CN113979749A - 磷化铌靶材的生产工艺 - Google Patents
磷化铌靶材的生产工艺 Download PDFInfo
- Publication number
- CN113979749A CN113979749A CN202111376232.3A CN202111376232A CN113979749A CN 113979749 A CN113979749 A CN 113979749A CN 202111376232 A CN202111376232 A CN 202111376232A CN 113979749 A CN113979749 A CN 113979749A
- Authority
- CN
- China
- Prior art keywords
- niobium phosphide
- niobium
- production process
- phosphide
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/5154—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on phosphides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physical Vapour Deposition (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明涉及磷化铌靶材生产的技术领域,具体公开了一种磷化铌靶材的生产工艺,将纯度≥99.9%、200目的磷化铌粉体置于球磨机中球磨,得600‑800目的磷化铌粉末;将球磨后的磷化铌粉末装入模具中,并将模具安装于真空热压炉内,抽真空热压炉内气压小于5Pa后,通入氩气至真空热压炉内气压至0.01MPa,使真空热压炉内的温度以90~100℃/min速率升至1400‑1700℃,在12‑25MPa的机械压力下,烧结模具中的磷化铌粉末60~420min,随炉冷却至室温,然后取出得靶材坯料;对靶材坯料机械加工后清洗烘干,得磷化铌磁控溅射靶材。本申请的生产工艺制备的磷化铌靶材致密度≥96%,纯度≥99.9%,是制备磷化铌薄膜或二维材料的良好物质源。
Description
技术领域
本申请涉及磷化铌靶材生产的技术领域,更具体地说,它涉及一种磷化铌靶材的生产工艺。
背景技术
磷化铌是一种Weyl半金属材料。近年来,在对Weyl半金属材料的研究中,科学家制备了极薄的高导电率磷化铌薄膜,这种薄膜材料在室温下的导电率为铜的几倍,还因拓扑效应极难吸收杂质,不易产生化学变化,使得电流在电路中所散发的热量也会大幅度降低,这对制备室温低能耗电子学器件具有重大价值,为制造更大规模的集成电路提供了基础条件。
发明内容
目前磷化铌等Weyl半金属材料是全球科研工作者研究的热点材料之一,为了给研究工作和应用提供制备磁控溅射制略去磷化铌薄膜用的物质源,本申请提供一种磷化铌磁控溅射靶材的生产工艺。
本申请提供的一种磷化铌靶材的生产工艺,采用如下的技术方案:
一种磷化铌靶材的生产工艺,所述工艺包括以下步骤:将纯度≥99.9%、200目的磷化铌粉体置于球磨机中球磨,得600~800目的磷化铌粉末;将磷化铌粉末装入模具中,并将模具安装于真空热压炉内,抽真空热压炉内气压小于5Pa后,通入氩气至真空热压炉内气压至0.01MPa;使真空热压炉内的温度以90~100℃/min速率升至1400~1700℃,在12~25MPa的机械压力下,烧结模具中的磷化铌粉末60~420min,随炉冷却至室温,取出得靶材坯料;对靶材坯料机械加工后清洗烘干,得磷化铌磁控溅射靶材。
通过采用上述技术方案,将高纯度磷化铌置于球磨机中进行球磨,使得磷化铌粉末的粒径更小,将磷化铌粉末置于模具中进行烧结时,小粒径的磷化铌粉末具有更高的烧结活性,能够提高磷化铌粉末烧结成型后的致密性,大幅度降低靶材成型后内部的孔隙率,提高了磷化铌靶材的制膜性能;将模具安装在真空热压炉内后,首先对真空热压炉进行抽真空,再注入氩气调节真空热压炉内的气压,除去真空热压炉内氧化性气体的含量,从而防止磷化铌粉末在高温环境中发生氧化,提高了磷化铌粉末的化学稳定性,进而提高了制备出磷化铌靶材的纯度;将真空热压炉以90~100℃/min的速率进行升温,使得模具中的磷化铌粉末受热均匀,且在模具中的磷化铌粉末上施加较大的机械压力,从而在远低于磷化铌熔点的情况下,对磷化铌粉末进行烧结成型;将靶材坯料配料机械加工后,使得靶材表面光滑,清洗后烘干,得到磷化铌磁控靶材,其相对致密度在96%以上,纯度在99.9%以上,是制备磷化铌Weyl半金属薄膜的良好材料。
优选的,所述球磨机为行星球磨机,球磨大、中、小球配比为1:1:1,其中大球直径8mm,中球5.2mm,小球3.8mm;球料比(2.6~2.9):1;球磨机公转角速度200r/min;球磨时间2~2.5小时。
优选的,将磷化铌粉末装入模具中,并置于真空热压炉内时,先以2~5MPa的压力对磷化铌粉末进行预压。
通过采用上述技术方案,对磷化铌粉末进行热压成型时,先使用2~5MPa的压力对粉末进行预压,对粉末起到初步定型的作用,且能够防止在真空热压炉内调节气压时,粉末从模具中逸出,飞散在真空热压炉内。
优选的,升温使真空热压炉以90℃/min的速率从室温升温至600℃,再从600℃以100℃/min的速率升温至1400~1700℃。
优选的,所述靶材相对致密度≥96%,靶材纯度≥99.9%。
优选的,将磷化铌粉末加入模具中时,根据所需靶材规格,预先计算磷化铌粉末质量。
优选的,所述模具为石墨材质。
优选的,对机械加工后的靶材进行超声波清洗。
综上所述,本申请具有以下有益效果:
1、本申请采用磷化铌粉末作为靶材原料,将磷化铌粉末置于模具中,真空热压磷化铌粉末,在远低于磷化铌熔点的温度下烧结成型,得到了一种磷化铌靶材,为研究工作和应用提供了制备高性能磷化铌Weyl半金属薄膜用的磁控溅射靶材。磷化铌靶材的生产技术和高性能磷化铌产品,对我国Weyl半金属薄膜材料研究的开展和进步及其在更大规模集成电路上的应用有促进作用。
2、本申请中对磷化铌粉末进行成型烧结时,烧结温度远低于磷化铌的熔点,且将磷化铌粉末置于氩气环境中,在磷化铌粉末上施加较大的机械压力,不但能够降低生产成本,得到的磷化铌靶材的相对致密度≥96%,纯度≥99.9%。
3、本申请中将磷化铌置于球磨机中进行球磨,进一步降低磷化铌粉末进行烧结时的粒径,提高了磷化铌粉末的烧结活性,从而增大了磷化铌粉末烧结成型后的致密性,大幅降低靶材成型后内部的孔隙率,提高了磷化铌靶材的制膜性能。
附图说明
图1是本申请提供的工艺的流程图。
具体实施方式
以下结合附图和实施例对本申请作进一步详细说明。
实施例
实施例1
本实施例1制备的磷化铌靶材规格为:直径50mm×厚度10mm,纯度为99.99%的靶材。在其他实施例中,靶材的规格可以为Φ27~460mm,厚度为1~50mm的圆形靶材,或长×宽=(80~400mm)×(80~400mm)的矩形靶材,根据所需制备磷化铌靶材的规格,选用大于所需靶材直径5~10mm的石墨材质模具,靶材坯料厚度留有2mm的余量。本申请实施例1中,选用Φ55mm的石墨材质模具。本申请实施例1中,制备的靶材坯料规格为Φ55mm,厚度12mm。
参照图1,本实施例1中,磷化铌靶材的生产工艺,包括以下步骤:
S1、将纯度大于99.99%的磷化铌加入行星球磨机中,球磨磷化铌粉末至600~800目的粉体,时间2~2.5小时;其中,行星球磨机中大球直径8mm,中球5.2mm,小球3.8mm,大球、中球和小球1:1:1设置,球料比2.9:1,球磨机公转角速度200r/min;
S2、根据所需磷化铌靶材的规格,及所选用的石墨模具规格,留出机械加工余量,计算并称量所需磷化铌粉末的质量:M=nρV;其中n为预计靶材相对密度(取96%);ρ为磷化铌密度;V=π×552×12/4000cm3;
S3、将精确称量出的磷化铌粉末均匀装入石墨模具中,并置于真空热压炉内,以2~5MPa的压力对磷化铌粉末进行预压后,将真空热压炉内抽气压小于5Pa后,通入氩气至真空热压炉内气压为0.01MPa,以90℃/min的速率从室温升温至600℃,以100℃/min的速率升温至1400~1700℃后,以12~25MPa的压力压紧磷化铌粉末,保温60~420min后,随炉冷却至室温,取出得靶材坯料,将靶材坯料经过磨床加工、超声波清洗、烘干和包装即得到磷化铌磁控溅射靶材,检测到磷化铌靶材与磷化铌的相对致密度≥96%、纯度99.99%。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。
Claims (8)
1.一种磷化铌靶材的生产工艺,其特征在于,所述工艺包括以下步骤:
步骤一,将纯度≥99.9%、粒径为200目的磷化铌粉末置于球磨机中球磨,得600~800目的磷化铌粉末;
步骤二,将球磨后的磷化铌粉末装入模具中,并将模具安装于真空热压炉内,抽真空热压炉内气压小于5Pa后,通入氩气至真空热压炉内气压至0.01MPa;
步骤三,升温使真空热压炉内温度以90-100℃/min速率升至1400-1700℃,在12-25MPa的机械压力下,烧结模具中的磷化铌粉末60~420min,后随炉冷却至室温,取出得靶材坯料;
步骤四,对靶材坯料机械加工后清洗烘干,得磷化铌磁控溅射靶材。
2.根据权利要求1所述的一种磷化铌靶材的生产工艺,其特征在于:所述球磨机为行星球磨机,球磨大、中、小球配比为1:1:1,其中大球直径8mm,中球5.2mm,小球3.8mm;球料比(2.6-2.9):1;球磨机公转角速度为200r/min;球磨时间为2-2.5小时。
3.根据权利要求1所述的一种磷化铌靶材的生产工艺,其特征在于:将磷化铌粉末装入模具中,并置于真空热压炉内时,先以小于5MPa的压力对磷化铌粉末进行预压。
4.根据权利要求1所述的一种磷化铌靶材的生产工艺,其特征在于:首先使真空热压炉温度以90~100℃/min的速率从室温升温至1400-1700℃。
5.根据权利要求1所述的一种磷化铌靶材的生产工艺,其特征在于:所述靶材相对致密度≥96%,靶材纯度≥99.9%。
6.根据权利要求1所述的一种磷化铌靶材的生产工艺,其特征在于:将磷化铌粉末加入模具中时,根据所需靶材规格,预先计算磷化铌粉末质量。
7.根据权利要求1所述的一种磷化铌靶材的生产工艺,其特征在于:所述模具为石墨材质。
8.根据权利要求1所述的一种磷化铌靶材的生产工艺,其特征在于:对机械加工后的靶材进行超声波清洗。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111376232.3A CN113979749B (zh) | 2021-11-19 | 2021-11-19 | 磷化铌靶材的生产工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111376232.3A CN113979749B (zh) | 2021-11-19 | 2021-11-19 | 磷化铌靶材的生产工艺 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113979749A true CN113979749A (zh) | 2022-01-28 |
CN113979749B CN113979749B (zh) | 2023-03-03 |
Family
ID=79749586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111376232.3A Active CN113979749B (zh) | 2021-11-19 | 2021-11-19 | 磷化铌靶材的生产工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113979749B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114753004A (zh) * | 2022-04-12 | 2022-07-15 | 武汉理工大学 | 一种低成本制备高性能Weyl半金属NbPx多晶块体的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060260437A1 (en) * | 2004-10-06 | 2006-11-23 | Showa Denko K.K. | Niobium powder, niobium granulated powder, niobium sintered body, capacitor and production method thereof |
JP2010254501A (ja) * | 2009-04-23 | 2010-11-11 | Mitsui Mining & Smelting Co Ltd | ニオブ原料又はタンタル原料を得るための処理方法、ニオブ又はタンタルの分離精製方法、酸化ニオブ又は酸化タンタルの製造方法。 |
CN104496473A (zh) * | 2014-12-30 | 2015-04-08 | 山东昊轩电子陶瓷材料有限公司 | 高致密导电氧化铌靶材的生产方法 |
CN106747439A (zh) * | 2016-12-19 | 2017-05-31 | 湖南稀土金属材料研究院 | 氧化铌靶材及其制备方法 |
CN112592181A (zh) * | 2020-12-30 | 2021-04-02 | 山东昊轩电子陶瓷材料有限公司 | 一种高致密导电氧化铌靶材的制备方法 |
-
2021
- 2021-11-19 CN CN202111376232.3A patent/CN113979749B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060260437A1 (en) * | 2004-10-06 | 2006-11-23 | Showa Denko K.K. | Niobium powder, niobium granulated powder, niobium sintered body, capacitor and production method thereof |
JP2010254501A (ja) * | 2009-04-23 | 2010-11-11 | Mitsui Mining & Smelting Co Ltd | ニオブ原料又はタンタル原料を得るための処理方法、ニオブ又はタンタルの分離精製方法、酸化ニオブ又は酸化タンタルの製造方法。 |
CN104496473A (zh) * | 2014-12-30 | 2015-04-08 | 山东昊轩电子陶瓷材料有限公司 | 高致密导电氧化铌靶材的生产方法 |
CN106747439A (zh) * | 2016-12-19 | 2017-05-31 | 湖南稀土金属材料研究院 | 氧化铌靶材及其制备方法 |
CN112592181A (zh) * | 2020-12-30 | 2021-04-02 | 山东昊轩电子陶瓷材料有限公司 | 一种高致密导电氧化铌靶材的制备方法 |
Non-Patent Citations (2)
Title |
---|
G. GRABECKI 等: ""Conductance spectra of (Nb, Pb, In)/NbP superconductor/Weyl semimetal junctions"", 《PHYSICAL REVIEW B》 * |
中国计量》编辑部: ""德国科学家发现巨磁电阻新材料磷化铌"", 《中国计量》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114753004A (zh) * | 2022-04-12 | 2022-07-15 | 武汉理工大学 | 一种低成本制备高性能Weyl半金属NbPx多晶块体的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113979749B (zh) | 2023-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102218535B (zh) | 一种钼制品的烧结方法 | |
CN112813397B (zh) | 一种钼钠合金板状靶材的制备方法 | |
CN113979749B (zh) | 磷化铌靶材的生产工艺 | |
CN103805952B (zh) | 一种大尺寸高纯钨靶材及其生产方法 | |
CN105063558A (zh) | 一种Mo-Ta合金靶材的制备方法 | |
CN114620996A (zh) | 一种高效太阳能电池用旋转陶瓷靶材 | |
CN113754437B (zh) | 磷化钽靶材的生产工艺 | |
CN102826856B (zh) | 一种高纯低密度ito靶材及其制备方法 | |
CN114058893B (zh) | 一种AlCoCrFeNi作粘结剂的WC-Y2O3-ZrO2基体硬质合金的制备方法 | |
CN105112859A (zh) | 一种钠掺杂钼平面靶材的制备方法 | |
CN103447530A (zh) | 基于多物理场活化烧结制备纯钛微型零件的方法 | |
CN111360254A (zh) | 一种采用球形钨粉和雾化铜粉制备CuW90材料的方法 | |
JP3632524B2 (ja) | Mg含有ITOスパッタリングターゲットおよびMg含有ITO蒸着材の製造方法 | |
CN103567443A (zh) | 钨靶材的制作方法 | |
CN104162661B (zh) | 一种微波烧结Al2O3-TiC-TiN微米复合陶瓷刀具材料的方法 | |
CN109319748B (zh) | 一种具有室温柔性的Cu2X块体热电材料的制备方法 | |
CN101787457B (zh) | 一种制备高导热性铝-金刚石双相连续复合材料的方法 | |
CN104625050A (zh) | 一种环保钎料箔片电磁压制制备方法 | |
CN110919003A (zh) | 直径大于300mm真空热压铍材的制备方法及铍材 | |
CN104694775B (zh) | 一种可调热膨胀的SiC/Al2(WO4)3/Al复合材料 | |
CN114853467B (zh) | 一种ito平面靶材及其制备方法 | |
CN116396076A (zh) | 一种导电铌酸锂靶材的制备方法 | |
CN105665710A (zh) | 一种硬质合金喷嘴的直接成形固结方法 | |
CN105294073A (zh) | 一种烧结ito低密度圆柱颗粒的制备方法 | |
JP4904645B2 (ja) | Mg含有ITOスパッタリングターゲットの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |