CN113960567B - 基于半导体环形激光器的激光雷达信号源装置及测距方法 - Google Patents

基于半导体环形激光器的激光雷达信号源装置及测距方法 Download PDF

Info

Publication number
CN113960567B
CN113960567B CN202111211110.9A CN202111211110A CN113960567B CN 113960567 B CN113960567 B CN 113960567B CN 202111211110 A CN202111211110 A CN 202111211110A CN 113960567 B CN113960567 B CN 113960567B
Authority
CN
China
Prior art keywords
laser
signal
optical fiber
semiconductor ring
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111211110.9A
Other languages
English (en)
Other versions
CN113960567A (zh
Inventor
穆鹏华
王琨
朱述渭
贺鹏飞
晋刚
王中训
姜佩贺
刘霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai University
Original Assignee
Yantai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai University filed Critical Yantai University
Priority to CN202111211110.9A priority Critical patent/CN113960567B/zh
Publication of CN113960567A publication Critical patent/CN113960567A/zh
Application granted granted Critical
Publication of CN113960567B publication Critical patent/CN113960567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本发明涉及激光雷达领域,具体涉及一种基于半导体环形激光器的激光雷达信号源装置及测距方法,包括激光发射单元、光路反馈模块和光路注入模块,所述激光发射单元包括分布式反馈半导体激光器DFB,偏振控制器PC和第一光纤耦合器FC1,光路反馈模块包括第一可调光衰减器VOA1、光纤反射镜M,光路注入模块包括光隔离器OI、第二可调光衰减器VOA2、半导体环形激光器SRL和并联设置的第二光纤耦合器FC2、第三光纤耦合器FC3。半导体环形激光器SRL同时输出顺时针CW信号和逆时针CCW信号。本发明的有益效果:输出无明显时延信息高质量混沌信号,顺时针CW和逆时针CCW两种模式信号对待测目标同时进行多次测量,提升探测精度。

Description

基于半导体环形激光器的激光雷达信号源装置及测距方法
技术领域
本发明涉及激光雷达领域,具体涉及一种基于半导体环形激光器的激光雷达信号源装置及测距方法。
背景技术
激光雷达是一种利用激光进行侦察、成像、探测等工作的主动遥感技术。与传统微波雷达相比,激光雷达具有体积小、成像质量好、抗有源干扰能力强等优势,被广泛应用于军用和民用领域,例如遥感探测、汽车防碰撞、制导、无人机定位等。近年来,混沌激光雷达因其易实现、结构简单、测量精度高、抗干扰能力强等优点,成为激光雷达领域的研究热点。混沌激光雷达的性能与雷达系统的信号熵源密切相关,作为雷达探测信号的混沌载波,其带宽大小决定了测距分辨率,其时延特征值是否隐藏对探测的抗干扰能力有明显的影响。因此,近年来针对如何提高混沌激光雷达的性能有诸多方案相继提出。例如,专利CN201810591767.4一种基于混沌激光信号的雷达探测装置,利用两个外腔反馈半导体激光器设计了一个雷达探测装置,在文献[高华政.数字混沌抗干扰激光雷达设计[D].上海.上海交通大学,2021]中,利用电路混沌对直调激光器工作产生光学混沌信号,以此构建激光雷达探测系统,该系统利用了二值化编码方案,简化了系统的结构,但是上述技术方案中信号源为常规半导体激光器,同一时间只能输出1路有效探测信号,探测效率低,准确度差。
在激光混沌系统中,产生混沌信号的激光器种类有多种,目前的混沌激光雷达系统的信号熵源部分主要采用传统的分布式反馈半导体激光器、垂直腔面发射激光器、电路混沌等,其对探测目标的输出信号形式单一,容易受到大气环境、信号干扰等影响,造成测量误差比较大。
发明内容
为解决上述问题,本发明的提供了一种基于半导体环形激光器的激光雷达装置及测距方法。
为达此目的,本发明采用以下技术方案:
一种基于半导体环形激光器的激光雷达信号源装置,包括激光发射单元、光路反馈模块和光路注入模块,其中,所述激光发射单元包括沿光路依次设置的分布式反馈半导体激光器DFB,偏振控制器PC和第一光纤耦合器FC1,所述光路反馈模块包括沿光路依次设置第一可调光衰减器VOA1、光纤反射镜M,所述光路注入模块包括沿光路依次设置的光隔离器OI、第二可调光衰减器VOA2、半导体环形激光器SRL和并联设置的第二光纤耦合器FC2、第三光纤耦合器FC3。
所述激光发射单元发出的注入光束经光隔离器OI、第二可调光衰减器VOA2后,进入所述半导体环形激光器SRL,所述半导体环形激光器SRL同时输出顺时针CW信号和逆时针CCW信号,所述顺时针CW信号经第二光纤耦合器FC2之后分为两路,所述逆时针CCW信号经第三光纤耦合器FC3之后分为两路。
进一步的,所述半导体环形激光器SRL提供信号熵源,工作波长为850nm。
本发明还提供了一种上述基于半导体环形激光器的激光雷达信号源装置的测距方法,如下所述:
所述分布式反馈半导体激光器DFB输出激光信号经所述偏振控制器PC和所述第一光纤耦合器FC1后分为反馈光束和注入光束两部分;
所述反馈光束通过所述第一可调光衰减器VOA1后经所述光纤反射镜M反射,反射光束再经所述第一可调光衰减器VOA1、所述第一光纤耦合器FC1、所述偏振控制器PC注入到所述分布式反馈半导体激光器DFB;
所述注入光束经所述光隔离器OI、所述第二可调光衰减器VOA2之后注入到所述半导体环形激光器SRL,所述半导体环形激光器SRL同时输出顺时针CW信号和逆时针CCW信号;
所述CW信号经所述第二光纤耦合器FC2之后分为两路,第一路信号作为雷达探测信号对待测物体进行探测,经过反射之后与所述第二光纤耦合器FC2输出的第二路信号进行互相关运算,得到距离L1;
所述CCW信号经所述第三光纤耦合器FC3之后分为两路,第一路信号作为雷达探测信号对待测物体进行探测,经过反射之后与所述第三光纤耦合器FC3输出的第二路信号进行互相关运算,得到距离L2;
预先设定相似度阈值,对于探测得到的所述距离L1和L2,相似度小于等于阈值,则取平均数L=(L1+L2)/2作为探测结果,相似度大于阈值,则该组数据为无效数据。
优选的,所述相似度阈值设为95%。
进一步的,所述激光发射单元输出的激光信号,10%的信号进入光路反馈模块,90%的信号进入光路注入模块。
进一步的,通过调节所述第一可调光衰减器VOA1的参数,控制光路反馈模块的反馈强度kf,使分布式反馈半导体激光器DFB工作在混沌振荡。
进一步的,通过调节所述第二可调光衰减器VOA2的参数,控制光路注入模块的注入强度kinj,使所述半导体环形激光器SRL输出的顺时针信号CW和逆时针信号CCW工作在混沌振荡。
进一步的,通过调节所述第二可调光衰减器VOA2的参数,实现所述半导体环形激光器SRL输出的顺时针信号CW和逆时针信号CCW中的时延特征隐藏。
与现有技术相比,本发明的有益效果是:
1、本发明涉及的激光雷达信号源装置参数可调,通过调节第一可调光衰减器VOA1,控制反馈强度,可以使分布式反馈半导体激光器DFB输出的稳定的混沌信号。通过调节第二可调光衰减器VOA2,控制注入激光强度,能够使半导体环形激光器SRL输出无明显时延信息、输出时延隐藏的高质量混沌信号,最后测试所得时延信息均为探测目标的时延信息,不包含来自分布式反馈半导体激光器DFB中的时延特征,提高了系统的精度和安全性。
2、本发明设计的激光雷达装置采用半导体环形激光器SRL作为混沌信号熵源,能够同时进行顺时针CW和逆时针CCW两种模式的输出,来自分布式反馈半导体激光器的信号平均注入到SRL的顺时针CW和逆时针CCW模式中,通过对待测目标同时进行多次测量,进一步提升探测精度。
3、本发明采用了常规光反馈和主从式注入结构,结构简单,易于实现,功耗低,信号处理部分可采用全光处理,易于硬件设施集成。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是为本发明实施例中基于半导体环形激光器的激光雷达信号源装置示意图;
图2是本发明实施例中分布式反馈半导体激光器DFB输出混沌信号的时间强度序列图;
图3是本发明实施例中分布式反馈半导体激光器DFB输出混沌信号的时延特征图;
图4是本发明实施例中半导体环形激光器SRL顺时针信号CW输出的时间强度序列图;
图5是本发明实施例中半导体环形激光器SRL顺时针信号CW输出的时延特征图;
图6是本发明实施例中半导体环形激光器SRL逆时针信号CCW输出的时间强度序列图;
图7是本发明实施例中半导体环形激光器SRL逆时针信号CCW输出的时延特征图;
图8是本发明所提供的实施例中顺时针信号CW、逆时针信号CCW经过相关运算后的测距结果,C1与C2。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应当理解,在本发明说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本发明。如在本发明说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。术语“包括”和“包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
一种基于半导体环形激光器的激光雷达信号源装置,如图1所示,包括激光发射单元、光路反馈模块和光路注入模块,其中,所述激光发射单元包括沿光路依次设置的分布式反馈半导体激光器DFB,偏振控制器PC和第一光纤耦合器FC1,所述光路反馈模块包括沿光路依次设置第一可调光衰减器VOA1、光纤反射镜M,所述光路注入模块包括沿光路依次设置的光隔离器OI、第二可调光衰减器VOA2、半导体环形激光器SRL和并联设置的第二光纤耦合器FC2、第三光纤耦合器FC3。
在一个实施例中,半导体环形激光器SRL提供信号熵源,工作波长为850nm,通过构建主从式注入系统,输出信号带宽可达25GHz以上。
基于半导体环形激光器的雷达信号源装置的测距方法,步骤如下:
分布式反馈半导体激光器DFB输出激光信号经偏振控制器PC和第一光纤耦合器FC1后分为反馈光束和注入光束两部分,优选的,10%的输出信号进入光路反馈模块,90%的输出信号进入光路注入模块。
所述反馈光束通过所述第一可调光衰减器VOA1后经所述光纤反射镜M反射,反射光束再经所述第一可调光衰减器VOA1、所述第一光纤耦合器FC1、所述偏振控制器PC注入到所述分布式反馈半导体激光器DFB;
所述注入光束经所述光隔离器OI、所述第二可调光衰减器VOA2之后注入到所述半导体环形激光器SRL,所述半导体环形激光器SRL同时输出顺时针CW信号和逆时针CCW信号;
进一步的,所述分布式反馈半导体激光器DFB的速率方程如下:
Figure BDA0003308891630000061
式中,
Figure BDA0003308891630000062
为电场速率,E为慢变复电场振幅,α为线宽增强因子,/>
Figure BDA0003308891630000063
为有源区内光子的寿命,kf为反馈强度,/>
Figure BDA0003308891630000064
为反馈时延,G为光增益,式中右边最后一项表示分布式反馈半导体激光器DFB的反馈项。
进一步的,通过调节第一可调光衰减器VOA1参数的大小,可以控制反馈回路的反馈强度kf,使分布式反馈半导体激光器工作在混沌振荡,调节VOA1参数大小来控制反馈强度,是目前比较成熟的技术,本发明不再赘述。
所述注入光束从第一光纤耦合器FC1依次经过光隔离器OI和第二可调光衰减器VOA2,注入到环形半导体激光器SRL。
所述半导体环形激光器SRL的速率方程如下:
Figure BDA0003308891630000071
中,符号CW和CCW分别表示顺时针CW信号和逆时针CCW信号,方程右边最后一项表示分布式反馈半导体激光器DFB对半导体环形激光器SRL的注入项。κ表示电场衰减速率,α为线宽增强因子,N(t)表示载流子速率,k表示反向散射速率,δk为非对称系数,kinj表示分布式反馈半导体激光器DFB对半导体环形激光器SRL的注入强度,τinj为分布式反馈半导体激光器DFB对半导体环形激光器SRL的注入时延。
通过调节第二可调光衰减器VOA2参数的大小,可以控制注入强度kinj,使半导体环形激光器SRL输出的顺时针信号CW和逆时针信号CCW工作在混沌振荡。
进一步的,通过调节第二可调光衰减器VOA2参数的大小,可以实现半导体环形激光器的输出信号CW和CCW中的时延特征隐藏。
调节VOA2参数大小来隐藏时延或控制注入强度,是目前比较成熟的技术,不属于本发明的改进点,不再赘述。
顺时针CW信号经过第二光纤耦合器FC2之后分为两部分,其中第一部分作为顺时针CW参考信号I1(t),第二部分作为激光雷达的探测信号,经过对待测物体进行探测之后返回顺时针CW反射信号I’1(t)。逆时针CCW信号经过第三光纤耦合器FC3之后分为两部分,其中第一部分作为逆时针CCW参考信号I2(t),第二部分作为激光雷达的探测信号,经过对待测物体进行探测之后返回逆时针CCW反射信号I’2(t)。
通过对顺时针CW参考信号I1(t)和顺时针CW反射信号I’1(t)进行互相关运算得到测距结果C1,公式如下:
Figure BDA0003308891630000081
式中,I1(t)为顺时针CW参考信号的强度,I1(t)=|Ecw|2,I’1(t)为顺时针CW反射信号的强度。
通过对逆时针CCW参考信号I2(t)和逆时针CCW反射信号I′2(t)进行互相关运算得到测距结果C2,公式如下:
Figure BDA0003308891630000082
式中,I2(t)为逆时针CCW参考信号的强度,I2(t)=|Eccw|2,I’2(t)为逆时针CCW反射信号的强度。
所述测距结果C1与C2分别为顺时针CW信号和顺时针CCW信号经待测目标之后所提取得时延大小,待测物体的测距结果L=C×c。其中L表示距离,C表示时延大小,c为光速。在数据处理时可以与光速3×108m/s相乘得到距离值L1=C1×3×108(m),L2=C2×3×108(m)。
预先设定相似度阈值,对于探测得到的所述距离L1和L2,相似度大于等于阈值,则取平均数L=(L1+L2)/2作为探测结果,相似度小于阈值,则该组数据为无效数据,优选的,相似度阈值设为95%。
需要说明的是,本发明所述第二光纤耦合器FC2和第三光纤耦合器FC3信号的发射过程以及反射信号的接收过程均采用现有技术常规的信号发射器和接收器完成,数据信号的处理过程也采用现有技术,不是本发明的改进点,本发明不再赘述。
需要声明的是,上述具体实施方式仅仅为本发明的较佳实施例及所运用技术原理。本领域技术人员应该明白,还可以对本发明做各种修改、等同替换、变化等等。但是,这些变换只要未背离本发明的精神,都应在本发明的保护范围之内。另外,本申请说明书和权利要求书所使用的一些术语并不是限制,仅仅是为了便于描述。

Claims (7)

1.一种基于半导体环形激光器的激光雷达信号源装置的测距方法,其特征在于:
所述基于半导体环形激光器的激光雷达信号源装置包括激光发射单元、光路反馈模块和光路注入模块,其中,所述激光发射单元包括沿光路依次设置的分布式反馈半导体激光器DFB,偏振控制器PC和第一光纤耦合器FC1,所述光路反馈模块包括沿光路依次设置第一可调光衰减器VOA1、光纤反射镜M,所述光路注入模块包括沿光路依次设置的光隔离器OI、第二可调光衰减器VOA2、半导体环形激光器SRL和并联设置的第二光纤耦合器FC2、第三光纤耦合器FC3;
所述激光发射单元发出的注入光束经光隔离器OI、第二可调光衰减器VOA2后,进入所述半导体环形激光器SRL,所述半导体环形激光器SRL同时输出顺时针CW信号和逆时针CCW信号,所述顺时针CW信号经第二光纤耦合器FC2之后分为两路,所述逆时针CCW信号经第三光纤耦合器FC3之后分为两路;
所述分布式反馈半导体激光器DFB输出激光信号经所述偏振控制器PC和所述第一光纤耦合器FC1后分为反馈光束和注入光束两部分;
所述反馈光束通过所述第一可调光衰减器VOA1后经所述光纤反射镜M反射,反射光束再经所述第一可调光衰减器VOA1、所述第一光纤耦合器FC1、所述偏振控制器PC注入到所述分布式反馈半导体激光器DFB;
所述注入光束经所述光隔离器OI、所述第二可调光衰减器VOA2之后注入到所述半导体环形激光器SRL,所述半导体环形激光器SRL同时输出顺时针CW信号和逆时针CCW信号;
所述CW信号经所述第二光纤耦合器FC2之后分为两路,第一路信号作为雷达探测信号对待测物体进行探测,经过反射之后与所述第二光纤耦合器FC2输出的第二路信号进行互相关运算,得到距离L1;
所述CCW信号经所述第三光纤耦合器FC3之后分为两路,第一路信号作为雷达探测信号对待测物体进行探测,经过反射之后与所述第三光纤耦合器FC3输出的第二路信号进行互相关运算,得到距离L2;
预先设定相似度阈值,对于探测得到的所述距离L1和L2,相似度小于等于阈值,则取平均数L=(L1+L2)/2作为探测结果,相似度大于阈值,则该组数据为无效数据。
2.根据权利要求1所述的基于半导体环形激光器的激光雷达信号源装置的测距方法,其特征在于:所述相似度阈值为95%。
3.根据权利要求1所述的基于半导体环形激光器的激光雷达信号源装置的测距方法,其特征在于:所述激光发射单元输出的激光信号,10%的信号进入光路反馈模块,90%的信号进入光路注入模块。
4.根据权利要求1所述的基于半导体环形激光器的激光雷达信号源装置的测距方法,其特征在于:通过调节所述第一可调光衰减器VOA1的参数,控制光路反馈模块的反馈强度kf,使分布式反馈半导体激光器DFB工作在混沌振荡。
5.根据权利要求1所述的基于半导体环形激光器的激光雷达信号源装置的测距方法,其特征在于:通过调节所述第二可调光衰减器VOA2的参数,控制光路注入模块的注入强度kinj,使所述半导体环形激光器SRL输出的顺时针信号CW和逆时针信号CCW工作在混沌振荡。
6.根据权利要求1所述的基于半导体环形激光器的激光雷达信号源装置的测距方法,其特征在于:通过调节所述第二可调光衰减器VOA2的参数,实现所述半导体环形激光器SRL输出的顺时针信号CW和逆时针信号CCW中的时延特征隐藏。
7.根据权利要求1所述的基于半导体环形激光器的激光雷达信号源装置的测距方法,其特征在于:所述半导体环形激光器SRL提供信号熵源,工作波长为850nm。
CN202111211110.9A 2021-10-18 2021-10-18 基于半导体环形激光器的激光雷达信号源装置及测距方法 Active CN113960567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111211110.9A CN113960567B (zh) 2021-10-18 2021-10-18 基于半导体环形激光器的激光雷达信号源装置及测距方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111211110.9A CN113960567B (zh) 2021-10-18 2021-10-18 基于半导体环形激光器的激光雷达信号源装置及测距方法

Publications (2)

Publication Number Publication Date
CN113960567A CN113960567A (zh) 2022-01-21
CN113960567B true CN113960567B (zh) 2023-06-20

Family

ID=79464326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111211110.9A Active CN113960567B (zh) 2021-10-18 2021-10-18 基于半导体环形激光器的激光雷达信号源装置及测距方法

Country Status (1)

Country Link
CN (1) CN113960567B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117199991B (zh) * 2023-06-30 2024-07-12 无锡芯光互连技术研究院有限公司 混沌激光器及其多光程引入组件、集成片

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580269A (en) * 1983-11-16 1986-04-01 The United States Of America As Represented By The Secretary Of The Air Force Optically pumped CW semiconductor ring laser
CN108828534A (zh) * 2018-06-11 2018-11-16 太原理工大学 一种基于混沌激光信号的雷达探测装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1242982B (it) * 1990-07-18 1994-05-18 Fritz Carl Anton Hurth Struttura di dispositivo e procedimento per il controllo automatico del bloccaggio di differenziale particolarmente per macchine industriali,macchine movimento terra e simili
JP5074645B2 (ja) * 2000-02-03 2012-11-14 古河電気工業株式会社 励起光源装置
US20050089027A1 (en) * 2002-06-18 2005-04-28 Colton John R. Intelligent optical data switching system
JP2006319104A (ja) * 2005-05-12 2006-11-24 Japan Aerospace Exploration Agency 半導体リングレーザー装置
CN203327013U (zh) * 2013-06-28 2013-12-04 成都谱视科技有限公司 一种基于半导体环形激光器的光混沌信号发生装置
CN103455306B (zh) * 2013-09-12 2017-05-10 西南交通大学 一种基于半导体环形激光器的双路并行高速随机数产生装置
CN104457808A (zh) * 2014-12-24 2015-03-25 北京奥普科达科技有限公司 一种实现φ-OTDR系统长距离监测的方法及系统
CN106027224B (zh) * 2016-08-01 2017-02-22 西南大学 一种基于光电反馈环形激光器的保密通信系统
CN108931763A (zh) * 2018-08-29 2018-12-04 深圳市必发达科技有限公司 一种激光测距仪

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4580269A (en) * 1983-11-16 1986-04-01 The United States Of America As Represented By The Secretary Of The Air Force Optically pumped CW semiconductor ring laser
CN108828534A (zh) * 2018-06-11 2018-11-16 太原理工大学 一种基于混沌激光信号的雷达探测装置

Also Published As

Publication number Publication date
CN113960567A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2019110022A1 (zh) 发射及接收激光脉冲的方法、介质及激光雷达系统
CN108957470B (zh) 飞行时间测距传感器及其测距方法
CN110308456A (zh) 一种用于提高探测距离的偏压调节装置及激光雷达系统
US8964169B2 (en) Ranging method and system
CN110488251B (zh) 激光雷达系统及其激光雷达回波信号曲线的获得方法、装置
KR102664396B1 (ko) 라이다 장치 및 그 동작 방법
CN113960567B (zh) 基于半导体环形激光器的激光雷达信号源装置及测距方法
CN115210603B (zh) 激光雷达及激光雷达控制方法
Duan et al. Absolute distance measurement based on multiple self-mixing interferometry
CN111708004A (zh) 一种新型激光测距方法及激光雷达系统
EP3312632A1 (en) Calibration method based on single-wavelength and double-laser-tube phase measurement, and device thereof
CN111366942B (zh) 激光雷达系统、用于增加激光雷达感测距离的装置和方法
CN118011416B (zh) 一种基于稳定相位编解码的激光雷达及相位补偿方法
KR102163661B1 (ko) 라이다 비행시간 측정 장치 및 방법
US11592558B2 (en) Time of flight lidar system using coherent detection scheme
CN116908875A (zh) 一种面向远距离高并行性的激光成像方法及系统
US20200292667A1 (en) Object detector
CN209842054U (zh) 一种超宽动态范围激光回波接收装置
CN108333591A (zh) 一种测距方法及其系统
CN217332861U (zh) 一种雷达系统和车辆
CN114706058B (zh) 一种激光接收系统以及激光测距系统
CN112630746B (zh) 一种用于远距目标测量的脉冲多普勒激光雷达
CN113835100B (zh) 一种基于电脉冲编码的多功能激光雷达系统
Hanto et al. Study on the time of flight optical ranging by using direct modulation of the laser diode
RU2703936C1 (ru) Способ формирования активной ложной цели по дальности

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant