CN113981314B - 一种非精炼30MnSi钢及其生产方法 - Google Patents

一种非精炼30MnSi钢及其生产方法 Download PDF

Info

Publication number
CN113981314B
CN113981314B CN202111222678.0A CN202111222678A CN113981314B CN 113981314 B CN113981314 B CN 113981314B CN 202111222678 A CN202111222678 A CN 202111222678A CN 113981314 B CN113981314 B CN 113981314B
Authority
CN
China
Prior art keywords
steel
slag
30mnsi
ladle
tapping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111222678.0A
Other languages
English (en)
Other versions
CN113981314A (zh
Inventor
姜新岩
支旭波
成泽强
樊宝华
李博
王小东
张泽宇
陈方
金培元
王兴
史永刚
李娜
王仲凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Steel Group Industrial Innovation Research Institute Co ltd
Original Assignee
Shaanxi Steel Group Industrial Innovation Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Steel Group Industrial Innovation Research Institute Co ltd filed Critical Shaanxi Steel Group Industrial Innovation Research Institute Co ltd
Priority to CN202111222678.0A priority Critical patent/CN113981314B/zh
Publication of CN113981314A publication Critical patent/CN113981314A/zh
Application granted granted Critical
Publication of CN113981314B publication Critical patent/CN113981314B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0006Adding metallic additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/0025Adding carbon material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

本发明公开了一种非精炼30MnSi钢,按质量百分比由以下组分组成:按质量百分比由以下组分组成:碳0.28~0.33wt%;硅0.70~0.90wt%;锰0.90~1.30wt%;磷0~0.025wt%;硫0~0.025wt%,余量为Fe和不可避免的杂质,各组分的重量百分比之和为100%。还公开了一种非精炼30MnSi钢的生产方法,将传统工艺流程高炉→KR→转炉→LF精炼→连铸,优化为高炉→KR→转炉→连铸,不经过精炼工序,达到了节能环保、降低成本的目的,取得了较好的经济效益。

Description

一种非精炼30MnSi钢及其生产方法
技术领域
本发明属于钢铁冶金技术领域,具体涉及一种非精炼30MnSi钢,还涉及一种非精炼30MnSi钢的生产方法。
背景技术
30MnSi钢是一种具有高强度、高抗冲击能力的碳素结构钢,对于钢水纯净度、化学成分、力学性能等有较高要求。目前,传统炼钢工艺是通过LF精炼降低总氧含量,提高钢水纯净度,稳定均匀化学成分,此冶炼方法生产成本高,容易造成环境污染。随着国家提出建设资源节约型、环境友好型社会,企业生产成本控制及节能环保的要求,发明一种非精炼30MnSi钢炼钢方法具有十分重要的实际意义。
发明内容
本发明的目的在于提供一种非精炼30MnSi钢。
本发明的目的还在于提供一种非精炼30MnSi钢的生产方法,本发明工艺流程中不过精炼工序,不消耗电能、电极,达到了节能环保目的,且避免了长时间精炼产生粉尘带来的环境污染,降低了成本。
本发明所采用的第一种技术方案是,一种非精炼30MnSi钢,按质量百分比由以下组分组成:碳0.28~0.33wt%;硅0.70~0.90wt%;锰0.90~1.30wt%;磷0~0.025wt%;硫0~0.025wt%,余量为Fe和不可避免的杂质,各组分的重量百分比之和为100%。
本发明所采用的第二种技术方案是,一种非精炼30MnSi钢的生产方法,具体操作步骤如下:
步骤1:KR铁水预处理,采用转炉冶炼,控制转炉冶炼终点C含量为0.08~0.15%,出钢温度1620~1650℃;
步骤2:转炉出钢,见钢流即向钢包内加碳粉预脱氧,降低钢水总氧量;
步骤3:转炉出钢脱氧合金化:依次向步骤2的钢包中加入硅钙合金、硅铁合金、锰铁合金;
步骤4:脱氧合金化结束后补加预熔渣、石灰,利用滑板挡渣控制下渣量8~12kg/吨钢,完成造渣,出钢过程钢包全程直通吹氮;
步骤5:向步骤4完成造渣的钢包内加入碳化硅,控制渣中FeO含量<2.0wt%;然后进行大气量搅拌,最后调整气量持续弱搅拌使渣面呈蠕动状,保持12min,总吹氮时间≥15min;
步骤6:不经过精炼工序,将钢包吊至连铸平台保护浇铸,得到30MnSi钢。
本发明的特点还在于,
步骤2碳粉加入量0.6kg/吨钢。
步骤4造渣完成后控制总渣量10~15kg/吨钢。
步骤4中造渣后钢包内炉渣的碱度为3.2~4.0,FeO含量4~8wt%,MgO含量7~10wt%,Al2O3含量4~9wt%。
步骤3硅钙合金的加入时机为出钢1/3时,硅铁合金和锰铁合金的加入时机为出钢1/2时;步骤4所述预熔渣和石灰的加入时机为出钢2/3时。
步骤4所述预熔渣、石灰的加入量分别为0.5~0.7kg/吨、2.2~2.5kg/吨。
步骤5大气量的气体流量是300-500NL/min;调整气量的气体流量是50-100NL/min。
步骤6的30MnSi钢中Si元素质量占比0.70~0.80wt%,Mn元素按质量占比1.10~1.30wt%。
脱氧合金原理:使用硅铁合金控制钢中Si含量,使用锰铁合金控制钢中Mn含量,Si元素脱氧能力大于Mn元素,先加硅铁合金一方面控制钢中Si含量,一方面起到脱氧作用,先加锰铁合金的话,脱氧产物MnO会被后加的硅铁合金中Si元素还原,导致Si、Mn回收率不稳定。
本发明的有益效果是:
本发明提出了一种非精炼的冶炼30MnSi钢工艺流程,将传统工艺流程高炉→KR→转炉→LF精炼→连铸,优化为高炉→KR→转炉→连铸,不经过精炼工序,达到了节能环保、降低成本的目的,取得了较好的经济效益。提出“控制转炉下渣量造渣技术”、“炉渣低氧势控制技术”,即利用滑板挡渣控制下渣量并在转炉出钢脱氧合金化后补加少量预熔渣和石灰完成造渣,渣系组分碱度3.2~4.0,FeO含量4~8wt%,MgO含量7~10wt%,Al2O3含量4~9wt%,钢包开出后补加碳化硅进一步控制渣中FeO含量<2wt%,形成低氧势炉渣,调整氮气气量弱搅拌保持12min。通过此方法生产30MnSi钢材成分、性能满足国标要求,非金属夹杂物细系C类≤1.5级,夹杂物总和≤2.5级,抗拉强度660~730MPa,钢材性能稳定,使用效果好。
具体实施方式
本发明的主要目的在于提供一种非精炼的30MnSi生产方法,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1
一种非精炼30MnSi钢的生产方法,具体操作步骤如下:
步骤1:KR铁水预处理,采用转炉冶炼,控制转炉冶炼终点C含量为0.08%,出钢温度1650℃;
步骤2:转炉出钢,见钢流即向钢包内加碳粉预脱氧,碳粉加入量0.6kg/吨钢,降低钢水总氧量;
步骤3:转炉出钢脱氧合金化:依次向步骤2的钢包中加入硅钙合金、硅铁合金、锰铁合金;硅钙合金的加入时机为出钢1/3时,硅铁合金和锰铁合金的加入时机为出钢1/2时;
步骤4:脱氧合金化结束后补加预熔渣、石灰,利用滑板挡渣控制下渣量12kg/吨钢,完成造渣,出钢过程钢包全程直通吹氮;所述预熔渣和石灰的加入时机为出钢2/3时,造渣完成后控制总渣量15kg/吨钢;
预熔渣、石灰的加入量分别为0.7kg/吨、2.5kg/吨;
造渣后钢包内炉渣的碱度为3.2,FeO含量6wt%,MgO含量7wt%,Al2O3含量5wt%;
步骤5:向步骤4的钢包内加入碳化硅,控制渣中FeO含量2.0wt%;然后进行大气量搅拌,最后调整气量持续弱搅拌使渣面呈蠕动状,保持12min,总吹氮时间18min;所述大气量的气体流量是300NL/min;调整气量的气体流量是50NL/min;
步骤6:不经过精炼工序,将钢包吊至连铸平台保护浇铸,得到30MnSi钢,30MnSi钢中Si元素质量占比0.80wt%,Mn元素按质量占比1.18wt%。
实施例2
一种非精炼30MnSi钢的生产方法,具体操作步骤如下:
步骤1:KR铁水预处理,采用转炉冶炼,控制转炉冶炼终点C含量为0.15%,出钢温度1620℃;
步骤2:转炉出钢,见钢流即向钢包内加碳粉预脱氧,碳粉加入量0.4kg/吨钢,降低钢水总氧量;
步骤3:转炉出钢脱氧合金化:依次向步骤2的钢包中加入硅钙合金、硅铁合金、锰铁合金;硅钙合金的加入时机为出钢1/3时,硅铁合金和锰铁合金的加入时机为出钢1/2时;
步骤4:脱氧合金化结束后补加预熔渣、石灰,利用滑板挡渣控制下渣量8kg/吨钢,完成造渣,出钢过程钢包全程直通吹氮;所述预熔渣和石灰的加入时机为出钢2/3时,造渣完成后控制总渣量10kg/吨钢;
预熔渣、石灰的加入量分别为0.5kg/吨、2.2kg/吨;
造渣后钢包内炉渣的碱度为4.0,FeO含量4wt%,MgO含量10wt%,Al2O3含量9wt%;
步骤5:向步骤4的钢包内加入碳化硅,控制渣中FeO含量1.5wt%;然后进行大气量搅拌,最后调整气量持续弱搅拌使渣面呈蠕动状,保持12min,总吹氮时间15min;所述大气量的气体流量是500NL/min;调整气量的气体流量是100NL/min;
步骤6:不经过精炼工序,将钢包吊至连铸平台保护浇铸,得到30MnSi钢,30MnSi钢中Si元素质量占比0.75wt%,Mn元素按质量占比1.20wt%。
实施例3
一种非精炼30MnSi钢的生产方法,具体操作步骤如下:
步骤1:KR铁水预处理,采用转炉冶炼,控制转炉冶炼终点C含量为0.10%,出钢温度1635℃;
步骤2:转炉出钢,见钢流即向钢包内加碳粉预脱氧,碳粉加入量0.5kg/吨钢,降低钢水总氧量;
步骤3:转炉出钢脱氧合金化:依次向步骤2的钢包中加入硅钙合金、硅铁合金、锰铁合金;硅钙合金的加入时机为出钢1/3时,硅铁合金和锰铁合金的加入时机为出钢1/2时;
步骤4:脱氧合金化结束后补加预熔渣、石灰,利用滑板挡渣,控制下渣量10kg/吨钢,完成造渣,出钢过程钢包全程直通吹氮;所述预熔渣和石灰的加入时机为出钢2/3时,造渣完成后控制总渣量13kg/吨钢;
预熔渣、石灰的加入量分别为0.6kg/吨、2.3kg/吨;
造渣后钢包内炉渣的碱度为3.8,FeO含量5wt%,MgO含量8wt%,Al2O3含量7wt%;
步骤5:向步骤4的钢包内加入碳化硅,控制渣中FeO含量1.8wt%;然后进行大气量搅拌,最后调整气量持续弱搅拌使渣面呈蠕动状,保持12min,总吹氮时间20min;所述大气量的气体流量是400NL/min;调整气量的气体流量是70NL/min;
步骤6:不经过精炼工序,将钢包吊至连铸平台保护浇铸,得到30MnSi钢,30MnSi钢中Si元素质量占比0.75wt%,Mn元素按质量占比1.2wt%。
如下表1为采用本发明的炼钢方法炼出的30MnSi钢的性能参数;共计202炉次的统计数据。
表1
Figure BDA0003313195610000071
由表1可以看出,本发明方法生产的30MnSi钢制成的钢材性能指标达到了传统过精炼工艺流程生产的30MnSi钢材要求,非金属夹杂物细系C类≤1.5级,夹杂物总和≤2.5级,抗拉强度660~730MPa,钢材性能稳定,使用效果好。

Claims (7)

1.一种非精炼30MnSi钢的生产方法,其特征在于,具体操作步骤如下:
步骤1:KR铁水预处理,采用转炉冶炼,控制转炉冶炼终点C含量为0.08~0.15%,出钢温度1620~1650℃;
步骤2:转炉出钢,见钢流即向钢包内加碳粉预脱氧,降低钢水总氧量;
步骤3:转炉出钢脱氧合金化:依次向步骤2的钢包中加入硅钙合金、硅铁合金、锰铁合金;
步骤4:脱氧合金化结束后补加预熔渣、石灰,利用滑板挡渣控制下渣量8~12kg/吨钢,完成造渣,出钢过程钢包全程直通吹氮;
步骤4中造渣后钢包内炉渣的碱度为3.2~4.0,FeO含量4~8wt%,MgO含量7~10wt%,Al2O3含量4~9wt%;
步骤5:向步骤4完成造渣的钢包内加入碳化硅,控制渣中FeO含量<2.0wt%;然后进行大气量搅拌,最后调整气量持续弱搅拌使渣面呈蠕动状,保持12min,总吹氮时间≥15min;
步骤6:不经过精炼工序,将钢包吊至连铸平台保护浇铸,得到30MnSi钢。
2.根据权利要求1所述的一种非精炼30MnSi钢的生产方法,其特征在于,步骤2所述碳粉加入量0.6kg/吨钢。
3.根据权利要求1所述的一种非精炼30MnSi钢的生产方法,其特征在于,步骤4所述造渣完成后控制总渣量10~15kg/吨钢。
4.根据权利要求1所述的一种非精炼30MnSi钢的生产方法,其特征在于,步骤3所述硅钙合金的加入时机为出钢1/3时,硅铁合金和锰铁合金的加入时机为出钢1/2时;步骤5所述预熔渣和石灰的加入时机为出钢2/3时。
5.根据权利要求1所述的一种非精炼30MnSi钢的生产方法,其特征在于,步骤4所述预熔渣、石灰的加入量分别为0.5~0.7kg/吨、2.2~2.5kg/吨。
6.根据权利要求1所述的一种非精炼30MnSi钢的生产方法,其特征在于,步骤5所述大气量的气体流量是300-500NL/min;调整气量的气体流量是50-100NL/min。
7.根据权利要求1所述的一种非精炼30MnSi钢的生产方法,其特征在于,步骤6所述30MnSi钢中Si元素质量占比0.70~0.80wt%,Mn元素按质量占比1.10~1.30wt%。
CN202111222678.0A 2021-10-20 2021-10-20 一种非精炼30MnSi钢及其生产方法 Active CN113981314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111222678.0A CN113981314B (zh) 2021-10-20 2021-10-20 一种非精炼30MnSi钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111222678.0A CN113981314B (zh) 2021-10-20 2021-10-20 一种非精炼30MnSi钢及其生产方法

Publications (2)

Publication Number Publication Date
CN113981314A CN113981314A (zh) 2022-01-28
CN113981314B true CN113981314B (zh) 2022-07-29

Family

ID=79739698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111222678.0A Active CN113981314B (zh) 2021-10-20 2021-10-20 一种非精炼30MnSi钢及其生产方法

Country Status (1)

Country Link
CN (1) CN113981314B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114875203A (zh) * 2022-04-25 2022-08-09 盐城市联鑫钢铁有限公司 一种30MnSi钢坯的制备方法
CN115261721B (zh) * 2022-07-26 2023-08-11 陕钢集团产业创新研究院有限公司 一种长浇次psb830精轧螺纹钢及其生产方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718359B2 (ja) * 2005-09-05 2011-07-06 株式会社神戸製鋼所 伸線性と疲労特性に優れた鋼線材およびその製造方法
KR101434540B1 (ko) * 2012-11-19 2014-08-27 주식회사 포스코 강의 정련 방법
CN107841597B (zh) * 2017-10-23 2020-01-17 钢铁研究总院 一种采用lf精炼双渣法生产硅脱氧低硫高碳钢的方法
CN109023040A (zh) * 2018-07-24 2018-12-18 包头钢铁(集团)有限责任公司 400MPa级抗震耐大气腐蚀钢筋及其制造方法
CN111719080A (zh) * 2019-03-21 2020-09-29 本钢板材股份有限公司 一种预应力钢绞线的夹杂物控制方法
CN110527917B (zh) * 2019-09-30 2020-05-26 阳春新钢铁有限责任公司 一种PC钢棒用30MnSiBCa热轧盘条及其制备方法

Also Published As

Publication number Publication date
CN113981314A (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
CN109252008B (zh) 一种低碳低氮超低硫钢的生产方法
KR101484106B1 (ko) 초저 탄소 AlSi-킬드 강에서 Ti를 극히 낮게 제어하는 방법
CN113981314B (zh) 一种非精炼30MnSi钢及其生产方法
CN106636953A (zh) 一种锅炉管用马氏体不锈钢p91冶炼方法
CN101768656B (zh) 一种真空精炼超低碳铁素体不锈钢的方法
CN103882181B (zh) 一种含锰钢合金化的工艺
CN102071287A (zh) 耐高温高压合金钢的冶炼方法
CN107354269A (zh) Rh复合脱氧生产超低碳钢的方法
CN110819891A (zh) 一种含铌氮微合金化hrb500e钢筋及其生产方法
CN102409133B (zh) 真空法生产23MnB钢的方法
CN102400052B (zh) 窄淬透性齿轮钢的制备方法
CN108977612B (zh) 高强度耐大气腐蚀螺栓用钢的冶炼方法
CN111455131B (zh) 高洁净度耐磨钢的冶炼及连铸方法
CN101736123B (zh) 一种硼收得率高的含硼合金的冶炼方法
CN112593138A (zh) 一种高强度钒钛钢筋生产工艺
CN102424894B (zh) 转炉流程生产23MnB钢的方法
CN101565792B (zh) 一种冶炼硼钢的方法
CN109097665A (zh) 高强度耐大气腐蚀螺栓用钢的冶炼方法
CN114480777A (zh) 一种转炉通过双渣法实现82b高碳出钢的方法
CN110205434B (zh) 低成本冶炼钢筋钢的方法
CN111074037B (zh) 一种升级富锰渣冶炼产品结构的工艺方法
CN111411190B (zh) 一种提高转炉冶炼效率的生产方法
CN111560558A (zh) 一种铁水变钢水降低炼钢成本的工艺方法
CN102453829B (zh) 冶炼易切削齿轮钢的方法和易切削齿轮钢
CN1284868C (zh) 炼钢用复合脱氧剂-硅铝钡钙锰铁合金的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant