CN113964376A - 一类新型低共熔剂的制备与应用 - Google Patents

一类新型低共熔剂的制备与应用 Download PDF

Info

Publication number
CN113964376A
CN113964376A CN202111212681.4A CN202111212681A CN113964376A CN 113964376 A CN113964376 A CN 113964376A CN 202111212681 A CN202111212681 A CN 202111212681A CN 113964376 A CN113964376 A CN 113964376A
Authority
CN
China
Prior art keywords
electrolyte
eutectic
sodium
formula
sodium salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111212681.4A
Other languages
English (en)
Inventor
吴有庭
张效敏
熊文杰
胡兴邦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN202111212681.4A priority Critical patent/CN113964376A/zh
Publication of CN113964376A publication Critical patent/CN113964376A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本发明揭示了一类新型低共熔溶剂,目的在于将其作为电解液应用于钠离子电池。本发明所述的低共熔溶剂通过将钠盐和室温下呈固体或液体的有机胺按照特定比例配置而成,在室温下具有粘度低、电导率高、稳定性好等优点。以此类低共熔剂为电解质的钠离子电池展示了优异的电化学性能。本发明所述的低共熔剂是一种非常有前景的新型钠离子电池电解质。

Description

一类新型低共熔剂的制备与应用
技术领域
本发明涉及一类新型低共熔溶剂的合成,并将其作为电解质应用于钠离子电池,本发明绿色能源化工领域。
背景技术
低共熔溶剂通常由一定化学计量比的氢键受体和氢键给体组合而成。常见的氢键受体包括但不局限于季铵盐(如氯化胆碱)、两性离子(如甜菜碱)、离子液体等;氢键供体包括但不局限于尿素、硫脲、羧酸(如苯乙酸、苹果酸、柠檬酸、丁二酸等)、多元醇(如乙二醇、甘油、丁二醇、木糖醇等)、氨基酸、糖类(葡萄糖、果糖)三氟乙酰胺等;除了上述典型组成以外,低共熔溶剂的组成还可以是糖+氨基酸、羧酸+多元醇、糖+糖等。大部分低共熔溶剂是由两元组分混合物或三元组分混合物构成。水分子也可作为某些低共熔溶剂的组分之一。
由于钠金属比较活泼,在水溶液体系中极不稳定。因此,通常使用非水、非质子的有机溶剂作为钠离子电池的电解质载体。钠盐电解质是提供钠离子的源泉,保证电池在充放电循环中有足够的钠离子在正负极往返,从而实现可逆循环。因此必须保证电极与电解液之间没有副反应的发生。为了满足以上要求就需要在电解液生产过程中控制溶剂和钠盐的纯度和水分的指标,以确保电解液在电池工作时充分,有效的发挥作用。在电池领域常见的作为电解质的有碳酸酯类,羧酸脂类,醚类,以及含硫的有机溶剂。
传统的环状碳酸酯类有机溶剂经常被研究用作商业的储能电解质,低共熔溶剂被广泛认为具有潜在电解质的优势,如较低的易燃性、较宽的液相范围和高的导电性等特点,发展低共熔溶剂在电解质中的应用具有重要意义和深远的潜力。Boisset等(Phys.Chem.Chem.Phys.2013,15,20054.)将低共熔溶剂作为电解质应用于锂离子电池,展现了优异的循环性能和充放电容量;Kim等(Angew.Chem.Int.Edit.2020,59,19924.)报道了一种包含氯化镁和氯化胆碱的具有亲水特性的深共熔溶剂,并将其用作双离子电池的电解质,取得了较好的可逆容量;Mamme等(J.Phys.Chem.Lett.2018,9,6296.)将低共熔电解质用于超级电容器;此外,在锌离子电池{Song等(Adv.Funct.Mater.2018,28,1802564.)}和锌离子电池{Wu等(ACS Appl.Mater.Interf.2020,12,27064.)}方面,学者们也做了相关的科学探究。深共熔电解质是未来的一个主要研究方向,但应用于钠离子电池的深共熔电解液的相关应用研究仍处于起步阶段,需要进一步深入探究。
本发明开发了一类新型的低共熔电解质。与传统由氢键供体和氢键受体形成的低共熔剂不同,本发明通过将常见的钠盐与有机胺按照特定比例在加热条件下配置而成,此类电解质在室温下为澄清透明的溶液。这类低共熔电解质在室温下具有粘度低、电导率高、稳定性好等优点。以此类低共熔剂为电解质的钠离子电池展示了优异的电化学性能。
发明内容
本发明开发了一类新型的低共熔溶剂,目的在于将其作为电解液应用于钠离子电池。该方法中使用的一系列低共熔溶剂的结构简单且合成简便,即通过一类固体电解质钠盐和另一类固体或液体的胺类化合物按照一定比例混合形成,最终在室温下呈现粘度较低的流动性较好的均相液体,液体澄清透明,略带黄色,在使用前需在70℃下真空干燥12h。固体钠盐的加入正好作为钠盐电解质中钠源,不需要额外的钠盐添加剂。在电化学性能方面,这类低共熔电解质有也较为优异的性能,是一种非常有前景的新型钠离子电池电解质。
发明的具体技术方案如下:
一类在电化学领域应用较为广泛的钠盐结构,所述包括但不局限于如下结构:
Figure BSA0000255270310000021
另一类固体的通式如(A),(B),(C)所示,其特征为一端或两端含有叔胺基团组成。
Figure BSA0000255270310000031
其中基团X中的中心原子可以为C,N,O如:[-CH2-],[-O-],[-N(CH3)-]等;下标a,b表示碳原子数,符合1≤a+b≤6;R1,R2,R3,R4可以为烷基(0≤n≤6)或甲氧基或芳基。
以通式(A)为例,包括但不局限于如下结构:
Figure BSA0000255270310000032
也可衍生出吗啉类、三嗪类化合物:
Figure BSA0000255270310000033
以通式(B)为例,包括但不局限于如下结构:
Figure BSA0000255270310000034
以通式(C)为例,包括但不局限于如下结构:
Figure BSA0000255270310000035
附图说明
图1描绘了所使用的低共熔电解液的电化学窗口;
图2描绘了所使用的正极材料SEM图谱;
图3描绘了所使用的正极材料XRD图谱;
图4描绘了所使用的正极材料Raman光谱;
图5描绘了所组装的钠电池的充电曲线和放电曲线图;
图6描绘了所组装的钠电池的长循环稳定性,图6可作为说明书摘要配图。
具体实施方式
以下结合附图和实施例对本发明的技术方案做进一步的描述。
一种新型的钠离子电池的低共熔电解质,是由一种电解质盐和另一种固体或液体的胺类化合物按照摩尔比进行混合得到。正极材料是由预制备的活性物质,导电剂SuperP和粘结剂羧甲基纤维素钠以及水作为溶剂按照8∶1∶1进行混合,搅匀后用100μm的刮刀将其涂抹在铜箔表面,待溶剂挥发完毕后置于真空烘箱干燥12h后,切成圆片可以得到待用的正极片,其中附图1,图2,图3分别为正极材料中活性物质的SEM,XRD,Raman光谱图。另一端的负极则为钠金属,在保持表面光洁的同时,将其擀成薄的圆片备用。
实施例1:
分别称取2,2′-二硫二吡啶(DSDP)2.8g与双三氟甲基磺酰亚胺钠(NaTFSI)2.0g,在60℃下搅拌0.5h,可以得到澄清液体。将其置于60℃的真空条件下干燥12h可以得到待用的低共熔电解质。测得电导率为0.81mS·cm-1
实施例2:
分别称取双二甲氨基乙基醚(BDMAEE)3.2g与双三氟甲基磺酰亚胺钠(NaTFSI)2.0g,在60℃下搅拌0.5h,可以得到澄清液体。将其置于60℃的真空条件下干燥12h可以得到待用的低共熔电解质。测得电导率为0.56mS·cm-1
实施例3:
分别称取2,2-二吗啉基二乙基醚(DMDEE)4.8g与双三氟甲基磺酰亚胺钠(NaTFSI)2.0g,在60℃下搅拌0.5h,可以得到澄清液体。将其置于60℃的真空条件下干燥12h可以得到待用的低共熔电解质。测得电导率为0.09mS·cm-1
实施例4:
分别称取1,2-二甲基咪唑(DMIM)2.8g与双氟磺酰亚胺钠(NaFSI)2.0g,在60℃下搅拌0.5h,可以得到澄清液体。将其置于60℃的真空条件下干燥12h可以得到处理好的低共熔电解质。采用三电极体系对其进行线性扫描伏安的电化学测试,如附图4所示。
实施例5:
分别称取2,2′-二硫二吡啶(DSDP)7.7g与四氟硼酸钠(NaBF4)2.0g,在60℃下搅拌0.5h,可以得到澄清液体。将其置于60℃的真空条件下干燥12h可以得到处理好的低共熔电解质。将准备好的电解液浸润在玻璃纤维膜上,置于正极片和金属钠片的之间,将他们一起组装成CR2032纽扣电池进行电化学测试。如附图5所示,电流密度为0.05A·g-1时放电比容量在310mAh·g-1左右。
实施例6:
分别称取1,2-二甲基咪唑(DMIM)3.2g与双三氟甲基磺酰亚胺钠(NaTFSI)2.0g,在60℃下搅拌0.5h,可以得到澄清液体。将其置于60℃的真空条件下干燥12h可以得到处理好的低共熔电解质。将准备好的电解液浸润在玻璃纤维膜上,置于正极片和金属钠片的之间,将他们一起组装成CR2032纽扣电池进行电化学测试。如附图6所示,在长循环稳定性方面表现优异,在循环五百圈后的库伦效率保持在90%。
实施例7:
分别称取1,2-二甲基咪唑(DMIM)17.5g与四氟硼酸钠(NaBF4)2.0g,在60℃下搅拌0.5h,可以得到澄清液体。将其置于60℃的真空条件下干燥12h可以得到处理好的低共熔电解质。对其进行密度和粘度的测试,在298.2K下分别为1.09g·cm-3和4.51cP。
实施例8:
分别称取2,2′-二硫二吡啶(DSDP)5.6g与双三氟甲基磺酰亚胺钠(NaTFSI)2.0g,在60℃下搅拌0.5h,可以得到澄清液体。将其置于60℃的真空条件下干燥12h可以得到待用的低共熔电解质。对其进行密度和粘度的测试,在313.2K下分别为1.15g·cm-3和7.81cP。

Claims (5)

1.本发明揭示了一类新型的低共熔电解质,其特征在于:此低共熔电解质由固体钠盐和固体或液体有机胺按照一定比例混合而成,在室温下呈现粘度低、流动性好的均相液体,最终将制好的低共熔溶剂作为电解质用于钠离子电池的组装与性能测试。
2.根据权利要求1中所述的固体钠盐,其特征在于:所述包括如下结构:
Figure FSA0000255270300000011
3.根据权利要求1中所述的固体或液体有机胺,其特征在于:物质的一端或两端含有叔胺基团,所述的结构通式如下所示:
Figure FSA0000255270300000012
上述式中,
基团X中的中心原子可以为C,N,O如:[-CH2-],[-O-],[-N(CH3)-]等;下标a,b表示碳原子数,符合1≤a+b≤6;R1,R2,R3,R4可以为烷基(0≤n≤6)或甲氧基或芳基。
4.根据权利要求1中所述的按照一定比例相混合,其特征在于:钠盐的摩尔分数为1%~80%。
5.根据权利要求3中所述的结构通式,可进行如下结构拓展:
以通式(A)为例,包括如下结构:
Figure FSA0000255270300000013
也可衍生出吗啉类、三嗪类化合物:
Figure FSA0000255270300000021
以通式(B)为例,包括如下结构:
Figure FSA0000255270300000022
以通式(C)为例,包括如下结构:
Figure FSA0000255270300000023
CN202111212681.4A 2021-10-18 2021-10-18 一类新型低共熔剂的制备与应用 Pending CN113964376A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111212681.4A CN113964376A (zh) 2021-10-18 2021-10-18 一类新型低共熔剂的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111212681.4A CN113964376A (zh) 2021-10-18 2021-10-18 一类新型低共熔剂的制备与应用

Publications (1)

Publication Number Publication Date
CN113964376A true CN113964376A (zh) 2022-01-21

Family

ID=79464394

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111212681.4A Pending CN113964376A (zh) 2021-10-18 2021-10-18 一类新型低共熔剂的制备与应用

Country Status (1)

Country Link
CN (1) CN113964376A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115458811A (zh) * 2022-09-02 2022-12-09 哈尔滨工业大学(深圳) 一种基于砜基低共熔溶剂的电解液及其制备方法与锂离子电池

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225843A (ja) * 2004-02-16 2005-08-25 Tosoh Corp アルコキシアルキル基含有4級アンモニウム塩の製造方法
JP2007095983A (ja) * 2005-09-29 2007-04-12 Sanyo Chem Ind Ltd 電気化学素子用電解液の製造方法
CN104496928A (zh) * 2014-11-21 2015-04-08 绍兴佳华高分子材料股份有限公司 一种不含卤素离子和钠离子的季铵盐离子液体的制备方法
CN105680094A (zh) * 2016-03-17 2016-06-15 中国科学院青岛生物能源与过程研究所 一种钠电池用聚丙烯酸酯基聚合物电解质及其构成的聚合物钠电池
US20160294016A1 (en) * 2015-03-31 2016-10-06 Tokyo Ohka Kogyo Co., Ltd. Nonaqueous secondary battery, manufacturing method thereof and electrolyte
CN107001622A (zh) * 2014-07-23 2017-08-01 Cdp创新公司 含有接枝的双(磺酰基)亚胺钠或锂盐的新型聚合物、其制备方法及其作为电池电解质的用途
CN107565158A (zh) * 2017-08-29 2018-01-09 深圳中科瑞能实业有限公司 钠离子电池用电解液、制备方法及包含该钠离子电池用电解液的钠离子电池
CN107768741A (zh) * 2017-09-18 2018-03-06 中国科学院青岛生物能源与过程研究所 低共熔体电解质及其在二次锌电池中的应用
CN108183257A (zh) * 2017-12-26 2018-06-19 深圳先进技术研究院 有机凝胶电解质、应用、钠基双离子有机固态电池及其制备方法
CN108199083A (zh) * 2018-01-09 2018-06-22 清华大学深圳研究生院 钠离子电池的电解质及其制备方法、钠离子电池
CN109155415A (zh) * 2016-05-06 2019-01-04 深圳中科瑞能实业有限公司 一种钠离子电池及其制备方法
CN113013492A (zh) * 2021-04-23 2021-06-22 武汉理工大学 一种具有宽工作温区的有机电解液及钠离子电池

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005225843A (ja) * 2004-02-16 2005-08-25 Tosoh Corp アルコキシアルキル基含有4級アンモニウム塩の製造方法
JP2007095983A (ja) * 2005-09-29 2007-04-12 Sanyo Chem Ind Ltd 電気化学素子用電解液の製造方法
CN107001622A (zh) * 2014-07-23 2017-08-01 Cdp创新公司 含有接枝的双(磺酰基)亚胺钠或锂盐的新型聚合物、其制备方法及其作为电池电解质的用途
CN104496928A (zh) * 2014-11-21 2015-04-08 绍兴佳华高分子材料股份有限公司 一种不含卤素离子和钠离子的季铵盐离子液体的制备方法
US20160294016A1 (en) * 2015-03-31 2016-10-06 Tokyo Ohka Kogyo Co., Ltd. Nonaqueous secondary battery, manufacturing method thereof and electrolyte
CN105680094A (zh) * 2016-03-17 2016-06-15 中国科学院青岛生物能源与过程研究所 一种钠电池用聚丙烯酸酯基聚合物电解质及其构成的聚合物钠电池
CN109155415A (zh) * 2016-05-06 2019-01-04 深圳中科瑞能实业有限公司 一种钠离子电池及其制备方法
CN107565158A (zh) * 2017-08-29 2018-01-09 深圳中科瑞能实业有限公司 钠离子电池用电解液、制备方法及包含该钠离子电池用电解液的钠离子电池
CN107768741A (zh) * 2017-09-18 2018-03-06 中国科学院青岛生物能源与过程研究所 低共熔体电解质及其在二次锌电池中的应用
CN108183257A (zh) * 2017-12-26 2018-06-19 深圳先进技术研究院 有机凝胶电解质、应用、钠基双离子有机固态电池及其制备方法
CN108199083A (zh) * 2018-01-09 2018-06-22 清华大学深圳研究生院 钠离子电池的电解质及其制备方法、钠离子电池
CN113013492A (zh) * 2021-04-23 2021-06-22 武汉理工大学 一种具有宽工作温区的有机电解液及钠离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
W. ZAIDI 等: "Deep eutectic solvent based on sodium cations as an electrolyte for supercapacity application", 《RSC ADVANCES》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115458811A (zh) * 2022-09-02 2022-12-09 哈尔滨工业大学(深圳) 一种基于砜基低共熔溶剂的电解液及其制备方法与锂离子电池
CN115458811B (zh) * 2022-09-02 2023-03-21 哈尔滨工业大学(深圳) 一种基于砜基低共熔溶剂的电解液及其制备方法与锂离子电池

Similar Documents

Publication Publication Date Title
Fang et al. Novel concentrated Li [(FSO2)(n-C4F9SO2) N]-based ether electrolyte for superior stability of metallic lithium anode
US9728806B2 (en) Functionalized choline chloride ionic liquid, preparation method thereof and use in electrochemical energy storage device
CN104022310B (zh) 锂离子二次电池及含有该电解液的锂离子电池
Rohan et al. Dinitrile–mononitrile-based electrolyte system for lithium-ion battery application with the mechanism of reductive decomposition of mononitriles
KR20130002050A (ko) 레독스 플로우 전지용 전해액 및 이를 포함하는 레독스 플로우 전지
US20150310998A1 (en) Cobalt complexes with tricyanoborate or dicyanoborate counter-anions for electrochemical or optoelectronic devices
US10720668B2 (en) Non-aqueous electrolytes for lithium-ion batteries comprising asymmetric borates
CN113363544B (zh) 一种锌有机混合液流电池的阴极深共晶电解液及其液流电池
EP4265622A1 (en) Electrolyte containing nitrogen-based salt structure, preparation method therefor and use thereof
CN114507257B (zh) 一种氟代环状含磷分子及其应用
Li et al. Initiating a high-temperature zinc ion battery through a triazolium-based ionic liquid
Mu et al. Metal organic complexes as an artificial solid-electrolyte interface with Zn-ion transfer promotion for long-life zinc metal batteries
CN113964376A (zh) 一类新型低共熔剂的制备与应用
Guo et al. Towards the 4 V-class n-type organic lithium-ion positive electrode materials: the case of conjugated triflimides and cyanamides
CN102656735A (zh) 作为电化学电池和电池组的电解质溶液中的添加剂的噻唑类化合物
CN107732302B (zh) 一种非水电解液及其制备方法和应用
Li et al. Progress in stabilizing zinc anodes for zinc-ion batteries using electrolyte solvent engineering
CN113036234A (zh) 水系电解液及水系金属离子电池
CN116621743A (zh) 含氰基锂盐及其制备方法和锂电池电解液、锂电池
CN112358465B (zh) 一种化合物及其组成的电解液、锂离子电池
CN113206292B (zh) 一种聚合物基复合固态电解质及其制备方法与应用
Kemmizaki et al. Redox-active glyme–Li tetrahalogenoferrate (iii) solvate ionic liquids for semi-liquid lithium secondary batteries
CN117013084A (zh) 一种单离子导体准固态电解质及其制备方法和锂离子电池
KR20240032845A (ko) 비수전해질 2차전지용 양극재 및 그의 제조방법
CN114361573A (zh) 一种非水系共晶电解液及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20220121

WD01 Invention patent application deemed withdrawn after publication