CN113979407A - 一种复合储氢材料NaBH4@NiB-CNC及其制备方法 - Google Patents

一种复合储氢材料NaBH4@NiB-CNC及其制备方法 Download PDF

Info

Publication number
CN113979407A
CN113979407A CN202111321930.3A CN202111321930A CN113979407A CN 113979407 A CN113979407 A CN 113979407A CN 202111321930 A CN202111321930 A CN 202111321930A CN 113979407 A CN113979407 A CN 113979407A
Authority
CN
China
Prior art keywords
nib
nabh
cnc
hydrogen storage
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111321930.3A
Other languages
English (en)
Other versions
CN113979407B (zh
Inventor
余学斌
陈伟
夏广林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202111321930.3A priority Critical patent/CN113979407B/zh
Publication of CN113979407A publication Critical patent/CN113979407A/zh
Application granted granted Critical
Publication of CN113979407B publication Critical patent/CN113979407B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/06Hydrides of aluminium, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth or polonium; Monoborane; Diborane; Addition complexes thereof
    • C01B6/10Monoborane; Diborane; Addition complexes thereof
    • C01B6/13Addition complexes of monoborane or diborane, e.g. with phosphine, arsine or hydrazine
    • C01B6/15Metal borohydrides; Addition complexes thereof
    • C01B6/19Preparation from other compounds of boron
    • C01B6/21Preparation of borohydrides of alkali metals, alkaline earth metals, magnesium or beryllium; Addition complexes thereof, e.g. LiBH4.2N2H4, NaB2H7
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

本发明公开了一种复合储氢材料NaBH4@NiB‑CNC及其制备方法。其方法包括:NiB‑CNC模板材料的制备;NaBH4@NiB‑CNC的制备。其中通过控制化学还原过程中Ni源和NaBH4的加入量控制NiB‑CNC模板材料中催化剂NiB的含量;储氢材料NaBH4的负载量为30~75 wt%,模板材料NiB‑CNC的质量分数为70~25 wt%。通过本发明方法,复合材料中的NaBH4在400℃以下即可实现完全放氢,并且放氢动力学性能明显改善。本发明所制备的材料具有优越的储氢性能。本发明工艺简单易操作,合成方便,易于实现。

Description

一种复合储氢材料NaBH4@NiB-CNC及其制备方法
技术领域
本发明属于储氢材料技术领域,具体涉及一种复合储氢材料NaBH4@NiB-CNC及其制备方法。
背景技术
氢气的存储是连接氢气的制备和应用的中间环节,氢气的安全高效存储是氢能技术能否实现实际应用的关键,因此开发具有高储氢容量和安全稳定的储氢方式是氢能技术应用的前提。与传统的高压储氢和低温液态储氢相比,固态储氢具有储氢密度高、安全性好,成本相对较低等优点,是最有可能实际应用的储氢方式[1]。
在固态储氢材料中,金属配位氢化物由于具有高的重量储氢密度和体积储氢密度被视为最有潜力的储氢材料之一[2]。NaBH4具有10.8wt%理论储氢容量、空气稳定性高、安全无毒性等优点,因此是一种很有潜力的储氢材料[3]。但是其热力学稳定性高、放氢温度高、放氢动力学性能差、循环吸放氢动力学性能差等缺点阻碍了其作为车载储氢材料的实际应用[4]。因此近些年来,研究者们通过纳米限域,添加过渡金属基的催化剂,以及纳米限域和催化相结合的方法来改善其动力学性能和循环吸放氢性能[5,6]。Humphries等对比了不同过渡金属硼化物对NaBH4储氢性能的影响发现,过渡金属硼化物都可以在一定程度上降低NaBH4的放氢温度,而其中Ni3B具有最好的催化效果,在此基础之上研究了不同含Ni催化剂对NaBH4储氢性能的影响,结果表明在放氢反应过程中,含Ni催化剂均会与NaBH4的分解产物反应生成NixBy型的化合物,促进放氢反应的进行[7]。Ngene等研究发现,将NaBH4限域在纳米多孔的碳模板中,复合材料的初始放氢温度下降了220℃,在325℃和60bar氢压下吸氢后再次放氢,实现43%的可逆容量[8]。在这些研究的基础上,我们结合NiB良好的催化作用和纳米碳笼大的比表面积和孔体积,利用纳米限域和原位催化结合相结合的方法,大幅降低了NaBH4的放氢温度同时改善了放氢反应动力学性能。
[1]Reardon H,Hanlon J M,Hughes R W,Godula-Jopek A,Mandal T K,GregoryD H.Emerging concepts in solid-state hydrogen storage:the role ofnanomaterials design[J].Energy & Environmental Science,2012,5(3):5951-5979.
[2]Ley M B,Jepsen L H,Lee Y-S,Cho Y W,Bellosta Von Colbe J M,DornheimM,Rokni M,Jensen J O,Sloth M,Filinchuk Y,
Figure BDA0003345784600000011
J E,Besenbacher F,Jensen TR.Complex hydrides for hydrogen storage–new perspectives[J].Materials Today,2014,17(3):122-128.
[3]Chong L,Zeng X,Ding W,Liu D-J,Zou J.NaBH4 in“Graphene Wrapper:”Significantly Enhanced Hydrogen Storage Capacity and Regenerability throughNanoencapsulation[J].2015,27(34):5070-5074.
[4]Schüth F,
Figure BDA0003345784600000021
B,Felderhoff M.Light metal hydrides and complexhydrides for hydrogen storage[J].Chemical Communications,2004,(20):2249-2258.
[5]Jubert Tomasso C,Pham AL,Mattox T M,Urban J J.Using Additives toControl the Decomposition Temperature of Sodium Borohydride[J].Journal ofEnergy and Power Technology,2020,2(2):1-20.
[6]Grochala W,Edwards P P.Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen[J].ChemicalReviews,2004,104(3):1283-1316.
[7]Humphries T D,Kalantzopoulos G N,Llamas-Jansa I,Olsen J E,HaubackB C.Reversible Hydrogenation Studies of NaBH4 Milled with Ni-ContainingAdditives[J].The Journal of Physical Chemistry C,2013,117(12):6060-6065.
[8]Ngene P,van den Berg R,Verkuijlen M H W,et al.Reversibility of thehydrogen desorption from NaBH4 by confinement in nanoporous carbon[J].Energy& Environmental Science,2011,4(10):4108-4115。
发明内容
本发明的目的是提供一种储氢容量高、放氢温度降低、循环性能好的复合储氢材料及其制备方法。
本发明提供的复合储氢材料,是一种硼氢化钠(NaBH4)负载于附有NiB催化剂的纳米碳笼而得到的复合材料,记为NaBH4@NiB-CNC。
本发明提出的复合储氢材料NaBH4@NiB-CNC的制备方法,包括化学还原法制备NiB-CNC;将NaBH4溶于有机溶剂,通过溶液负载并除溶剂,得到复合储氢材料NaBH4@NiB-CNC;具体步骤如下:
(1)附有NiB催化剂的纳米碳笼的制备:
以去离子水为溶剂,以Ni盐作为Ni源,以硼氢化钠为还原剂,在持续搅拌状态下将硼氢化钠溶液逐滴滴入Ni盐溶液中,室温下反应25-35分钟;将反应后的产物离心清洗、真空干燥得到附有NiB催化剂的纳米碳笼,记为NiB-CNC;
具体操作:在室温(如25-30℃)下,将Ni盐和硼氢化钠分别溶于去离子水中;在搅拌状态下将硼氢化钠溶液逐滴滴入Ni盐溶液中,待25-35min后,将产物转移到离心管中用去离子水离心清洗三次,将最终产物转移到真空干燥箱中在50-70℃下烘干8-15h,得到的黑色粉末即为NiB-CNC;
(2)溶液法将NaBH4负载到NiCo-NC:
将NaBH4溶于有机溶剂(如乙二醇二甲醚、二乙二醇二甲醚、四氢呋喃等)中,搅拌溶解得到无色澄清溶液;向其中加入NiB-CNC,超声分散均匀;通过抽溶剂的方法去除溶剂,NaBH4在NiCo-NC上形核长大,得到NaBH4负载的附有NiB催化剂的纳米碳笼,记为NaBH4@NiB-CNC,该NaBH4均匀负载在NiB-CNC的空隙中。
本发明步骤(1)中,所述Ni盐采用醋酸镍、Ni(NO3)2、NiCl2或其水合物,Ni盐和NaBH4的摩尔比为1:1.3到1:1.5的范围内。
本发明步骤(1)中,通过调节反应物Ni源和NaBH4的加入量,控制NiB-CNC中催化剂NiB的含量:NiB-CNC中,NiB的质量百分比为10~40wt%。
本发明步骤(2)中,通过调节NaBH4和NiB-CNC的比例,控制两组分的含量:NaBH4的质量百分比为30~75wt%,NiB-CNC的质量百分数为70~25wt%,两部分总量满足100%。
本发明步骤(2)中,所述有机溶剂优选乙二醇二甲醚、二乙二醇二甲醚或四氢呋喃。
本发明制备的NaBH4@NiB-CNC是一种高效复合储氢材料,具有优异的放氢性能。加热到300℃即开始快速放氢,加热至400℃基本完全放氢。
本发明具有以下几个方面显著优点:
(1)本发明使用的NaBH4作为氢源材料价格低廉。
(2)本发明所用的负载方法对设备要求不高,易于实现。
(3)工艺简单,合成方便。
(4)放氢温度相对较低,在400℃可实现完全放氢。
附图说明
图1为不同阶段产物的SEM和TEM图。其中,(a)CNC的SEM图,(b)NiB-CNC的SEM图,(c)NiB-CNC的TEM图,(d)NiB-CNC的HRTEM图,(e)NaBH4@NiB-CNC的SEM图,(f)NaBH4@NiB-CNC的TEM图,(g)NaBH4@NiB-CNC的HRTEM图,(h)NaBH4@NiB-CNC的STEM及对应元素分布图。
图2为不同产物的XRD谱图。其中BM NaBH4为球磨的NaBH4,NaBH4/CNC为质量比1:1球磨的NaBH4和纳米碳笼,NaBH4/NiB-CNC为质量比1:1球磨的NaBH4和附有NiB催化剂的纳米碳笼,NaBH4@CNC为用溶液负载法制备的NaBH4负载在纳米碳笼中,NaBH4@NiB-CNC为用溶液负载法制备的NaBH4负载在有NiB催化剂的纳米碳笼中。
图3为不同样品的TPD放氢曲线。其中,带正方形的曲线为球磨的NaBH4,带菱形的曲线为添加10wt%NiB催化剂的NaBH4,带五角星的曲线为质量比1:1球磨的NaBH4和纳米碳笼,带六边形的为质量比1:1球磨的NaBH4和附有NiB催化剂的纳米碳笼,带三角形的曲线为溶液负载法制备的NaBH4@CNC,带空心圆的曲线为溶液负载法制备的NaBH4@NiB-CNC。测试的升温速率为3℃/min,样品的放氢量均为相对NaBH4的质量进行计算。
图4为NaBH4@NiB-CNC在氩气气氛下的MS曲线,升温速率为3℃/min。
图5为NaBH4@NiB-CNC在不同温度下的恒温放氢曲线。
图6为NaBH4负载量为67wt%和75wt%时,67%NaBH4@NiB-CNC和75%NaBH4@NiB-CNC的TPD放氢曲线。
具体实施方式
下面通过实例进一步说明本发明,但不因此而限制本发明的内容。
实施例1:
(1)NiB-CNC的制备
在室温(25℃)下,称取60mg纳米碳笼于40mL去离子水中,超声分散10min使纳米碳笼在去离子水中分散均匀。向其中加入84mg六水合硝酸镍,搅拌10分钟。将0.4mmol硼氢化钠溶于20mL去离子水中。在搅拌状态下将硼氢化钠溶液逐滴滴入有纳米碳笼的硝酸镍溶液中。滴加完毕后继续搅拌30min。将反应后的产物离心并用去离子水清洗3次,在60℃下真空干燥12h,得到的黑色粉末即为NiB-CNC。
(2)NaBH4负载量为50wt%的NaBH4@NiB-CNC的制备
在氩气手套箱中,将100mg NaBH4加入到50mL乙二醇二甲醚中,搅拌1h后得到透明澄清溶液。向其中加入100mg NiB-CNC后在超声机中持续超声0.5h,将超声后的产物转移到反应管中,在80℃下将溶剂抽干并持续抽真空12h,得到的产物即为50wt%负载量的NaBH4@NiB-CNC。
所制备的NaBH4@NiB-CNC在300℃左右就开始快速放氢,在400℃基本完全放氢,如图3所示,而且放出的气体为纯氢气,没有硼烷的生成,如图4所示。如图5所示,NaBH4@NiB-CNC在350℃下,3h内的放氢量可以达到9.2wt%;在400℃下保温,可实现完全放氢。
实施例2:
用实施例1中步骤(1)相同的方法制备带有NiB催化剂的纳米碳笼NiB-CNC。在氩气手套箱中,将40mg NaBH4加入到20mL乙二醇二甲醚中,搅拌1h后得到透明澄清溶液。向其中加入20mg NiB-CNC后在超声机中持续超声0.5h,将超声后的产物转移到反应管中,在80℃下将溶剂抽干并持续抽真空12h,得到的产物为NaBH4负载量为67wt%的NaBH4@NiCo-NC,即67%NaBH4@NiCo-NC。如图6所示,所制备的67%NaBH4@NiCo-NC在加热到400℃时,可以放出7.3wt%(相对于NaBH4的质量)的氢气,远高于球磨NaBH4的放氢量(0.5wt%)。
实施例3:
用实施例1中步骤(1)相同的方法制备带有NiB催化剂的纳米碳笼NiB-CNC。在氩气手套箱中,将60mg NaBH4加入到30mL乙二醇二甲醚中,搅拌1h后得到透明澄清溶液。向其中加入20mg NiB-CNC后在超声机中持续超声0.5h,将超声后的产物转移到反应管中,在80℃下将溶剂抽干并持续抽真空12h,得到的产物为NaBH4负载量为75wt%的NaBH4@NiCo-NC,即75%NaBH4@NiCo-NC。如图6所示,所制备的75wt%负载量的NaBH4@NiCo-NC在加热到420℃时可以放出7.3wt%(相对于NaBH4的质量)的氢气,远高于球磨NaBH4的放氢量(0.7wt%)。

Claims (6)

1.一种复合储氢材料的制备方法,其特征在于,具体步骤如下:
(1)附有NiB催化剂的纳米碳笼的制备:
以去离子水为溶剂,以Ni盐作为Ni源,以硼氢化钠为还原剂,在持续搅拌状态下将硼氢化钠溶液逐滴滴入Ni盐溶液中,室温下反应25-35分钟;将反应后的产物离心清洗、真空干燥得到附有NiB催化剂的纳米碳笼,记为NiB-CNC;
(2)溶液法将NaBH4负载到NiB-CNC:
将NaBH4溶于有机溶剂中,搅拌溶解得到无色澄清溶液;向其中加入NiB-CNC,超声分散均匀;通过抽溶剂的方法去除溶剂,NaBH4在NiB-CNC上形核长大,得到NaBH4负载的附有NiB催化剂的纳米碳笼材料,记为NaBH4@NiB-CNC;该复合材料中NaBH4均匀负载在NiB-CNC的空隙中。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述Ni盐采用醋酸镍、Ni(NO3)2、NiCl2或其水合物;Ni盐和NaBH4的摩尔比为1:1.3到1:1.5的范围内。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,通过调节反应物Ni源和NaBH4的加入量,控制得到的NiB-CNC中NiB催化剂的含量:使NiB-CNC中NiB的质量百分比为10~40 wt%。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中,通过调节NaBH4和NiB-CNC的加入量,控制两组分的含量:NaBH4的质量百分比为30~75 wt%,NiCo-NC的质量百分比为70~25 wt%,两部分总量满足100%。
5.根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述有机溶剂为乙二醇二甲醚、二乙二醇二甲醚或四氢呋喃。
6.一种由权利要求1-4之一所述制备方法得到的复合储氢材料,为NaBH4负载于附有NiB催化剂的纳米碳笼而得到的复合材料,记为NaBH4@NiB-CNC。
CN202111321930.3A 2021-11-10 2021-11-10 一种复合储氢材料NaBH4@NiB-CNC及其制备方法 Active CN113979407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111321930.3A CN113979407B (zh) 2021-11-10 2021-11-10 一种复合储氢材料NaBH4@NiB-CNC及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111321930.3A CN113979407B (zh) 2021-11-10 2021-11-10 一种复合储氢材料NaBH4@NiB-CNC及其制备方法

Publications (2)

Publication Number Publication Date
CN113979407A true CN113979407A (zh) 2022-01-28
CN113979407B CN113979407B (zh) 2023-09-05

Family

ID=79747450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111321930.3A Active CN113979407B (zh) 2021-11-10 2021-11-10 一种复合储氢材料NaBH4@NiB-CNC及其制备方法

Country Status (1)

Country Link
CN (1) CN113979407B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234115A (ja) * 2002-02-07 2003-08-22 Hitachi Maxell Ltd 空気−水素電池
CN101841048A (zh) * 2010-02-26 2010-09-22 中国科学院上海微系统与信息技术研究所 一种硼氢化锂-多孔碳水解发生氢气的方法与反应系统
CN104069842A (zh) * 2014-05-22 2014-10-01 浙江大学 多孔碳负载纳米金属氧化物催化剂及其制备方法以及储氢材料
CN108059126A (zh) * 2017-12-04 2018-05-22 上海交通大学 一种含NiB12的可逆复合储氢材料及其制备方法
CN113336188A (zh) * 2021-06-02 2021-09-03 复旦大学 一种复合储氢材料NaBH4@NiCo-NC及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234115A (ja) * 2002-02-07 2003-08-22 Hitachi Maxell Ltd 空気−水素電池
CN101841048A (zh) * 2010-02-26 2010-09-22 中国科学院上海微系统与信息技术研究所 一种硼氢化锂-多孔碳水解发生氢气的方法与反应系统
CN104069842A (zh) * 2014-05-22 2014-10-01 浙江大学 多孔碳负载纳米金属氧化物催化剂及其制备方法以及储氢材料
CN108059126A (zh) * 2017-12-04 2018-05-22 上海交通大学 一种含NiB12的可逆复合储氢材料及其制备方法
CN113336188A (zh) * 2021-06-02 2021-09-03 复旦大学 一种复合储氢材料NaBH4@NiCo-NC及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PETER NGENE ET AL.: "Reversibility of the hydrogen desorption from NaBH4 by confinement in nanoporous carbon", 《ENERGY &ENVIRONMENTAL SCIENCE》, pages 4109 *
QUANXING LIU ET AL.: "Immobilization of Amorphous NiB Nanoparticles on Mesoporous Supports: Superior Catalysis for Controllably Hydrolyzing NaBH4 to Release H2", 《JOURNAL OF CHEMISTRY》, vol. 2019, pages 2 *

Also Published As

Publication number Publication date
CN113979407B (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
Guan et al. Complex nanostructures from materials based on metal–organic frameworks for electrochemical energy storage and conversion
CN110190262B (zh) 一种锂硫电池正极材料的制备方法
Luo et al. Biomass-based shape-stable phase change materials supported by garlic peel-derived porous carbon for thermal energy storage
Gao et al. Catalysis derived from flower-like Ni MOF towards the hydrogen storage performance of magnesium hydride
Fangaj et al. Apricot Kernel shell waste treated with phosphoric acid used as a green, metal-free catalyst for hydrogen generation from hydrolysis of sodium borohydride
CN110116990B (zh) 一种纳米氢化镁的原位制备方法
Li et al. Solvothermal synthesis of porphyrin-ferrocenyl conjugated microporous polymer nanospheres for shape-stable phase change materials with improved latent heat and cyclability
Dou et al. Shaggy-like Ru-clusters decorated core-shell metal-organic framework-derived CoOx@ NPC as high-efficiency catalyst for NaBH4 hydrolysis
CN107954483B (zh) 一种α相氢氧化镍超薄纳米片及其制备方法
Saka Oxygen and nitrogen-doped metal-free microalgae carbon nanoparticles for efficient hydrogen production from sodium borohydride in methanol
Pedicini et al. Progress in polymeric material for hydrogen storage application in middle conditions
CN104649229A (zh) 一种制备纳米限域镁基储氢材料的方法
Sahiner et al. H2 generation from NaBH4 and NH3BH3 using metal catalysts prepared within p (VI) capsule particles
Song et al. Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2
Wang et al. Dodecylamine/Ti3C2-pectin form-stable phase change composites with enhanced light-to-thermal conversion and mechanical properties
CN108380227B (zh) 一种析氢电催化材料及其制备方法
Xu et al. Research progress on catalysts for hydrogen generation through sodium borohydride alcoholysis
Duan et al. Novel core–shell structured MgH 2/AlH 3@ CNT nanocomposites with extremely high dehydriding–rehydriding properties derived from nanoconfinement
CN113336188B (zh) 一种复合储氢材料NaBH4@NiCo-NC及其制备方法
CN113546656A (zh) 一种MXene负载Ni@C纳米颗粒储氢催化剂及其制备方法
CN106698365A (zh) 过渡金属硫属化合物中空多孔纳米片的制备方法及其应用
Li et al. The effect of 3D carbon nanoadditives on lithium hydroxide monohydrate based composite materials for highly efficient low temperature thermochemical heat storage
CN113501552A (zh) MOFs衍生的中空多面体Co3S4及制备方法和应用
Venkateswarlu et al. Recent progress on MOF/MXene nanoarchitectures: a new era in coordination chemistry for energy storage and conversion
Chen et al. A dandelion-like amorphous composite catalyst with outstanding performance for sodium borohydride hydrogen generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant