CN113976079A - 一种基于磁性氧化石墨烯的磁泡腾片及其制备方法 - Google Patents

一种基于磁性氧化石墨烯的磁泡腾片及其制备方法 Download PDF

Info

Publication number
CN113976079A
CN113976079A CN202111187228.2A CN202111187228A CN113976079A CN 113976079 A CN113976079 A CN 113976079A CN 202111187228 A CN202111187228 A CN 202111187228A CN 113976079 A CN113976079 A CN 113976079A
Authority
CN
China
Prior art keywords
magnetic
graphene oxide
effervescent tablet
water
magnetic graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111187228.2A
Other languages
English (en)
Inventor
高珣
池苗苗
秦昆明
赵龙山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lianyungang Longsheng Pharmaceutical Co ltd
Original Assignee
Lianyungang Longsheng Pharmaceutical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lianyungang Longsheng Pharmaceutical Co ltd filed Critical Lianyungang Longsheng Pharmaceutical Co ltd
Priority to CN202111187228.2A priority Critical patent/CN113976079A/zh
Publication of CN113976079A publication Critical patent/CN113976079A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种基于磁性氧化石墨烯的磁泡腾片及其制备方法,该方法包括如下步骤:(1)利用氯化铁、氯化亚铁水溶液对氧化石墨烯进行加磁改造得到磁性氧化石墨烯。(2)利用泡腾微萃取技术,以磁性氧化石墨烯作为磁固相萃取吸附剂与柠檬酸、碳酸氢钠、1‑辛基‑3‑甲基咪唑氯盐和双三氟甲烷磺酰亚胺锂合成磁性泡腾片。(3)以荧光分光光度法验证磁性泡腾片对多环芳烃的去除效果。本发明的磁泡腾片制备方法及应用具有操作简单、准确度高、灵敏度好、环保性好等优点,可用于去除4‑苯并芘和蒽等多环芳烃。

Description

一种基于磁性氧化石墨烯的磁泡腾片及其制备方法
技术领域
本发明属于水中污染物的检测及去除领域,涉及一种基于磁性氧化石墨烯的磁泡腾片制备方法及其在多环芳烃去除中的应用。
背景技术
泡腾微萃取技术(Effervescent tablet-assisted microextraction, ETE)又称泡腾辅助微萃取,已被引入为一种新的无溶剂分散技术。该技术通过在基质中加入质子供体、碳源导致原位形成气泡的方式促进相均质化,以替代分散溶剂与超声、涡旋等辅助萃取方法的使用。泡腾微萃取可加入多种萃取剂,如离子液体、纳米材料等,或者将质子供体、碳源及萃取剂等组合成萃取装置或泡腾片,以达到便于操作的目的。目前,泡腾微萃取技术已经广泛应用于环境样品分析。
磁性氧化石墨烯(MGO)是一种具有磁性和含氧官能团的石墨烯基复合材料,基于其含氧官能团所带来的物理化学性质,该材料在水溶液中具有良好的分散性和稳定性且吸附能力优于其它常规吸附剂,故被用于检测或从水溶液中去除痕量有毒污染物。
多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)是一类持久性有机污染物,其主要来自人类活动,包括机动车尾气、化石燃料和木材燃烧不完全等。由于它们在脂质中的高度溶解性,它们可以分布在多种动物组织中。长期暴露于PAHs易引起对眼睛、肾脏和肝脏的损害,此外多环芳烃还具有诱变、致癌性,致畸性和致基因突变等严重的毒理作用。由于PAHs会进入地表水并渗透到饮用水源中造成健康危害,因此,有必要开发低成本并能够有效去除水中PAHs的技术以保证用水安全。显然,利用泡腾微萃取技术和磁性氧化石墨烯制备出的磁性泡腾片将有望实现方便高效地去除PAHs。
发明内容
本发明的目的在于提供一种基于磁性氧化石墨烯的泡腾片及其制备方法,并验证其去除多环芳烃的作用效果。该方法具有操作简单、准确度高、灵敏度好、基质效应小、环境友好等优点。相比传统的去除污染物方法,该技术无需分散剂或复杂的分散方法即可除去环境水样中多环芳烃类物质,极大的提高了操作效率。
技术方案:为实现上述目的,本发明采用如下技术方案:
一种基于磁性氧化石墨烯的磁泡腾片,它由磁性氧化石墨烯、柠檬酸、碳酸氢钠、1-辛基-3-甲基咪唑氯盐、双三氟甲烷磺酰亚胺锂制备得到。
一种基于磁性氧化石墨烯的磁泡腾片的制备方法,包括如下步骤:
(1)合成磁性氧化石墨烯:取氧化石墨烯与水,于氮气保护条件下搅拌,并由室温升温至60~80 ℃;然后加入FeCl3·6H2O、FeCl2·4H2O和水组成的溶液,继续搅拌后加入由NaOH、水组成的溶液,继续反应后,将混合物冷却至室温,倒出至烧杯中,利用外部磁铁将合成的磁性材料吸附住,然后先后使用水和乙醇洗涤磁性材料,干燥,研磨成粉末,得到磁性氧化石墨烯;
(2)合成磁性泡腾片:精密称量柠檬酸、碳酸氢钠、1-辛基-3-甲基咪唑氯盐、双三氟甲烷磺酰亚胺锂和步骤(1)所得的磁性氧化石墨烯;将固、液混合物放入研钵中研磨,直至粉末均匀且细小;随后,使用红外压片机将混合的均匀粉末压制成磁性泡腾片。
作为优选方案,以上所述的基于磁性氧化石墨烯的磁泡腾片的制备方法,包括如下步骤:
(1)合成磁性氧化石墨烯:取氧化石墨烯与水,于氮气保护条件下搅拌,并由室温升温至60~80 ℃;然后加入由0.5~3g FeCl3·6H2O、0.5~3g FeCl2·4H2O和10~50ml水组成的溶液,继续搅拌后加入由NaOH、水组成的溶液,继续反应后,将混合物冷却至室温,倒出至烧杯中,利用外部磁铁将合成的磁性材料吸附住,然后先后使用水和乙醇洗涤磁性材料,干燥,研磨成粉末,得到磁性氧化石墨烯;
(2)合成磁性泡腾片:精密称量200~300 mg柠檬酸、100~150 mg碳酸氢钠、10~50μL1-辛基-3-甲基咪唑氯盐、20~40 mg双三氟甲烷磺酰亚胺锂和1~30 mg步骤(1)所得的磁性氧化石墨烯;将固、液混合物放入研钵中研磨,直至粉末均匀且细小;随后,使用红外压片机将混合的均匀粉末压制成磁性泡腾片。
作为优选方案,以上所述的基于磁性氧化石墨烯的磁泡腾片的制备方法,步骤(1)中由室温升至70℃后,加入由2.16g FeCl3·6H2O、0.8gFeCl2·4H2O和40ml水组成的溶液。
作为优选方案,以上所述的基于磁性氧化石墨烯的磁泡腾片的制备方法,步骤(2)中所述柠檬酸、碳酸氢钠、1-辛基-3-甲基咪唑氯盐、双三氟甲烷磺酰亚胺锂、磁性氧化石墨烯的用量比为278mg:121mg:30 μL:32mg:10mg。
本发明提供的基于磁性氧化石墨烯的磁泡腾片吸附检测4-苯并芘和蒽的方法,包括如下步骤:将基于磁性氧化石墨烯的磁泡腾片放入离心管中,离心管分别加入BaP、Ant的水溶液,待泡腾片完全崩解,将外部磁体保持在离心管的外壁旁边,以将磁性氧化石墨烯从水相中分离出来,将上清液使用滴管吸取并丢弃,对于吸附3,4-苯并芘残留的磁性纳米材料,用400 ~2000μL甲苯或丙酮洗脱1~6次;对于吸附蒽残留的磁性纳米材料,用400 ~2000μL甲苯或丙酮洗脱1~6次;然后将混合洗脱溶液转移到带盖石英比色皿中,采用荧光分光光度计记录荧光强度。
作为优选方案,本发明提供的基于磁性氧化石墨烯的磁泡腾片吸附检测4-苯并芘和蒽的方法,所述的3,4-苯并芘(BaP)、蒽(Ant)的洗脱剂为丙酮,洗脱用量应为400μL,BaP洗脱次数最佳为3次,Ant洗脱次数最佳为4次,基质溶液PH最佳为7。
本发明与现有方法相比,本发明的有益效果是:
(1)本发明通过大量实验筛选,以磁性氧化石墨烯、柠檬酸、碳酸氢钠、1-辛基-3-甲基咪唑氯盐、双三氟甲烷磺酰亚胺锂配伍才能制备得到吸附性能好的磁性氧化石墨烯的磁泡腾片。原料缺一不可。
(2)采用泡腾微萃取技术,制备方法简单可靠且成本较低,无需分散剂或复杂的分散方法即可高效去除污染物。使用磁性氧化石墨烯,易于从基质中分离的效果,吸附能力更强。技术成品形态为泡腾片,携带方便,使用简单,作用效果好,可应用于多环芳烃类有机污染物的检测与去除中。
(3)本发明设计的磁性泡腾片性质稳定,磁性明显,入水崩解后用磁铁即可实现从液相中快速分离回收目标物。
附图说明
图1为实施例中(a)GO的傅里叶变换红外光谱(FTIR)光谱图;(b)MGO的FTIR光谱图;
图2为实施例中(a)GO的扫描电镜(SEM)图像;(b)MGO的SEM图像;(c)GO的透射电镜(TEM)图像;(d)MGO的TEM图像;
图3为实施例中(a) 纳米材料选择考察图;(b) 材料用量考察图;(c) 离子液体种类考察图;(d)离子液体用量考察图;(e)离子交换剂选择考察图;(f)泡腾片成分考察图;
图4为实施例中(a) 样品溶液pH考察图; (b) 洗脱剂选择考察图; (c) 洗脱剂量考察图;(d)洗脱时间考察图。
具体实施方式
下面结合具体实施方式,对本发明的权利要求做进一步的详细说明,但不构成对本发明的任何限制,任何在本发明权利要求保护范围内所做的有限次修改、仍在本发明的权利要求保护范围之内。
实施例1
一种基于磁性氧化石墨烯的磁泡腾片的制备方法,包括如下步骤:
(1)配置溶液:取3,4-苯并芘(BaP)、蒽(Ant)标准品适量,精密称定,分别置于10mL棕色容量瓶中,用甲醇稀释,配置成浓度为1 mg mL-1的标准储备液,4 ℃避光存储,用甲醇稀释储备液,待使用时逐级稀释至所需浓度。
(2)采集与制备样品:环境水从当地的郊外采集,水样通过0.45 μm注射器滤膜过滤,放置于4 ℃冰箱中备用。取5 mL水样,分别加入BaP或Ant标准储备液100 μL,进行后续分析。
(3)合成磁性氧化石墨烯:将氧化石墨烯0.5 g、水100 mL加入到三颈烧瓶中,于氮气保护条件下机械搅拌,并由室温升温至70 ℃;之后,加入由2.16 g FeCl3·6H2O、0.80 gFeCl2·4H2O、40 mL水组成的溶液,继续搅拌10 min后加入由7 g NaOH、70 mL水组成的溶液,继续反应1 h后,将混合物冷却至室温,倒出至玻璃容器中,利用外部磁铁将合成的磁性材料吸附,先后使用水和乙醇各洗涤三遍,60 ℃真空干燥箱干燥8 h,研磨成粉末即可。
(4)合成磁性泡腾片:精密称量片剂前体,其中包括278 mg柠檬酸、121 mg碳酸氢钠、30 μL1-辛基-3-甲基咪唑氯盐、32 mg双三氟甲烷磺酰亚胺锂和10 mg步骤(3)所得磁性氧化石墨烯。将固、液混合物放入研钵中研磨,直至粉末均匀且细小。随后,使用红外压片机将混合的均匀粉末压制成磁性泡腾片(8 mm直径× 2 mm厚度),包装于密封袋中,并置于保干器中以备后续使用。
(5)进行磁泡腾片辅助微萃取实验:首先,将泡腾片放入离心管中,离心管分别含有5 mL由步骤(2)项下配制方法得到的含BaP、Ant的水溶液(PH=7)。约几分钟后,观察到泡腾片完全崩解。随后,将外部磁体保持在离心管的外壁旁边,以将磁性氧化石墨烯(MGO)从水相中分离出来。最后,将上清液使用滴管吸取并丢弃,对于吸附BaP残留的磁性纳米材料(MNPs),用400 μL丙酮洗脱3分钟;对于吸附Ant残留的MNPs,用400 μL丙酮洗脱4分钟。将混合洗脱溶液转移到带盖石英比色皿中,采用荧光分光光度计记录荧光强度。BaP和Ant的吸附回收率分别达到98.6%和87.1%,显示出了强的吸附性能。
对所得磁性氧化石墨烯(MGO)和氧化石墨烯(GO)进行性能表征,由图1可知MGO的FT-IR光谱存在584.5 cm-1处的吸收峰,其归因于Fe-O键振动,表明磁性纳米颗粒与氧化石墨烯之间的共价键的成功形成。由图2(a/b)可知GO具有平滑的片状结构,分布均匀。而MGO表面较为粗糙,这表明四氧化三铁纳米粒子分布良好并成功结合到氧化石墨烯表面,表明了磁性氧化石墨烯的成功合成。由图2(c/d)可知GO呈片状,透明度高。而Fe3O4纳米粒子表现为MGO横截面上的黑点,较均匀地结合在GO表面,证实了MGO的成功合成。
实施例2对磁性泡腾片组成进行筛选是实验研究
1、以两种PAHs去除量为指标,由图3确定泡腾片组成,包括(a)选择磁性氧化石墨烯作为吸附材料;(b)选择去除效果较好且材料用量小的10 mg,作为吸附材料用量;(c)选择1-辛基-3-甲基咪唑氯盐作为离子液体;(d)选择30 μL作为离子液体用量;(e)选用双三氟甲烷磺酰亚胺锂作为离子交换剂;(f)确定纳米材料与离子液体、离子交换剂均应存在于组成中为最佳。
2、对吸附-洗脱过程条件进行考察,以两种PAHs去除量为指标,由图4明确了吸附-洗脱过程条件,包括(a)选择pH=7作为基质pH值;(b)选择丙酮作为洗脱溶剂;(c) 选择400μL作为洗脱剂量;(d) 选择3 min、4 min作为BaP、Ant的洗脱时间。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种基于磁性氧化石墨烯的磁泡腾片,其特征在于,它由磁性氧化石墨烯、柠檬酸、碳酸氢钠、1-辛基-3-甲基咪唑氯盐、双三氟甲烷磺酰亚胺锂制备得到。
2.权利要求1所述的基于磁性氧化石墨烯的磁泡腾片的制备方法,其特征在于,包括如下步骤:
(1)合成磁性氧化石墨烯:取氧化石墨烯与水,于氮气保护条件下搅拌,并由室温升温至60~80 ℃;然后加入FeCl3·6H2O、FeCl2·4H2O和水组成的溶液,继续搅拌后加入由NaOH、水组成的溶液,继续反应后,将混合物冷却至室温,倒出至烧杯中,利用外部磁铁将合成的磁性材料吸附住,然后先后使用水和乙醇洗涤磁性材料,干燥,研磨成粉末,得到磁性氧化石墨烯;
(2)合成磁性泡腾片:精密称量柠檬酸、碳酸氢钠、1-辛基-3-甲基咪唑氯盐、双三氟甲烷磺酰亚胺锂和步骤(1)所得的磁性氧化石墨烯;将固、液混合物放入研钵中研磨,直至粉末均匀且细小;随后,使用红外压片机将混合的均匀粉末压制成磁性泡腾片。
3.根据权利要求2所述的基于磁性氧化石墨烯的磁泡腾片的制备方法,其特征在于,包括如下步骤:
(1)合成磁性氧化石墨烯:取氧化石墨烯与水,于氮气保护条件下搅拌,并由室温升温至60~80 ℃;然后加入由0.5~3g FeCl3·6H2O、0.5~3g FeCl2·4H2O和10~50ml水组成的溶液,继续搅拌后加入由NaOH、水组成的溶液,继续反应后,将混合物冷却至室温,倒出至烧杯中,利用外部磁铁将合成的磁性材料吸附住,然后先后使用水和乙醇洗涤磁性材料,干燥,研磨成粉末,得到磁性氧化石墨烯;
(2)合成磁性泡腾片:精密称量200~300 mg柠檬酸、100~150 mg碳酸氢钠、10~50μL 1-辛基-3-甲基咪唑氯盐、20~40 mg双三氟甲烷磺酰亚胺锂和1~30 mg步骤(1)所得的磁性氧化石墨烯;将固、液混合物放入研钵中研磨,直至粉末均匀且细小;随后,使用红外压片机将混合的均匀粉末压制成磁性泡腾片。
4.根据权利要求3所述的基于磁性氧化石墨烯的磁泡腾片的制备方法,其特征在于,步骤(1)中由室温升至70℃后,加入由2.16g FeCl3·6H2O、0.8gFeCl2·4H2O和40ml水组成的溶液。
5.根据权利要求3所述的基于磁性氧化石墨烯的磁泡腾片的制备方法,其特征在于,步骤(2)中所述柠檬酸、碳酸氢钠、1-辛基-3-甲基咪唑氯盐、双三氟甲烷磺酰亚胺锂、磁性氧化石墨烯的用量比为278mg:121mg:30 μL:32mg:10mg。
6.权利要求1所述的基于磁性氧化石墨烯的磁泡腾片在制备去除多环芳烃药剂中的应用。
7.权利要求1所述的基于磁性氧化石墨烯的磁泡腾片在制备去除4-苯并芘和蒽的药剂中的应用。
8.权利要求1所述的基于磁性氧化石墨烯的磁泡腾片吸附检测4-苯并芘和蒽的方法,其特征在于,包括如下步骤:将基于磁性氧化石墨烯的磁泡腾片放入离心管中,离心管分别加入BaP、Ant的水溶液,待泡腾片完全崩解,将外部磁体保持在离心管的外壁旁边,以将磁性氧化石墨烯从水相中分离出来,将上清液使用滴管吸取并丢弃,对于吸附3,4-苯并芘残留的磁性纳米材料,用400 ~2000μL甲苯或丙酮洗脱1~6次;对于吸附蒽残留的磁性纳米材料,用400 ~2000μL甲苯或丙酮洗脱1~6次;然后将混合洗脱溶液转移到带盖石英比色皿中,采用荧光分光光度计记录荧光强度。
9.根据权利要求8所述的基于磁性氧化石墨烯的磁泡腾片吸附检测4-苯并芘和蒽的方法,其特征在于,所述的3,4-苯并芘、蒽的洗脱剂为丙酮,洗脱用量为400μL,3,4-苯并芘洗脱次数为3次,蒽洗脱次数为4次,基质溶液PH为7。
CN202111187228.2A 2021-10-12 2021-10-12 一种基于磁性氧化石墨烯的磁泡腾片及其制备方法 Pending CN113976079A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111187228.2A CN113976079A (zh) 2021-10-12 2021-10-12 一种基于磁性氧化石墨烯的磁泡腾片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111187228.2A CN113976079A (zh) 2021-10-12 2021-10-12 一种基于磁性氧化石墨烯的磁泡腾片及其制备方法

Publications (1)

Publication Number Publication Date
CN113976079A true CN113976079A (zh) 2022-01-28

Family

ID=79738210

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111187228.2A Pending CN113976079A (zh) 2021-10-12 2021-10-12 一种基于磁性氧化石墨烯的磁泡腾片及其制备方法

Country Status (1)

Country Link
CN (1) CN113976079A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977641A (zh) * 2020-09-04 2020-11-24 航天特种材料及工艺技术研究所 一种具有梯度孔结构的石墨烯气凝胶微球及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111977641A (zh) * 2020-09-04 2020-11-24 航天特种材料及工艺技术研究所 一种具有梯度孔结构的石墨烯气凝胶微球及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BASIRA KARBALAIE,ET AL.: "Dopamine-modified magnetic graphene oxide as a recoverable sorbent for the preconcentration of metal ions by an effervescence-assisted dispersive micro solid-phase extraction procedure", 《ANALYTICAL METHODS》, vol. 12, no. 18, 18 April 2020 (2020-04-18), pages 2338 - 2346 *
HAN, Q,ET AL.: "Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples", 《TALANTA》, vol. 101, 27 September 2012 (2012-09-27), pages 388 - 395 *
SARA JAMSHIDI,ET AL.: "Using magnetic core-shell nanoparticles coated with an ionic liquid dispersion assisted by effervescence powder for the micro-solid-phase extraction of four beta blockers from human plasma by ultra high performance liquid chromatography with mass spectrometry detection", 《JOURNAL OF SEPARATION SCIENCE》, vol. 42, no. 3, 18 November 2018 (2018-11-18), pages 698 - 705 *

Similar Documents

Publication Publication Date Title
Suo et al. Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry
Li et al. Preparation, characterization, and application of mesoporous silica-grafted graphene oxide for highly selective lead adsorption
Ozkantar et al. Pyrocatechol violet impregnated magnetic graphene oxide for magnetic solid phase microextraction of copper in water, black tea and diet supplements
Wang et al. Extraction of neonicotinoid insecticides from environmental water samples with magnetic graphene nanoparticles as adsorbent followed by determination with HPLC
Deng et al. Rapid and effective sample clean-up based on magnetic multiwalled carbon nanotubes for the determination of pesticide residues in tea by gas chromatography–mass spectrometry
Huo et al. Facile magnetization of metal–organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples
Sohrabi et al. Solid phase extraction of Cd (II) and Pb (II) using a magnetic metal-organic framework, and their determination by FAAS
Tarigh et al. Magnetic multi-wall carbon nanotube nanocomposite as an adsorbent for preconcentration and determination of lead (II) and manganese (II) in various matrices
CN110385116A (zh) 一种磁性纳米复合材料及其制备和应用
CN101664668A (zh) 核壳式Fe3O4/C磁性纳米固相萃取剂的制备及应用
Lotfi et al. Covalently bonded double-charged ionic liquid on magnetic graphene oxide as a novel, efficient, magnetically separable and reusable sorbent for extraction of heavy metals from medicine capsules
Suo et al. Functionalization of a SiO 2-coated magnetic graphene oxide composite with polyaniline–polypyrrole for magnetic solid phase extraction of ultra-trace Cr (III) and Pb (II) in water and food samples using a Box–Behnken design
Rezaei et al. A novel extraction and preconcentration of ultra-trace levels of uranium ions in natural water samples using functionalized magnetic-nanoparticles prior to their determination by inductively coupled plasma-optical emission spectrometry
Narimani-Sabegh et al. Magnetic solid-phase extraction and determination of ultra-trace amounts of antimony in aqueous solutions using maghemite nanoparticles
Cheng et al. A graphene-based multifunctional affinity probe for selective capture and sequential identification of different biomarkers from biosamples
Yang et al. The amino-functionalized magnetic graphene oxide combined with graphite furnace atomic absorption spectrometry for determination of trace inorganic arsenic species in water samples
Pang et al. Magnetic graphene solid-phase extraction in the determination of polycyclic aromatic hydrocarbons in water
Esmaeilzadeh Ultrasound-assisted dispersive magnetic solid phase extraction based on metal–organic framework/1-(2-pyridylazo)-2-naphthol modified magnetite nanoparticle composites for speciation analysis of inorganic tin
Avan et al. Solid-phase extraction of Cr (VI) with magnetic melamine–formaldehyde resins, followed by its colorimetric sensing using gold nanoparticles modified with p-amino hippuric acid
CN101811032B (zh) 一种Cd(Ⅱ)印迹磁性材料的制备及应用方法
Oymak et al. Determination of sunset yellow, allura red, and fast green using a novel magnetic nanoadsorbent modified with Elaeagnus angustifolia based on magnetic solid-phase extraction by HPLC
He et al. Preparation of functional magnetic porous organic polymer as sorbent for mercury speciation followed by HPLC-ICP-MS analysis
CN113976079A (zh) 一种基于磁性氧化石墨烯的磁泡腾片及其制备方法
CN114146686A (zh) 一种磁性金属有机骨架材料的制备方法及其应用
Chen et al. Preparation of magnetic nitrogen-doped porous carbon by incomplete combustion with solvothermal synthesis for magnetic solid-phase extraction of benzoylurea insecticides from environmental water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination