺硼金刚石)由于其独特的特性,如宽电位窗口和高电化学稳定性,成为储能领域的有力竞争者。然而,当前常用掺硼金刚石薄膜的电极比电容极小限制了其在电容器领域的应用。众所周知,纳米结构的掺硼金刚石电极因可以提高电解液与电极的接触面积,可以极大的提高掺硼金刚石电极的比电容量。此外,在平板掺硼金刚石薄膜电极上制备纳米锥结构可能会破坏/损坏掺硼金刚石薄膜与基底之间的界面,引起电极比电容量下降,严重时会使薄膜与基底脱离,直接导致电极失效。因此,为了避免基底的影响,在自支撑掺硼金刚石膜上制备纳米锥结构是值得探索的一种制备高性能微型电容器的思路。
在自支撑掺硼金刚石膜上构建纳米结构制备微型超级电容器具有以下三个优点:i)自支撑掺硼金刚石膜结构可以从根本上避免因基底剥离而导致的电极失效问题;ii)纳米结构可以在掺硼金刚石膜上面原位制备,而不受薄膜基底和界面的影响;iii)纳米结构可以提高电化学活性表面积,促进电子传输和电解质扩散,进而提高电极电容量。
尽管优点显著,当前鲜见对于在自支撑掺硼金刚石薄膜电极上制备纳米锥结构用于微型超级电容的研究。此外,关于纳米锥结构对自支撑掺硼金刚石薄膜电极电化学性能影响的探讨也寥寥无几。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
为了解决当前掺硼金刚石膜制备步骤繁琐、电化学稳定性差及导电性差等问题,以及本发明提供了表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法,其能够简单有效地从自支撑掺硼金刚石膜上通过刻蚀膜本身获得纳米锥,从根本上避免传统掺硼金刚石膜由于膜基结合力差导致的掺硼金刚石膜从基底上剥落的现场;此外,在掺硼金刚石膜表面构建纳米锥的方式从源头上提高掺硼金刚石膜的导电性,极大扩展了其电化学应用前景。
本发明的技术方案如下:本发明一方面提供了一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜,所述自支撑掺硼金刚石膜厚度为450-550μm,表面分布有垂直于自支撑掺硼金刚石膜表面的纳米锥尖结构,所述纳米锥尖的长度为200~500nm,相邻纳米锥尖之间的间距为10~200nm。
本发明的另一方面提供了上述表面具有纳米锥尖结构的自支撑掺硼金刚石膜的制备方法,包括以下步骤:
S1、自支撑掺硼金刚石膜的制备:以金属钼为基底,使用热丝化学气相沉积设备沉积得到,沉积过程后通过冷却过程中的热胀冷缩,基底与自支撑掺硼金刚石膜脱离,得到单独的自支撑掺硼金刚石膜;
S2、自支撑掺硼金刚石膜表面纳米锥的制备:使用氧等离子反应离子刻蚀方法在步骤S1所得的自支撑掺硼金刚石膜上进行刻蚀得到所述表面包括纳米锥结构的自支撑掺硼金刚石膜。
进一步的,上述步骤S1还包括Mo基底预处理的步骤S11,所述S11包括以下步骤:
S111、喷砂:采用W40白刚玉砂的喷砂机,喷枪气压在0.2~0.4Pa,将Mo基底暴露在空气中可能有污染的表面打磨掉,直至Mo基底表面颜色均匀一致为止;
S112、气吹:喷砂后采用0.2-0.4Pa的压缩空气将Mo基体表面吹干净,无浮砂;
S113、清洗:用无尘布先后分别蘸丙酮和乙醇将Mo基体表面擦干、备用。
进一步的,上述步骤S1还包括种晶步骤S12:用无尘布蘸含有金刚石微粉的乙醇或丙酮溶液,擦拭钼基体,进行种晶;所述含有金刚石微粉的乙醇或丙酮溶液是指:将2g金刚石粉分散在100m L乙醇或丙酮溶液中,其中金刚石粉的直径范围8~12nm;种晶后,再用0.2-0.4Pa的氮气将种晶后的钼基底表面吹干。
进一步的,上述步骤S1中的热丝化学气相沉积设备沉积热丝化学气相沉积设备腔室中进行,包括灯丝碳化步骤S13和沉积步骤S14;所述灯丝碳化步骤S13中:采用氢气和甲烷对灯丝进行碳化,甲烷/氢气的体积比=2~6%,碳化气压500~10000Pa;所述灯丝为钨丝、钽丝、铼丝中的一种。
进一步的,上述沉积步骤S14的具体过程为:将Mo基底放入热丝化学气相沉积设备腔室中在碳化灯丝条件下进行薄膜沉积,热丝化学气相沉积设备参数为:功率=25000W,衬底温度=700~800℃,气压=0.5~10KPa,含有三氧化二硼的乙醇蒸汽/氢气的流量比=2~4%,按质量计B/C=2~4%;沉积过程结束,将热丝化学气相沉积设备自然冷却,所述沉积的自支撑掺硼金刚石膜从Mo基底上脱离。
进一步的,上述步骤S14的沉积过程中的前2小时,使用CH4作为的碳源沉积金刚石薄膜;在接下来的沉积掺硼金刚石膜阶段,采用乙醇作为碳源,三氧化二硼作为硼源,沉积掺硼金刚石膜;其中,硼源的引入是使用氢气鼓泡乙醇溶液将硼引入到热丝化学气相沉积设备腔室。
进一步的,上述步骤S2中,反应离子刻蚀使用氧等离子体进行刻蚀,刻蚀的具体参数如下:氧气压力=100~200mT,流速=18~20sccm,氧等离子体功率=300~350W。
进一步的,上述步骤S2中,还包括将刻蚀后的产品进行后处理的步骤:将经过刻蚀后自支撑掺硼金刚石膜放入HF溶液中浸泡5分钟。
本发明的步骤S111的喷砂目的是将Mo基底暴露在空气中可能有污染的表面打磨掉,直到Mo基底表面颜色均匀一致为止。
本发明步骤S1中自支撑掺硼金刚石薄膜从基底上的玻璃主要依靠掺硼金刚石薄膜与Mo基底的膨胀系数不同,在腔室的冷却过程中,掺硼金刚石薄膜会自动从Mo基底上剥离形成自支撑的掺硼金刚石薄膜。
本发明步骤S2中刻蚀后处理步骤可以使掺硼金刚石薄膜表面氧化为氢终端增加其电化学导电性。
本发明同时提供了一种电容器,它包括本发明提供的表面具有纳米锥尖结构的自支撑掺硼金刚石膜,所述表面具有纳米锥尖结构的自支撑掺硼金刚石膜用作正极材料。
本发明相比于现有技术的先进性在于:
与现有技术相比,本发明的制备方法,采用喷砂、气吹、清洗、种晶等四个步骤,既简化了Mo基底预处理的步骤,还还简化了在Mo基底上种晶的步骤。因此,该自支撑掺硼金刚石膜的制备方法是简单有效、低成本。
与现有技术相比,本发明中利用化学反应离子刻蚀技术中选用氧等离子作为反应离子进行刻蚀,既可以利用硼原子的选择性刻蚀的原因将掺硼金刚石表面由平面状刻蚀出纳米锥来增加其电化学反应的活性面积,还可以避免在刻蚀过程中使用其他离子造成对掺硼金刚石表面的污染。
与现有技术相比,本发明将刻蚀后的掺硼金刚石膜放入HF溶液浸泡5分钟,既刻蚀掉在RIE过程中产生的硅杂质,又使掺硼金刚石表面的纳米锥结构赋予氢终端提高导电性。
附图说明
图1为本发明实施例所得自支撑掺硼金刚石膜的形貌;
图2为本发明实施例所得表面具有纳米锥尖结构的自支撑掺硼金刚石膜的形貌,;
图3为本发明实施例所得自支撑掺硼金刚石膜和表面具有纳米锥尖结构的自支撑掺硼金刚石膜的拉曼图谱;
图4为本发明实施例所得自支撑掺硼金刚石膜和表面具有纳米锥尖结构的自支撑掺硼金刚石膜的循环伏安曲锥;
图5本发明实施例制备表面具有纳米锥尖结构的自支撑掺硼金刚石膜的过程示意图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
实施例1:
一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜的制备方法,制备过程如图5所示,
包括以下步骤:(1)喷砂:采用W40白刚玉砂的喷砂机,喷枪气压在0.2~0.4Pa,将Mo基底暴露在空气中可能有污染的表面打磨掉,直到Mo基底表面颜色均匀一致为止。
(2)气吹:喷砂后采用0.2~0.4Pa的压缩空气,将Mo基体表面吹干净,无浮砂。
(3)清洗:用无尘布分别蘸丙酮和乙醇将Mo基体表面擦干备用。
(4)种晶:用无尘布蘸含有金刚石微粉的乙醇或丙酮溶液,擦拭钼基体,进行种晶。所述含有金刚石微粉的乙醇或丙酮溶液是指:将2g金刚石粉分散在100mL乙醇或丙酮溶液中,其中金刚石粉的直径范围8~12nm。种晶后,再用0.2~0.4Pa的氮气将种晶后的钼基底表面吹干。
(5)碳化灯丝:采用氢气和甲烷对灯丝(钨丝、钽丝、铼丝等)进行碳化,甲烷/氢气=2~6%,碳化气压500~10000Pa。
(6)沉积掺硼金刚石膜:将种晶后的Mo基底放入热丝化学气相沉积设备腔室中进行薄膜沉积,参数为:功率=25000W,衬底温度=700~800℃,气压=0.5~10KPa,含有三氧化二硼的乙醇蒸汽/氢气的流量比=2~4%,按质量计B/C=2~4%,时间为240h。
沉积过程中的前2小时,使用CH4作为的碳源沉积金刚石薄膜;在接下来的沉积掺硼金刚石膜阶段,采用乙醇作为碳源,三氧化二硼作为硼源,沉积掺硼金刚石膜。其中,硼源的引入是使用氢气鼓泡乙醇溶液将硼引入到热丝化学气相沉积设备腔室。自支撑掺硼金刚石薄膜的获得主要依靠掺硼金刚石薄膜与Mo基底的膨胀系数不同,在腔室的冷却过程中,掺硼金刚石薄膜会自动从Mo基底上剥离形成自支撑的掺硼金刚石薄膜。
(7)反应离子刻蚀使用氧等离子体进行刻蚀,刻蚀的具体参数如下:氧气压力=100~200mT,流速=18~20sccm,氧等离子体功率=300~350W,刻蚀时间为30~120min。对比图1和图2,很明显可以看出经过刻蚀后,掺硼金刚石膜表面被刻蚀出很多二百微米长的纳米锥。这些纳米锥会增加掺硼金刚石膜的活性面积,提高其电化学性能。
(8)将经过刻蚀后自支撑掺硼金刚石膜放入HF溶液中浸泡5分钟,既可以去除膜表面的因硅,又可以使掺硼金刚石薄膜表面氧化为氢终端增加其电化学导电性。从图3可以看出,经过RIE刻蚀后的掺硼金刚石膜有高强度的D峰,表明该膜具有最好的结晶度和最高的金刚石相含量。此外,从图4可知电极表现出最高的电流响应,证明刻蚀过程对改善掺硼金刚石电极的储能性能具有非常积极的影响。
实施例2:
一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜的制备方法,包括以下步骤:
(1)喷砂:采用W40白刚玉砂的喷砂机,喷枪气压在0.2~0.4Pa,将Mo基底暴露在空气中可能有污染的表面打磨掉,直到Mo基底表面颜色均匀一致为止。
(2)气吹:喷砂后采用0.2~0.4Pa的压缩空气,将Mo基体表面吹干净,无浮砂。
(3)清洗:用无尘布分别蘸丙酮和乙醇将Mo基体表面擦干备用。
(4)种晶:用无尘布蘸含有金刚石微粉的乙醇或丙酮溶液,擦拭钼基体,进行种晶。所述含有金刚石微粉的乙醇或丙酮溶液是指:将2g金刚石粉分散在100mL乙醇或丙酮溶液中,其中金刚石粉的直径范围8~12nm。种晶后,再用0.2~0.4Pa的氮气将种晶后的钼基底表面吹干。
(5)碳化灯丝:采用氢气和甲烷对灯丝(钨丝、钽丝、铼丝等)进行碳化,甲烷/氢气=2~6%,碳化气压500~10000Pa。
(6)沉积掺硼金刚石膜:将种晶后的Mo基底放入热丝化学气相沉积设备腔室中进行薄膜沉积,参数为:功率=25000W,衬底温度=700~800℃,气压=0.5~10KPa,含有三氧化二硼的乙醇蒸汽/氢气的流量比=2~4%,按质量计B/C=2~4%,时间为160~360h。
沉积过程中的前2小时,使用CH4作为的碳源沉积金刚石薄膜;在接下来的沉积掺硼金刚石膜阶段,采用乙醇作为碳源,三氧化二硼作为硼源,沉积掺硼金刚石膜。其中,硼源的引入是使用氢气鼓泡乙醇溶液将硼引入到热丝化学气相沉积设备腔室。自支撑掺硼金刚石薄膜的获得主要依靠掺硼金刚石薄膜与Mo基底的膨胀系数不同,在腔室的冷却过程中,掺硼金刚石薄膜会自动从Mo基底上剥离形成自支撑的掺硼金刚石薄膜。
(7)反应离子刻蚀使用氧等离子体进行刻蚀,刻蚀的具体参数如下:氧气压力=100~200mT,流速=18~20sccm,氧等离子体功率=300~350W,刻蚀时间为60min。
(8)将经过刻蚀后自支撑掺硼金刚石膜放入HF溶液中浸泡5分钟,既可以去除膜表面的因硅,又可以使掺硼金刚石薄膜表面氧化为氢终端增加其电化学导电性。
(9)将不同镀膜时间的表面具有纳米锥尖的自支撑掺硼金刚石膜进行电化学性能检测,结果表明镀膜时间为240小时的掺硼金刚石膜的电化学性能最优。
实施例3:
一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜的制备方法,包括以下步骤:
(1)喷砂:采用W40白刚玉砂的喷砂机,喷枪气压在0.2~0.4Pa,将Mo基底暴露在空气中可能有污染的表面打磨掉,直到Mo基底表面颜色均匀一致为止。
(2)气吹:喷砂后采用0.2~0.4Pa的压缩空气,将Mo基体表面吹干净,无浮砂。
(3)清洗:用无尘布分别蘸丙酮和乙醇将Mo基体表面擦干备用。
(4)种晶:用无尘布蘸含有金刚石微粉的乙醇或丙酮溶液,擦拭钼基体,进行种晶。所述含有金刚石微粉的乙醇或丙酮溶液是指:将2g金刚石粉分散在100mL乙醇或丙酮溶液中,其中金刚石粉的直径范围8~12nm。种晶后,再用0.2~0.4Pa的氮气将种晶后的钼基底表面吹干。
(5)碳化灯丝:采用氢气和甲烷对灯丝(钨丝、钽丝、铼丝等)进行碳化,甲烷/氢气=2~6%,碳化气压500~10000Pa。
(6)沉积:将种晶后的Mo基底放入热丝化学气相沉积设备腔室中进行薄膜沉积,参数为:功率=25000W,衬底温度=700~800℃,气压=0.5~10KPa,含有三氧化二硼的乙醇蒸汽/氢气的流量比=2~4%,按质量计B/C=2~4%,时间为240h。
沉积过程中的前2小时,使用CH4作为的碳源沉积金刚石薄膜;在接下来的沉积掺硼金刚石膜阶段,采用乙醇作为碳源,三氧化二硼作为硼源,沉积掺硼金刚石膜。其中,硼源的引入是使用氢气鼓泡乙醇溶液将硼引入到热丝化学气相沉积设备腔室。自支撑掺硼金刚石薄膜的获得主要依靠掺硼金刚石薄膜与Mo基底的膨胀系数不同,在腔室的冷却过程中,掺硼金刚石薄膜会自动从Mo基底上剥离形成自支撑的掺硼金刚石薄膜。
(7)反应离子刻蚀使用氧等离子体进行刻蚀,刻蚀的具体参数如下:氧气压力=100~200mT,流速=18~20sccm,氧等离子体功率=300~350W,刻蚀时间为30~120min。
(8)将经过刻蚀后自支撑掺硼金刚石膜放入HF溶液中浸泡5~30分钟,既可以去除膜表面的因硅,又可以使掺硼金刚石薄膜表面氧化为氢终端增加其电化学导电性。
(9)将经过HF溶液浸泡不同时间的表面具有纳米锥尖的自支撑掺硼金刚石膜进行电化学性能检测,结果表明浸泡时间为5分钟的掺硼金刚石膜的电化学性能最优。
本发明利用热丝化学气相沉积技术制备了自支撑掺硼金刚石薄膜,并利用氧等离子反应离子刻蚀技术对其进行不同时间的刻蚀制备出具有不同长度和密度纳米锥的自支撑掺硼金刚石纳米锥薄膜。结果表明,氧离子刻蚀45-75分钟的自支撑掺硼金刚石薄膜电极表面的纳米锥尺寸最长,密度最高。同时,所述刻蚀时间所得薄膜电极表现出最高的比电容量和稳定性,即在10mV s-1的扫描速率下取得最高的比电容量为24.9mF cm-2,在1.0mA cm-2的恒定电流密度下经过6000次循环充放电后电容保持率为90%。此外,本发明还发现:反应离子刻蚀会通过改变自支撑掺硼金刚石薄膜电极表面纳米锥密度、长度和活性物质的含量来影响其电容性能。因此,本发明将自支撑掺硼金刚石薄膜电极和纳米锥结构结合来制备掺硼金刚石薄膜基超级电容器的方法为制备微型电容器电极材料的制备提供了新思路。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。

Claims (2)

1.一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜的制备方法,其特征在于,包括以下步骤:
S1、自支撑掺硼金刚石膜的制备:以金属钼为基底,使用热丝化学气相沉积设备沉积得到自支撑掺硼金刚石膜;
其中,所用金属钼基底为经步骤S11预处理后的基底,所述S11包括以下步骤:
S111、喷砂:采用W40白刚玉砂的喷砂机,喷枪气压在0.2~0.4 Pa,对Mo基底的表面进行打磨,直至Mo基底表面颜色均匀一致为止;
S112、气吹:喷砂后采用0.2-0.4 Pa的压缩空气冲吹基底表面;
S113、清洗:用无尘布先后分别蘸丙酮和乙醇将Mo基体表面擦干、备用;
所述步骤S1包括种晶步骤S12:用无尘布蘸含有金刚石微粉的乙醇或丙酮溶液,擦拭钼基体,进行种晶;所述含有金刚石微粉的乙醇或丙酮溶液是指:将2 g金刚石粉分散在100 mL乙醇或丙酮溶液中,其中金刚石粉的直径范围8~12 nm;种晶后,再用0.2-0.4 Pa的氮气将种晶后的钼基底表面吹干;
所述步骤S1中的热丝化学气相沉积设备沉积热丝化学气相沉积设备腔室中进行,包括灯丝碳化步骤S13和沉积步骤S14;
所述灯丝碳化步骤S13中:采用氢气和甲烷混合气对灯丝进行碳化,甲烷/氢气的体积比=2~6%,碳化气压500~10000Pa;所述灯丝为钨丝、钽丝、铼丝中的一种;
所述沉积步骤S14的具体过程为:将Mo基底放入热丝化学气相沉积设备腔室中在碳化灯丝条件下进行薄膜沉积,热丝化学气相沉积设备参数为:功率=25000W,衬底温度=700~800oC,气压=0.5~10 KPa,含有三氧化二硼的乙醇蒸汽/氢气的流量比=2~4%,按质量计B/C=2~4%;沉积过程结束,将热丝化学气相沉积设备自然冷却,所述沉积的自支撑掺硼金刚石膜从Mo基底上脱离;
所述步骤S14的沉积过程中的前2小时,使用CH4作为的碳源沉积金刚石薄膜;在接下来的沉积掺硼金刚石膜阶段,采用乙醇作为碳源,三氧化二硼作为硼源,沉积掺硼金刚石膜;其中,硼源的引入是使用氢气鼓泡乙醇溶液将硼引入到热丝化学气相沉积设备腔室;
S2、自支撑掺硼金刚石膜表面纳米锥的制备:使用氧等离子反应离子刻蚀方法在步骤S1所得的自支撑掺硼金刚石膜上进行刻蚀,然后脱去金属钼基底,得到所述表面包括纳米锥结构的自支撑掺硼金刚石膜;
其中,所述步骤S2中,反应离子刻蚀使用氧等离子体进行刻蚀,刻蚀的具体参数如下:氧气压力=100~200 mT,流速=18~20 sccm,氧等离子体功率=300~350 W;
所述步骤S2中,包括将刻蚀后的产品进行后处理的步骤:将经过刻蚀后自支撑掺硼金刚石膜放入HF溶液中浸泡5分钟;
制备得到所述自支撑掺硼金刚石膜厚度为450-550 μm,表面分布有垂直于自支撑掺硼金刚石膜表面的纳米锥尖结构,所述纳米锥尖的长度为200-500 nm,相邻纳米锥尖之间的间距为10-200 nm,所述纳米锥尖结构的底锥部连接所述自支撑掺硼金刚石膜表面,且所述纳米锥尖结构是通过刻蚀自支撑掺硼金刚石膜表面形成。
2.一种电容器正极材料,其特征在于,它包括根据权利要求1所述方法制备得到的表面具有纳米锥尖结构的自支撑掺硼金刚石膜,所述表面具有纳米锥尖结构的自支撑掺硼金刚石膜用作正极材料,在10 mV s-1的扫描速率下取得最高的比电容量为24.9 mF cm-2,在1.0mA cm-2的恒定电流密度下经过6000次循环充放电后电容保持率为90%。
CN202111250868.3A 2021-10-26 2021-10-26 一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法 Active CN113981411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111250868.3A CN113981411B (zh) 2021-10-26 2021-10-26 一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111250868.3A CN113981411B (zh) 2021-10-26 2021-10-26 一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113981411A CN113981411A (zh) 2022-01-28
CN113981411B true CN113981411B (zh) 2023-12-05

Family

ID=79741964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111250868.3A Active CN113981411B (zh) 2021-10-26 2021-10-26 一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113981411B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591484A (en) * 1994-11-30 1997-01-07 Eastman Kodak Company Process for manufacturing layers of diamond doped with boron
CN104233216A (zh) * 2014-10-09 2014-12-24 南京航空航天大学 一种表面具有纳米结构阵列钛基掺硼金刚石电极的制备方法
CN110230044A (zh) * 2019-07-12 2019-09-13 中国工程物理研究院激光聚变研究中心 以纳米金刚石粉为赝模板制备多孔掺硼金刚石电极的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018072367A1 (zh) * 2016-10-21 2018-04-26 中南大学 一种硼掺杂金刚石电极及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5591484A (en) * 1994-11-30 1997-01-07 Eastman Kodak Company Process for manufacturing layers of diamond doped with boron
CN104233216A (zh) * 2014-10-09 2014-12-24 南京航空航天大学 一种表面具有纳米结构阵列钛基掺硼金刚石电极的制备方法
CN110230044A (zh) * 2019-07-12 2019-09-13 中国工程物理研究院激光聚变研究中心 以纳米金刚石粉为赝模板制备多孔掺硼金刚石电极的方法

Also Published As

Publication number Publication date
CN113981411A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
Miao et al. Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors: high capacitive property and long-term cycling stability
CN106554011B (zh) 三维有序大孔-介孔石墨烯及其制备方法和应用
CN106971864A (zh) 一种基于纳米多孔掺硼金刚石电极的超级电容器的制备方法
CN107393724B (zh) 一种基于石墨烯/碳纳米管气凝胶的微型超级电容器制作方法
CN110574132B (zh) 用于片上超级电容器的蚀刻的硅上的沉积的碳膜
KR101485867B1 (ko) 내재적 기공성 고분자를 포함하는 다공성 탄소 구조체 및 이의 제조방법
CN110648855B (zh) 一种碳化硅/石墨烯复合纳米森林薄膜材料及其制备方法与应用
CN109904004B (zh) 一种SiC纳米线阵列薄膜的制备方法及其在超级电容器电极中的应用
CN110517900B (zh) 一种超级电容器用氮掺杂低温碳纳米纤维电极材料的制备方法
CN111785535B (zh) 一种自活化高比电容碳微米管电极的制备方法
Saghafi et al. Preparation of vertically aligned carbon nanotubes and their electrochemical performance in supercapacitors
CN113981411B (zh) 一种表面具有纳米锥尖结构的自支撑掺硼金刚石膜及其制备方法
CN112779517B (zh) 一种自支撑纳米锥金刚石的制备方法
CN108470634B (zh) 一种基于氮掺杂热解碳包覆的石墨烯微型超级电容器制作方法
KR19990073592A (ko) 리프트-오프 공정을 이용한 탄소나노튜브 에프이디의 제작.
KR100892382B1 (ko) 캐패시터용 탄소나노튜브 전극의 제조방법
CN108010734A (zh) 一种基于石墨烯/碳纳米管气凝胶的微型超级电容器制作方法
CN110867562A (zh) 一种锂电池硅碳复合薄膜负极的制备方法
KR100461966B1 (ko) 탄소나노튜브 전극, 이를 이용한 전기이중층축전기 및 그 제조방법
CN109637822B (zh) 一种高比表面积的TiN电极、制备方法及其应用
CN112635201A (zh) 柔性全固态不对称超级电容器电极及其一分为二制备方法
CN104103470A (zh) 一种多晶六硼化物环形场发射阴极及其制备方法
CN110277251A (zh) 一种超级电容器及其制备方法
CN111924842A (zh) 一种基于荷梗的电极材料及其制备方法
Wang et al. Diamond Nanowires Array Prepared by Annealing Nano-Crystalline Diamond in Air and Its Application in Field Emission

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant