CN113957291B - 一种电站用高强镍基高温合金的快速热处理方法 - Google Patents

一种电站用高强镍基高温合金的快速热处理方法 Download PDF

Info

Publication number
CN113957291B
CN113957291B CN202111250935.1A CN202111250935A CN113957291B CN 113957291 B CN113957291 B CN 113957291B CN 202111250935 A CN202111250935 A CN 202111250935A CN 113957291 B CN113957291 B CN 113957291B
Authority
CN
China
Prior art keywords
heat treatment
temperature
cooling
percent
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111250935.1A
Other languages
English (en)
Other versions
CN113957291A (zh
Inventor
李沛
谷月峰
袁勇
杨征
严靖博
鲁金涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Huaneng Group Co Ltd
Xian Thermal Power Research Institute Co Ltd
Original Assignee
China Huaneng Group Co Ltd
Xian Thermal Power Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Huaneng Group Co Ltd, Xian Thermal Power Research Institute Co Ltd filed Critical China Huaneng Group Co Ltd
Priority to CN202111250935.1A priority Critical patent/CN113957291B/zh
Publication of CN113957291A publication Critical patent/CN113957291A/zh
Application granted granted Critical
Publication of CN113957291B publication Critical patent/CN113957291B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Abstract

本发明公开了一种电站用高强镍基高温合金的快速热处理方法,属于金属材料技术领域。合金的基本组成包括:Cr:15%~18%,Co:15%~20%,Ti:0.5%~1.5%,Al:3.5%~4.5%,W:8.5%~10%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5%~1.5%,C:0.03%~0.08%,余量为Ni。处理步骤如下:将镍基合金装入热处理炉,装炉温度≤600℃;加热升温至1170~1190℃,控制升温速度5℃/min,保温2h后空冷,加热升温至1020℃保温2h,进行固溶热处理,此处固溶后不进行冷却,配合后续热处理操作;基于Jmat pro软件选择冷速,将1020℃保温样品直接以3~80℃/min速率直接冷却至室温,本发明本方法通过调控冷却速率可获得相较传统热处理更优的强塑性匹配,可在一定范围内获得不同强塑性匹配。有效降低了热处理时间及流程。

Description

一种电站用高强镍基高温合金的快速热处理方法
技术领域
本发明属于合金材料技术领域,具体涉及一种电站用高强镍基高温合金的快速热处理方法。
背景技术
由于国内丰富的煤炭资源及特殊的能源结构,在我国燃煤火电厂提供了约70%的电力能源,并且在未来的时间内煤电仍然占据主导位置。针对现阶段节能减排的需求,提升火电机组参数,采用高参数超超临界火电机组是现阶段的主要发展方向,因此对机组的服役材料提出了极高的性能要求,尤其是针对高参数机组过/再热器管,其要求在服役期间将承受高温蠕变、热疲劳、氧化及高温烟气腐蚀等多重因素的影响。开发出可以满足高参数机组过/再热器管使用性能需求的高温合金材料已成为火力发电行业亟待解决的课题。
针对机组过/再热器管用材料,传统的耐热钢已经不能满足需求,针对更高使用温度欧美及日本等国主要使用镍基高温合金,如美国IN740H镍钴铬基合金及CCA617等镍基合金,针对国内需求我国自主研发的新型高强镍基高温合金。传统固溶+时效工艺需要三步或四步处理,针对大型部件热处理需要极大的能耗和费用,同时对于大型部件采取快速冷却过程中产生明显的内应力,进而萌生裂纹导致零件失效。因此基于以上两点希望热处理能够简化工艺步骤和热处理时间,同时降低由于冷速较快产生的内应力,最终改善合金的加工和使用性能。因此,必须采用合理有效的热处理工艺提高生产效率。
发明内容
为解决上述技术问题,本发明的目的在于提供一种电站用高强镍基高温合金的快速热处理方法,本发明可有效调控合金性能,减少内应力及微裂纹的产生,解决热处理工艺复杂且能耗较高的问题,提高合金综合性能,有利于后续材料的服役。
一种电站用高强镍基高温合金的快速热处理方法,所述合金的基本组成质量百分比为:Cr:15%~18%,Co:15%~20%,Ti:0.5%~1.5%,Al:3.5%~4.5%,W:8.5%~10%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5%~1.5%,C:0.03%~0.08%,余量为Ni。
经过研究,本发明的发明人发现,高强镍基高温合金铸锭具有以下特点:(1)不含有σ相等低熔点相,析出强化相为γ′相;(2)含有Nb和Ti易与C结合生成尺寸较大的碳化物。本发明的发明人发现合适的冷却速率能够有效调控组织中析出强化相的形貌及数量,有效改善合金力学性能。
为解决上述技术问题,本发明所采用的一种适用于高温镍基合金的快速热处理的方法,其特征在于将镍基合金固溶后直接以不同速率进行冷却。
进一步地,所述热处理固溶温度为1170~1190℃,固溶时间为2h,样品进行空冷,随后加热至1020℃保温2h随后以不同速率进行冷却。在固溶处理后,γ′析出相完全溶解与基体,碳化物体积减小,剩余碳化物呈长条状不规则分布于基体中,通过固溶有效调整晶粒尺寸。
进一步地,将固溶后样品直接以不同冷速进行冷却,冷却速率为3~80℃/min。冷却后组织中析出γ′析出相。
优选地,在上述镍基合金热处理方法中,第一级均匀化热处理温度在1180℃,固溶时间2h。
按照本发明提供的快速热处理方法,本发明在仅通过两步热处理的前提下,获得了与固溶+时效接近甚至更优的性能,有效减少了热处理的步骤和时长,同时降低由于冷速较快产生的内应力,最终改善合金的加工和使用性能。
优选地,所述加热升温至1170~1190℃,控制升温速度5~10℃/min,装炉温度≤600℃。
优选地,所述在1170~1190℃保温2h后空冷,随后1020℃保温2h进行固溶处理,固溶后进行不同冷速冷却。
优选地,相较于传统多步热处理:固溶+两次时效处理,本发明固溶后直接进行不同冷速冷却,可通过空冷设备调节冷速。
优选地,相较于传统多热处理:固溶+时效处理,本发明固溶后直接进行不同冷速冷却,其冷却速率通过Jmat pro进行快速预测。
优选地,平均冷速约为80℃/min和3℃/min,平均冷速范围为在3~80℃/min范围内可调。
优选地,通过改变不同冷速其强化相体积分数约为3%~20%。
本发明至少具有如下有益的技术效果:
1、通过均匀化热处理工艺,可获得与传统固溶+时效接近甚至更优的性能,。
2、本发明合金采用快速时效热处理工艺,相比固溶+时效两步均匀化热处理工艺可有效缩短均匀化时间,提高热处理效率,降低能耗。
附图说明
图1中(a)和(b)分别为传统固溶+时效的显微组织。
图2中(a)和(b)分别为快速热处理的显微组织。
图3为快速热处理的显微组织。
图4中(a)和(b)分别为Jmat pro模拟不同冷速相应析出相含量。
具体实施方式
以下结合附图和实施例对本发明做出进一步的说明。
实施例1:实验材料按如下配比进行熔炼,质量百分比Cr:15%~18%,Co:15%~20%,Ti:0.5%~1.5%,Al:3.5%~4.5%,W:8.5%~10%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5%~1.5%,C:0.03%~0.085%,余量为Ni。铸造后经均匀化及热轧后得到成品。
为本实施例的镍合金经过传统固溶+时效处理,即将轧制后的合金在1120℃保温4小时进行固溶处理,空冷至室温后在760℃保温8小时,随后升温至860℃保温2小时,完成后空冷至室温。如图1所示是处理后的组织扫描电镜照片,晶界图1a显示晶粒尺寸约为70~120μm,存在不连续的碳化物,图1b显示晶内存在大量致密析出相,析出相尺寸约为30~50nm。
实施例2:对实施例1合金采用本发明提供的方法对镍合金进行不同工艺的单步快速处理,在1180℃固溶2h空冷,随后1020℃保温2h后直接以约80℃/min冷却至室温,按此例快速处理后的组织形貌如图2。根据图1及图2显示的均匀化前后组织可以明显发现,经过本发明所制定的处理后,两者在晶界的碳化物及晶内的析出强化相形貌及数量类似。表1为传统固溶+时效三步热处理及本例快速热处理室温拉伸性能对照表,可以看出其强度略低,塑性优于传统多步热处理工艺。
表1实施例1与实施例2室温拉伸性能对照表
样品编号 抗拉强度/MPa 断后延伸率/%
实施例1 1257 25.1
实施例2 1219 36.3
实施例3:对实施例1合金采用本发明提供的方法对镍合金进行不同工艺的单步快速处理,在1180℃固溶2h空冷,随后1020℃保温2h后直接以3℃/min冷却至室温,按此例快速处理后的组织形貌如图3。表2为传统固溶+时效三步热处理及本例快速热处理室温拉伸性能对照表,可以看出其强度及塑性均优于传统热多步处理工艺。同时对于大型部件由于不经过快速冷却可极大的防止在冷却过程产生的内应力进而萌生裂纹,最终导致开裂。
表2实施例1与实施例3室温拉伸性能对照表
样品编号 抗拉强度/MPa 断后延伸率/%
实施例1 1257 25.1
实施例3 1301 26.9
实施例4:采用本发明利用Jmat pro可快速根据所需析出相体积分数确定冷却速率,冷却速率与析出相体积分数关系如图4。结合图4可知,冷却速率较快,析出相体积分数明显降低,反之当冷却速率较慢时析出相体积分数较高,通过调控冷却速率可有效调控析出相体积分数进而调控材料性能。通过热力学软件计算结合快速热处理工艺,可以极大降低热处理全周期的时间,短的处理时间可有效节约能源,提高生产效率。
总体而言,通过本发明可有效的提升热处理设计及实施周期,本处理方法不仅限于本实施例合金,在类似镍基合金也有极大的应用前景。本发明针对大型部件考虑及内应力不同部位冷却速率差异建议使用较低的冷却速率,而针对小型部件则可使用多种不同冷却速率,应用范围更广,调整范围更大。
除以上实施例以外,本发明还可以有其他实施方式,凡采用等同替代或等效形成的技术方法,均落在本发明要求的保护范围。

Claims (4)

1.一种电站用高强镍基高温合金的快速热处理方法,其特征在于,高强镍基高温合金的组成质量百分比为: Cr:15%~18%,Co:15%~20%,Ti:0.5%~1.5%,Al:3.5%~4.5%,W:8.5%~10%,Si:≤0.5%,Mn:≤0.5%,Nb:0.5%~1.5%,C:0.03%~0.08%,余量为Ni;该方法将原有多步热处理变为两步热处理;
所述两步热处理:加热升温至1170~1190℃,控制升温速度5~10℃/min,装炉温度≤600℃;
在1170~1190℃保温2h后空冷,随后1020℃保温2h进行固溶处理,固溶后按照冷却速度为3~80℃/min进行冷却,并通过空冷设备调节冷却速度。
2.根据权利要求1所述的一种电站用高强镍基高温合金的快速热处理方法,其特征在于,冷却速度通过Jmat pro进行快速预测。
3.根据权利要求1所述的一种电站用高强镍基高温合金的快速热处理方法,其特征在于,平均冷却速度为80℃/min或3℃/min。
4.根据权利要求1所述的一种电站用高强镍基高温合金的快速热处理方法,其特征在于,强化相体积分数为3%~20%。
CN202111250935.1A 2021-10-26 2021-10-26 一种电站用高强镍基高温合金的快速热处理方法 Active CN113957291B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111250935.1A CN113957291B (zh) 2021-10-26 2021-10-26 一种电站用高强镍基高温合金的快速热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111250935.1A CN113957291B (zh) 2021-10-26 2021-10-26 一种电站用高强镍基高温合金的快速热处理方法

Publications (2)

Publication Number Publication Date
CN113957291A CN113957291A (zh) 2022-01-21
CN113957291B true CN113957291B (zh) 2022-12-06

Family

ID=79467258

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111250935.1A Active CN113957291B (zh) 2021-10-26 2021-10-26 一种电站用高强镍基高温合金的快速热处理方法

Country Status (1)

Country Link
CN (1) CN113957291B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114934157A (zh) * 2022-07-01 2022-08-23 丹阳市金星镍材有限公司 冷镦用镍基高温合金的热处理工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985850A (ja) * 1982-11-10 1984-05-17 Mitsubishi Heavy Ind Ltd Ni基合金の熱処理法
DE102016202837A1 (de) * 2016-02-24 2017-08-24 MTU Aero Engines AG Wärmebehandlungsverfahren für Bauteile aus Nickelbasis-Superlegierungen
CN108913952B (zh) * 2018-07-27 2020-04-03 南京工程学院 一种高温合金及其制备方法
CN109234573B (zh) * 2018-11-19 2019-10-11 中国科学院上海应用物理研究所 耐熔盐腐蚀镍基高温合金短环链热处理方法
CN111471897B (zh) * 2020-05-08 2021-06-29 华能国际电力股份有限公司 一种高强镍基高温合金制备成型工艺
CN112371753B (zh) * 2020-11-06 2022-09-06 河北恒通管件集团有限公司 一种临氢高压大口径厚壁镍合金管件的加工工艺
CN112893872B (zh) * 2021-01-20 2023-11-21 飞而康快速制造科技有限责任公司 一种镍基高温合金激光选区熔化成形的方法

Also Published As

Publication number Publication date
CN113957291A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
WO2021174726A1 (zh) 一种高铝含量的镍基变形高温合金及制备方法
WO2021121185A1 (zh) 一种高强高韧抗氧化铁镍基高温合金及其制备方法
CN107419136B (zh) 一种服役温度达700℃以上的镍基变形高温合金及其制备方法
CN111471897B (zh) 一种高强镍基高温合金制备成型工艺
CN106636848A (zh) 一种耐磨抗蚀镍基合金丝材的制备方法
CN106756257A (zh) 一种抗高温氧化耐磨钴基合金丝材及其制备方法
CN106181131A (zh) 用于抗熔盐腐蚀镍基高温合金焊接的实芯焊丝制备方法
JP2022536401A (ja) 析出強化型ニッケル基高クロム超合金およびその製造方法
CN106957943A (zh) 一种提高奥氏体耐热钢力学性能的热处理方法
CN109536777A (zh) 一种高温钛合金及其制备方法
CN110157993A (zh) 一种高强耐蚀铁镍基高温合金及其制备方法
CN113025932A (zh) 一种细晶和均匀析出相镍基高温合金的制备方法
CN111411266B (zh) 一种镍基高钨多晶高温合金的制备工艺
CN113957291B (zh) 一种电站用高强镍基高温合金的快速热处理方法
CN113604760B (zh) 提升亚固溶处理后gh4738合金锻件强度稳定性的方法
CN112375994B (zh) 一种铁基变形高温合金强韧化的热处理工艺
CN106282730A (zh) 一种冷轧离心铸造再热器管材及其制备工艺
CN110983107A (zh) 一种提高大型gh4698涡轮盘锻件高温持久性能的方法
CN113025848B (zh) 铁-镍基沉淀强化型高温合金及其制备方法和应用
CN112708788B (zh) 一种提高k403合金塑性的方法,模具材料和制品
CN114411073B (zh) 一种同时提高镍铁基合金强塑性的热处理方法
CN107974626A (zh) 一种航空高强度零部件无钴新材料制备方法
CN113322417A (zh) 一种Laves相强化不锈钢及其制备方法
CN114990385B (zh) 一种燃气轮机涡轮机匣用高温合金及其制备方法
CN115772626B (zh) 一种镍基高温合金及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant