CN113965097B - 一种暂态电压支撑的v2g主电路拓扑结构 - Google Patents

一种暂态电压支撑的v2g主电路拓扑结构 Download PDF

Info

Publication number
CN113965097B
CN113965097B CN202111283777.XA CN202111283777A CN113965097B CN 113965097 B CN113965097 B CN 113965097B CN 202111283777 A CN202111283777 A CN 202111283777A CN 113965097 B CN113965097 B CN 113965097B
Authority
CN
China
Prior art keywords
port
phase
current
voltage
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111283777.XA
Other languages
English (en)
Other versions
CN113965097A (zh
Inventor
向慕超
凌在汛
崔一铂
刘曼佳
陈文�
郭雨
郑景文
金晨
焦海文
沈骏杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Fangyuan Dongli Electric Power Science Research Co ltd
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Original Assignee
Hubei Fangyuan Dongli Electric Power Science Research Co ltd
Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Fangyuan Dongli Electric Power Science Research Co ltd, Electric Power Research Institute of State Grid Hubei Electric Power Co Ltd filed Critical Hubei Fangyuan Dongli Electric Power Science Research Co ltd
Priority to CN202111283777.XA priority Critical patent/CN113965097B/zh
Publication of CN113965097A publication Critical patent/CN113965097A/zh
Application granted granted Critical
Publication of CN113965097B publication Critical patent/CN113965097B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/322Arrangements for balancing of the load in a network by storage of energy using batteries with converting means the battery being on-board an electric or hybrid vehicle, e.g. vehicle to grid arrangements [V2G], power aggregation, use of the battery for network load balancing, coordinated or cooperative battery charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明提供一种暂态电压支撑的V2G主电路拓扑结构,包括一个三相三端口H桥整流电路;该三相三端口H桥整流电路包括3个含两个IGBT的桥臂、6个晶闸管、直流侧主端口滤波电容Cd1与辅助端口滤波电容Cd2、辅助端口与各桥臂间的一组共模电感Ld;该整流电路交流端口与电网相连,直流侧主端口与直流电池相连,直流侧辅助端口的与滤波电容Cd2大电容相连。本发明通过采用boost与三相H桥整流拓扑结构的复合,减少了换流器数量,使得装置体积更小;通过引入共模电感抑制直流侧辅助端口与交流端口之间回路的交流电流分量,从而减小共模电感的功率损耗以及发热程度,加强了主电路的安全稳定性。

Description

一种暂态电压支撑的V2G主电路拓扑结构
技术领域
本发明涉及电力电子变换器技术领域,具体是一种暂态电压支撑的V2G主电路拓扑结构。
背景技术
经济与社会的发展,促使人类对能源的需求不断增长,新能源的开发与广泛使用已成为电网能源发展的热点。新能源发电通常受环境影响明显而具有间歇、波动,迫切需要大量储能元件对电网进行缓冲,而目前的储能元件并不能大量储存新能源发电的能量。在电动汽车的广泛使用的背景下,为充分利用电动汽车处于停止状态的大量时间,将装有大容量电池的电动汽车(Vehicle)并入电网(Grid),当电网负荷过高时,由电动汽车储能源向电网馈电;而当电网负荷低时,用来存储电网过剩的发电量;当电网电压波动时,将其作为电网以及可再生能源系统的缓冲,最终实现电网在稳态能量传输的稳定效果与暂态电压的支撑效果。
现有技术中,三端口变换器常将两类拓扑复合为一个拓扑,使其结构简单,控制难度低,具有较高的研究价值。基于三端口H桥的双向DC-DC-AC变换器,拓扑结构简单,器件使用量少,能够通过低电压以高功率密度输入至较高电压等级的交流电网,且不产生低频谐波损害装置,但其直流侧低电压端口所连的两个电感通过相位相反的交流电流大,导致电感产生功率损耗,其发热程度大,安全性不高。
发明内容
本发明的目的在于提供一种电网暂态电压支撑的V2G主电路拓扑结构,通过共模电感解决V2G主电路拓扑结构中三相三端口H桥变换器具有较大交流环流电流产生的问题。
本发明采用的技术方案为:一种电网暂态电压支撑的V2G主电路拓扑结构,包括一个三相三端口H桥整流电路;
所述三相三端口H桥整流电路包括一个交流端口与两个直流端口;
所述三相三端口H桥整流电路的交流端口与220V三相电网相连,其并网电阻为r1,并网电感为L1
所述三相三端口H桥整流电路的直流端口包括一个主端口与一个辅助端口;主端口包括一个滤波电容Cd1,用于与直流电源相连;辅助端口包括一个滤波电容Cd2及一组共模电感Ld,所述滤波电容Cd2与超大电容或蓄电池相连;共模电感Ld由三个共模电感组成,三个共模电感分别缠绕于三相三柱式铁芯各柱子上;
所述三相三端口H桥整流电路的直流侧主端口与交流端口通过三相H桥相连;
所述三相三端口H桥整流电路的直流辅助端口与交流端口通过三个共模电感Ld相连,三个共模电感Ld的一侧同名端与滤波电容Cd2一端相连,另一侧分别与交流端口三相线路相连。
进一步的,所述三相三端口H桥整流电路的电网侧a相线路串有晶闸管G1,晶闸管G2反向并联在G1两端;b相线路串有晶闸管G3,晶闸管G4反向并联在G3两端;c相线路串有晶闸管G5,晶闸管G6反向并联在G5两端。
进一步的,所述三相H桥包括6个IGBT开关管(Q1~Q6)与6个二极管(D1~D6);开关管Q1与Q2组成a相桥臂,Q1的源极与Q2的漏极相连,并与a相并网电感、二极管D1的正极、二极管D2的负极相连,Q1的漏极与D1的负极、直流侧主端口的正极相连,Q2的源极与D2的正极、直流侧主端口的负极相连;开关管Q3与Q4组成b相桥臂,Q3的源极与Q4的漏极相连,并与b相并网电感、二极管D3的正极、二极管D4的负极相连,Q3的漏极与D3的负极、直流侧主端口的正极相连,Q4的源极与D4的正极、直流侧主端口的负极相连;开关管Q5与Q6组成c相桥臂,Q5的源极与Q6的漏极相连,并与c相并网电感、二极管D5的正极、二极管D6的负极相连,Q5的漏极与D5的负极、直流侧主端口的正极相连,Q6的源极与D6的正极、直流侧主端口的负极相连。
进一步的,所述拓扑结构在稳态运行时:
所述V2G主电路拓扑结构中,交流端口输出三电压为:ua、ub、uc
所述V2G主电路拓扑结构中,交流端口输入三相电流为:ia、ib、ic
所述V2G主电路拓扑结构中,电网输出三相电压为:ea、eb、ec
所述V2G主电路拓扑结构中,直流侧主端口输出电压为:Ud1
所述V2G主电路拓扑结构中,直流侧主端口输出电流为:Id1
所述V2G主电路拓扑结构中,直流辅助端口输出电压为:Ud2
所述V2G主电路拓扑结构中,直流辅助端口输出电流为:Id2
所述V2G主电路拓扑结构中,从直流辅助端口流经各共模电感的电流为:ILa、ILb、ILc
所述V2G主电路拓扑结构中,其交流端口至直流侧主端口的电能转换形式为三相H桥整流拓扑;
所述三相H桥整流拓扑通过电压电流双环控制直流侧主端口的直流电压,包括以下步骤:
(1)对电网输出三相电压与三相电流进行PARK变换,得到两相同步旋转坐标系下的电压ed、eq和电流id、iq
(2)设定直流侧主端口电压参考值
Figure BDA0003332236920000031
与直流侧主端口电压Ud1相减,其差值输入电压环比例积分控制器输出d轴电流参考值/>
Figure BDA0003332236920000032
设定q轴电流参考值/>
Figure BDA0003332236920000033
为0;
(3)将d轴电流参考值
Figure BDA0003332236920000034
与d轴电流id相减,其差值输入电流环比例积分控制器,控制器输出积分值与ed、角速度与q轴电流iq的乘积相减的负值输出为d轴电压参考值/>
Figure BDA0003332236920000035
将q轴电流参考值与q轴电流iq相减,其差值输入电流环比例积分控制器,控制器输出积分值与eq、角速度和d轴电流id的乘积相加的负值输出为q轴电压参考值/>
Figure BDA0003332236920000036
(4)将d轴电压参考值
Figure BDA0003332236920000037
与q轴电压参考值/>
Figure BDA0003332236920000038
反PARK变换,输出三相电压参考值
Figure BDA0003332236920000039
将三相电压参考值输入PWM生成器,形成PWM信号,对6个IGBT进行控制;
所述V2G主电路拓扑结构中,其直流侧辅助端口至主端口的电能转换形式为boost拓扑;
所述boost拓扑包括三个独立boost电路,第i相boost电路包括共模电感Ldi,第i相下桥臂的IGBT开关管与上桥臂的二极管,i=a,b,c;
所述boost拓扑中,第i个boost电路的开关管根据其占空比N可输出直流电能,其占空比由PWM生成器决定,i=a,b,c。
进一步的,所述V2G主电路拓扑结构通过共模电感抑制直流侧辅助端口与交流端口之间回路的交流电流分量,具体的,
在工频下,交流端口三相电压ua、ub、uc与一端相连的共模电感形成交流回路,其中共模电感中性点由辅助端口的直流电源升高至一定电压;
所述交流回路中,共模电感Ld在通过三相电流时,其三相三柱式铁芯内部磁链形成回路,各相磁链通路磁阻很小,导致各相电抗值很大,该三相电流被大大地减小;
所述交流回路中,共模电流在通过辅助端口输入的同相位直流电流时,其
三相三柱式铁芯内部磁链无法形成环路,磁链将通过气隙形成回路,各相磁链通路磁阻大,导致各相电感小,该三支直流电流能够正常通过。
本发明通过采用boost与三相H桥整流拓扑结构的复合,减少了换流器数量,使得装置体积更小;通过引入共模电感抑制直流侧辅助端口与交流端口之间回路的交流电流分量,从而减小共模电感的功率损耗以及发热程度,加强了主电路的安全稳定性。
附图说明
图1为本发明电网暂态电压支撑的V2G主电路拓扑结构其中一个实施例的电路结构图;
图2为本发明双闭环控制框图;
图3为本发明直流侧辅助端口交流环路示意图;
图4为本发明通过交流电流下共模电感铁芯磁路示意图;
图5为本发明通过直流电流下共模电感铁芯磁路示意图;
图6为本发明实施例整体运行下直流侧主端口电压波形图;
图7为本发明实施例整体运行下共模电感电流波形图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1是本发明实施例提供的一种电网暂态电压支撑的V2G主电路拓扑结构,该拓扑结构包括一个三相三端口H桥整流电路。
所述三相三端口H桥整流电路包括一个交流端口与两个直流端口;
所述三相三端口H桥整流电路的交流端口与220V三相电网相连,其并网电阻为r1,并网电感为L1
所述三相三端口H桥整流电路的直流端口包括一个主端口与一个辅助端口。
所述主端口包括一个滤波电容Cd1,与蓄电池等直流电源相连;
所述辅助端口包括一个滤波电容Cd2及一组共模电感Ld,所述滤波电容Cd2与超大电容或蓄电池相连;共模电感Ld由三个共模电感组成,三个共模电感分别缠绕于三相三柱式铁芯各柱子上。
所述三相三端口H桥整流电路的直流侧主端口与交流端口通过三相H桥相连;三相H桥包括6个IGBT开关管(Q1~Q6)与6个二极管(D1~D6);开关管Q1与Q2组成a相桥臂,Q1的源极与Q2的漏极相连,并与a相并网电阻、二极管D1的正极、二极管D2的负极相连,Q1的漏极与D1的负极、直流侧主端口的正极相连,Q2的源极与D2的正极、直流侧主端口的负极相连;开关管Q3与Q4组成b相桥臂,Q3的源极与Q4的漏极相连,并与b相并网电阻、二极管D3的正极、二极管D4的负极相连,Q3的漏极与D3的负极、直流侧主端口的正极相连,Q4的源极与D4的正极、直流侧主端口的负极相连;开关管Q5与Q6组成c相桥臂,Q5的源极与Q6的漏极相连,并与c相并网电阻、二极管D5的正极、二极管D6的负极相连,Q5的漏极与D5的负极、直流侧主端口的正极相连,Q6的源极与D6的正极、直流侧主端口的负极相连。
所述三相三端口H桥整流电路的直流辅助端口与交流端口通过共模电感Ld相连,三个共模电感Ld的一侧同名端与滤波电容Cd2一端相连,另一侧分别与交流端口三相线路相连;
所述三相三端口H桥整流电路的电网侧a相线路串有晶闸管G1,晶闸管G2反向并联在G1两端;b相线路串有晶闸管G3,晶闸管G4反向并联在G3两端;c相线路串有晶闸管G5,晶闸管G6反向并联在G5两端。
本发明公开的一种电网暂态电压支撑的V2G主电路拓扑结构在稳态运行时,通过共模电感Ld抑制直流侧辅助端口与交流端口之间回路的交流电流分量。下面结合图1至图7介绍本发明的具体工作原理:
图1所示的一种电网暂态电压支撑的V2G主电路拓扑结构,其中在稳态运行时:
所述V2G主电路拓扑结构中,交流端口输出三相电压为:ua、ub、uc
所述V2G主电路拓扑结构中,交流端口输入三相电流为:ia、ib、ic
所述V2G主电路拓扑结构中,电网输出三相电压为:ea、eb、ec
所述V2G主电路拓扑结构中,直流侧主端口输出电压为:Ud1
所述V2G主电路拓扑结构中,直流侧主端口输出电流为:Id1
所述V2G主电路拓扑结构中,直流辅助端口输出电压为:Ud2
所述V2G主电路拓扑结构中,直流辅助端口输出电流为:Id2
所述V2G主电路拓扑结构中,从直流辅助端口流经各共模电感的电流为:ILa、ILb、ILc
所述V2G主电路拓扑结构中,其交流端口至直流侧主端口的电能转换形式为三相H桥整流拓扑;
图2为三相H桥整流拓扑通过电压电流双环控制直流侧主端口的直流电压的控制框图,包括以下步骤:
(1)对电网输出三相电压与三相电流进行PARK变换,得到两相同步旋转坐标系下的电压ed、eq和电流id、iq
(2)设定直流侧主端口电压参考值
Figure BDA0003332236920000061
与直流侧主端口电压Ud1相减,其差值输入电压环比例积分控制器输出d轴电流参考值/>
Figure BDA0003332236920000062
设定q轴电流参考值/>
Figure BDA0003332236920000063
为0;
(3)将d轴电流参考值
Figure BDA0003332236920000064
与d轴电流id相减,其差值输入电流环比例积分控制器,电流环比例积分控制器输出积分值与ed、角速度与q轴电流iq的乘积相减的负值输出为d轴电压参考值/>
Figure BDA0003332236920000065
将q轴电流参考值/>
Figure BDA0003332236920000066
与q轴电流iq相减,其差值输入电流环比例积分控制器,电流环比例积分控制器输出积分值与eq、角速度和d轴电流id的乘积相加的负值输出为q轴电压参考值/>
Figure BDA0003332236920000067
(4)将d轴电压参考值
Figure BDA0003332236920000068
与q轴电压参考值/>
Figure BDA0003332236920000069
反PARK变换,输出三相电压参考值
Figure BDA00033322369200000610
将三相电压参考值输入PWM生成器,形成PWM信号,对6个IGBT进行控制;
所述V2G主电路拓扑结构中,其直流侧辅助端口至主端口的电能转换形式为boost拓扑;
所述boost拓扑包括三个独立boost电路,第i相boost电路包括共模电感Ldi,第i相下桥臂的IGBT开关管与上桥臂的二极管,i=a,b,c;
所述boost拓扑中,第i个boost电路的开关管根据其占空比N可输出直流电能,其占空比由PWM生成器决定,i=a,b,c;
图3为本发明拓扑结构中共模电感抑制直流侧辅助端口与交流端口之间回路的交流电流分量的示意图。在工频下,交流端口三相电压ua、ub、uc与一端相连的共模电感形成交流回路,其中共模电感中性点由辅助端口的直流电源升高至一定电压;图4为交流回路中,共模电感Ld在通过三相电流时,其三相三柱式铁芯内部磁链形成回路,各相磁链通路磁阻很小,导致各相电抗值很大,该三相电流被大大地减小;图5为交流回路中,共模电流在通过辅助端口输入的同相位直流电流时,其三相三柱式铁芯内部磁链无法形成环路,磁链将通过气隙形成回路,各相磁链通路磁阻大,导致各相电感小,该三支直流电流能够正常通过;
运用MATLAB/Simulink仿真实验平台对本发明所提方案进行验证,仿真结果如图4~图7所示。首先验证并网运行,交流端口接240V交流电网,直流侧主端口接500V蓄电池,辅助端口接250V直流电源。为模拟电网暂态过程,设定在1s,电网发生短路并立即断开晶闸管。交流侧电压波形如图6、各共模电感电流波形如图7。
图6中,短路前,交流侧电压稳定在240V左右,高频谐波含量较大;在1s时发生短路后,交流侧电压因为逆变器的作用而稳定在240V左右。可见,该拓扑可实现暂态电压支撑的功能。图7中,共模电感开始运行后,直流电流不断增大至17.5A。三个共模电感的电流仅有很小的环流分量,主要都是同方向的直流分量,说明三个共模电感能通过从直流辅助端口输入的直流电流,并且抑制了交流回路的正序三相电流,验证共模电感抑制了该交流回路中交流电流分量的效果。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (3)

1.一种电网暂态电压支撑的V2G主电路拓扑结构,其特征在于:包括一个三相三端口H桥整流电路;
所述三相三端口H桥整流电路包括一个交流端口与两个直流端口;
所述三相三端口H桥整流电路的交流端口与220V三相电网相连,其并网电阻为r1,并网电感为L1
所述三相三端口H桥整流电路的直流端口包括一个主端口与一个辅助端口;主端口包括一个滤波电容Cd1,用于与直流电源相连;辅助端口包括一个滤波电容Cd2及一组共模电感Ld,所述滤波电容Cd2与超大电容或蓄电池相连;共模电感Ld由三个共模电感组成,三个共模电感分别缠绕于三相三柱式铁芯各柱子上;
所述三相三端口H桥整流电路的直流侧主端口与交流端口通过三相H桥相连;
所述三相三端口H桥整流电路的直流辅助端口与交流端口通过三个共模电感Ld相连,三个共模电感Ld的一侧同名端与滤波电容Cd2一端相连,另一侧分别与交流端口三相线路相连;
所述三相H桥包括6个IGBT开关管(Q1~Q6)与6个二极管(D1~D6);开关管Q1与Q2组成a相桥臂,Q1的源极与Q2的漏极相连,并与a相并网电感、二极管D1的正极、二极管D2的负极相连,Q1的漏极与D1的负极、直流侧主端口的正极相连,Q2的源极与D2的正极、直流侧主端口的负极相连;开关管Q3与Q4组成b相桥臂,Q3的源极与Q4的漏极相连,并与b相并网电感、二极管D3的正极、二极管D4的负极相连,Q3的漏极与D3的负极、直流侧主端口的正极相连,Q4的源极与D4的正极、直流侧主端口的负极相连;开关管Q5与Q6组成c相桥臂,Q5的源极与Q6的漏极相连,并与c相并网电感、二极管D5的正极、二极管D6的负极相连,Q5的漏极与D5的负极、直流侧主端口的正极相连,Q6的源极与D6的正极、直流侧主端口的负极相连;
所述拓扑结构在稳态运行时:
所述V2G主电路拓扑结构中,交流端口输出三电压为:ua、ub、uc
所述V2G主电路拓扑结构中,交流端口输入三相电流为:ia、ib、ic
所述V2G主电路拓扑结构中,电网输出三相电压为:ea、eb、ec
所述V2G主电路拓扑结构中,直流侧主端口输出电压为:Ud1
所述V2G主电路拓扑结构中,直流侧主端口输出电流为:Id1
所述V2G主电路拓扑结构中,直流辅助端口输出电压为:Ud2
所述V2G主电路拓扑结构中,直流辅助端口输出电流为:Id2
所述V2G主电路拓扑结构中,从直流辅助端口流经各共模电感的电流为:ILa、ILb、ILc
所述V2G主电路拓扑结构中,其交流端口至直流侧主端口的电能转换形式为三相H桥整流拓扑;
所述三相H桥整流拓扑通过电压电流双环控制直流侧主端口的直流电压,包括以下步骤:
(1)对电网输出三相电压与三相电流进行PARK变换,得到两相同步旋转坐标系下的电压ed、eq和电流id、iq
(2)设定直流侧主端口电压参考值
Figure FDA0004260402180000029
与直流侧主端口电压Ud1相减,其差值输入电压环比例积分控制器输出d轴电流参考值/>
Figure FDA0004260402180000021
设定q轴电流参考值/>
Figure FDA0004260402180000022
为0;
(3)将d轴电流参考值
Figure FDA0004260402180000023
与d轴电流id相减,其差值输入电流环比例积分控制器,控制器输出积分值与ed、角速度与q轴电流iq的乘积相减的负值输出为d轴电压参考值/>
Figure FDA0004260402180000024
将q轴电流参考值与q轴电流iq相减,其差值输入电流环比例积分控制器,控制器输出积分值与eq、角速度和d轴电流id的乘积相加的负值输出为q轴电压参考值/>
Figure FDA0004260402180000025
(4)将d轴电压参考值
Figure FDA0004260402180000026
与q轴电压参考值/>
Figure FDA0004260402180000027
反PARK变换,输出三相电压参考值
Figure FDA0004260402180000028
将三相电压参考值输入PWM生成器,形成PWM信号,对6个IGBT进行控制;
所述V2G主电路拓扑结构中,其直流侧辅助端口至主端口的电能转换形式为boost拓扑;
所述boost拓扑包括三个独立boost电路,第i相boost电路包括共模电感Ldi,第i相下桥臂的IGBT开关管与上桥臂的二极管,i=a,b,c;
所述boost拓扑中,第i个boost电路的开关管根据其占空比N可输出直流电能,其占空比由PWM生成器决定,i=a,b,c。
2.如权利要求1所述的一种电网暂态电压支撑的V2G主电路拓扑结构,其特征在于:所述三相三端口H桥整流电路的电网侧a相线路串有晶闸管G1,晶闸管G2反向并联在G1两端;b相线路串有晶闸管G3,晶闸管G4反向并联在G3两端;c相线路串有晶闸管G5,晶闸管G6反向并联在G5两端。
3.如权利要求1所述的一种电网暂态电压支撑的V2G主电路拓扑结构,其特征在于:所述V2G主电路拓扑结构通过共模电感抑制直流侧辅助端口与交流端口之间回路的交流电流分量,具体的,
在工频下,交流端口三相电压ua、ub、uc与一端相连的共模电感形成交流回路,其中共模电感中性点由辅助端口的直流电源升高至一定电压;
所述交流回路中,共模电感Ld在通过三相电流时,其三相三柱式铁芯内部磁链形成回路,各相磁链通路磁阻很小,导致各相电抗值很大,该三相电流被大大地减小;
所述交流回路中,共模电流在通过辅助端口输入的同相位直流电流时,其三相三柱式铁芯内部磁链无法形成环路,磁链将通过气隙形成回路,各相磁链通路磁阻大,导致各相电感小。
CN202111283777.XA 2021-11-01 2021-11-01 一种暂态电压支撑的v2g主电路拓扑结构 Active CN113965097B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111283777.XA CN113965097B (zh) 2021-11-01 2021-11-01 一种暂态电压支撑的v2g主电路拓扑结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111283777.XA CN113965097B (zh) 2021-11-01 2021-11-01 一种暂态电压支撑的v2g主电路拓扑结构

Publications (2)

Publication Number Publication Date
CN113965097A CN113965097A (zh) 2022-01-21
CN113965097B true CN113965097B (zh) 2023-07-11

Family

ID=79468604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111283777.XA Active CN113965097B (zh) 2021-11-01 2021-11-01 一种暂态电压支撑的v2g主电路拓扑结构

Country Status (1)

Country Link
CN (1) CN113965097B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114944658B (zh) * 2022-05-19 2024-04-12 国网湖北省电力有限公司电力科学研究院 一种多形态储能复合装置拓扑及其多功率流动与电压支撑控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122061A (ja) * 2017-12-28 2019-07-22 三菱重工サーマルシステムズ株式会社 三相倍電圧整流ユニット、インバータ装置、空気調和機、三相倍電圧整流ユニットの制御方法及びプログラム
WO2020253846A1 (zh) * 2019-06-21 2020-12-24 山东大学 高功率密度单相级联h桥整流器、控制方法及控制系统
CN112653133A (zh) * 2020-12-09 2021-04-13 国网湖北省电力有限公司电力科学研究院 一种基于九开关变流器的电网模拟器及其应用方法
CN113422518A (zh) * 2021-06-30 2021-09-21 天津大学 一种基于mmc的三相直接交交变换器拓扑及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019122061A (ja) * 2017-12-28 2019-07-22 三菱重工サーマルシステムズ株式会社 三相倍電圧整流ユニット、インバータ装置、空気調和機、三相倍電圧整流ユニットの制御方法及びプログラム
WO2020253846A1 (zh) * 2019-06-21 2020-12-24 山东大学 高功率密度单相级联h桥整流器、控制方法及控制系统
CN112653133A (zh) * 2020-12-09 2021-04-13 国网湖北省电力有限公司电力科学研究院 一种基于九开关变流器的电网模拟器及其应用方法
CN113422518A (zh) * 2021-06-30 2021-09-21 天津大学 一种基于mmc的三相直接交交变换器拓扑及其控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中高压直流输出的固态变压器研究;滕尚甫;陈文超;胡耀盟;;科技创新与应用(第15期);全文 *

Also Published As

Publication number Publication date
CN113965097A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
Shi et al. A three-phase integrated onboard charger for plug-in electric vehicles
Tripathi et al. Design considerations of a 15-kV SiC IGBT-based medium-voltage high-frequency isolated DC–DC converter
Li et al. Family of enhanced ZCS single-stage single-phase isolated AC–DC converter for high-power high-voltage DC supply
Pahlevaninezhad et al. A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles
Shi et al. A two-stage three-phase integrated charger for electric vehicles with dual cascaded control strategy
Li et al. A three-phase active rectifier topology for bipolar DC distribution
US20140254226A1 (en) Power conversion device
Kwon et al. A high efficiency bi-directional EV charger with seamless mode transfer for V2G and V2H application
CN111900884A (zh) 一种直流配网的电力电子变压设备及其控制方法
CN114844373B (zh) 一种适用于hvdc带双辅助无源电路的串联型36脉波整流器
CN114337314B (zh) 一种低压mw级大功率直流稳压电源
CN109510446B (zh) 基于电机绕组漏感的电感储能型有源滤波器及方法
CN113965097B (zh) 一种暂态电压支撑的v2g主电路拓扑结构
CN105305853A (zh) 采用有源功率因数校正技术的多脉波整流器及其设计方法
CN113824334B (zh) Ac/dc/dc复合三端口变换电路及逆变器
Shahsavar et al. A New Flying Capacitor-Based Buck–Boost Converter for Dual-Purpose Applications
KR20210009936A (ko) 전력변환 시스템의 dc-dc 컨버터
CN106411149A (zh) 一种基于串联补偿的全固态的斩波调压电路及调压方法
CN113904570A (zh) 三相可控脉冲电源整流器拓扑及整流方法
Castelino et al. A novel three-phase bi-directional, isolated, single-stage, DAB-based AC-DC converter with open-loop power factor correction
Wang et al. Research on loss reduction of dual active bridge converter over wide load range for solid state transformer application
Tesaki et al. Control and Experimental Verification of a Bidirectional Non-isolated DC-DC Converter Based on Three-level Flying-Capacitor Converters
Agarwal et al. Performance evaluation of two-level to three-level three-phase dual active bridge (2l-3l dab3)
Deng et al. A furtherance of high-power adjustable-speed drive systems: Medium-frequency ac link-powered machine drive systems
CN107244255B (zh) 基于h桥和高频变压器的电动汽车充电与驱动集成变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant