CN113957094B - 一种具有增强基因编辑效率的递送系统及制备方法、应用 - Google Patents

一种具有增强基因编辑效率的递送系统及制备方法、应用 Download PDF

Info

Publication number
CN113957094B
CN113957094B CN202111177004.3A CN202111177004A CN113957094B CN 113957094 B CN113957094 B CN 113957094B CN 202111177004 A CN202111177004 A CN 202111177004A CN 113957094 B CN113957094 B CN 113957094B
Authority
CN
China
Prior art keywords
delivery system
organic framework
gene editing
npcn
metal organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111177004.3A
Other languages
English (en)
Other versions
CN113957094A (zh
Inventor
王征
王琳
刘志博
张红艳
汪洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji Medical College of Huazhong University of Science and Technology
Original Assignee
Tongji Medical College of Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji Medical College of Huazhong University of Science and Technology filed Critical Tongji Medical College of Huazhong University of Science and Technology
Priority to CN202111177004.3A priority Critical patent/CN113957094B/zh
Publication of CN113957094A publication Critical patent/CN113957094A/zh
Application granted granted Critical
Publication of CN113957094B publication Critical patent/CN113957094B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6949Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit inclusion complexes, e.g. clathrates, cavitates or fullerenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种具有增强基因编辑效率的递送系统及制备方法、应用。包括:1)树枝状有机配体的合成;2)有机配体和金属簇构筑金属有机框架递送系统的合成;3)递送系统通过生物矿化方法负载质粒,在细胞层面上,编辑内源性基因(血管内皮生长因子基因,VEGFA和DNA甲基化转移酶基因,DNMT1),验证递送系统递送质粒和增强基因编辑能力;4)在动物层面上,递送系统递送质粒编辑VEGFA和DNMT1治疗肿瘤。本发明采用无机有机杂化的策略,基于金属有机框架材料的优点,合成高孔的递送系统材料。金属有机框架高孔的结构能提升递送系统的负载能力;金属有机框架的类酶活性能催化磷脂键的水解,从而增强基因编辑的效果。

Description

一种具有增强基因编辑效率的递送系统及制备方法、应用
技术领域
本发明涉及基因编辑递送系统合成技术领域,特别涉及一种具有增强基因编辑效率的递送系统及制备方法、应用。
背景技术
基因编辑是近年来发展起来的高新技术,该技术通过crRNA来定位目标基因,通过内切酶(Cas9或Cpf1等)来水解DNA中的磷脂键,达到编辑DNA的目的。然而,如何将crRNA/Cpf1递送到细胞内,是该技术面临的难题之一;另一方面,该技术目前对内源性基因的编辑效率仍然比较低下。
已报道能的基因编辑递送系统为脂质体纳米颗粒(X. Gao, Y. Tao, V. Lamas,M. Huang, W. H.Yeh, B. Pan, Y. J. Hu, J. H. Hu, D. B. Thompson, Y. Shu,Nature, 2018, 553, 217. J. A. Zuris, D. B. Thompson, Y. Shu, J. P. Guilinger,J. L. essen, J. H. Hu, M. L. Maeder, J. K. Joung, Z. Y. Chen, D. R. Liu, Nat. Biotechnol. 2015, 33, 73.),DNA纳米线(W. Sun, W. Ji, J. M. Hall, Q. Hu, C.Wang, C. L. Beisel, Z. Gu, Angew. Chem. Int. Ed., 2015, 54, 12029-12033),金纳米颗粒(K. Lee, M. Conboy, H. M. Park, F. Jiang, H. J. Kim, M. A. Dewitt, V.A. Mackley, K. Chang, A. Rao, C. Skinner, Nat. Biomed. Eng., 2017, 1, 889. R.Mout, M. Ray, G. Yesilbag, Y. W. Lee, T. Tay, K. Sasaki, V. M. Rotello, ACS nano, 2017, 11, 2452-2458. P. Wang, L. Zhang, W. Zheng, L. Cong, Z. Guo, Y.Xie, L. Wang, R. Tang, Q. Feng, Y. Hamada, Angew. Chem. Int. Ed., 2018, 57,1491-1496. B. Lee, K. Lee, S. Panda, R. Gonzales-Rojas, A. Chong, V. Bugay,H. M. Park, R. Brenner, N. Murthy, H. Y. Lee, Nat. Biomed. Eng., 2018, 2,497)。
申请号201910853380.6的专利涉及一种具有EpCAM主动靶向功能的可包载基因药物的脂质体纳米颗粒的制备方法,包括步骤:(1)将DOTAP、HSPC、Chol、DSPE-PEG2000-COOH按预设配比共同溶于有机溶剂中;(2)减压蒸发除去有机溶剂,得到透明均匀的脂质体膜;(3)使脂质体膜水化,并挤出成膜,形成空白脂质体纳米颗粒;(4)将EDC、NHS加入所述的空白脂质体纳米颗粒中,以活化所述的空白脂质体纳米颗粒表面的羧基,将NH2-修饰的EpCAM核酸适配体储存液加入活化的空白脂质体纳米颗粒中,孵育,以将所述的空白脂质体纳米颗粒进行EpCAM核酸适配体修饰,而获得所述的脂质体纳米颗粒。
虽然这些递送系统能将crRNA/Cpf1递送到细胞内,但负载量不够理想;特别的,这些递送系统都不能增强内源基因编辑效率,不能增强内切酶水解磷脂键的能力。
发明内容
(一)解决的技术问题
本发明的目的在于提供一种具有增强基因编辑效率的递送系统及制备方法、应用,以解决目前基因递送系统负载量不理想,编辑内源基因效率不高的问题。
为实现上述具有增强基因编辑效率的递送系统及制备方法、应用解决目前基因递送系统负载量不理想,编辑内源基因效率不高的问题,本发明提供如下技术方案:
一种具有增强基因编辑效率的递送系统及制备方法,包括,
步骤1、树枝状有机配体的合成;
步骤2、晶态金属有机框架材料合成:将4mL反应瓶中加入2.2 mg所述树枝状有机配体, 2.6 mg ZrCl4, 72 mg苯甲酸和0.4mL N,N-二乙基甲酰胺,120 ℃下反应3天即可得到100μm左右的晶态金属有机框架材料;
步骤3、纳米级金属有机框架递送系统NPCN-8908合成:将所述树枝状有机配体与0.1 M的氢氧化钠水溶液反应,生成羧酸盐配体,将反应水溶液蒸干后在乙醇中回流1 h,过滤,干燥后,固体粉末溶于水中,向其中加入ZrCl4水溶液和少许研磨的所述晶态金属有机框架材料,室温下静止4天,即可得到170nm左右粉末状固体的纳米级金属有机框架递送系统NPCN-8908。
优选的,所述树枝状有机配体合成由四溴代苯基甲烷与甲氧羰基联苯硼酸酯经过Suzuki-Miyaura偶联反应后,再水解生成配体。
优选的,所述具有增强基因编辑效率的递送系统及制备方法还包括活化步骤,通过活化除去递送系统中未反应的原料和溶剂分子,所述的活化方法包括如下步骤:将通过上述制备方法得到的纳米级金属有机框架递送系统NPCN-8908浸入无水N,N-二甲基甲酰胺中,于80 ℃下交换3天,每天换液3次;再浸入到丙酮中,于室温下交换3天,每天换液3次;然后用超临界二氧化碳进行交换。
优选的,所述用超临界二氧化碳进行交换的具体方法包括如下步骤:首先将所述纳米级金属有机框架递送系统NPCN-8908材料放在超临界二氧化碳干燥仪样品室中,在样品室中加入液态二氧化碳并保持1.5h后放出二氧化碳,加入新的液态二氧化碳,重复此操作5次;然后将充满二氧化碳的样品室加热到35℃,并保持此状态1.5 h后将二氧化碳释放出来,得到多孔干燥的递送系统材料。
本发明还提供一种具有增强基因编辑效率的递送系统,通过上述的具有增强基因编辑效率的递送系统及制备方法得到。
本发明还提供一种通过上述的制备方法得到的具有增强基因编辑效率的递送系统在负载质粒治疗肿瘤的应用。
与现有技术相比,本发明提供了一种具有增强基因编辑效率的递送系统及制备方法、应用,具备以下有益效果:以往基因编辑递送系统为无机纳米粒子或高分子纳米粒子。本发明采用无机有机杂化的策略,基于金属有机框架材料的优点,合成高孔的递送系统材料。金属有机框架高孔的结构能提升递送系统的负载能力;金属有机框架的类酶活性能催化磷脂键的水解,从而增强基因编辑的效果。
附图说明
图1是本发明合成金属有机框架递送系统材料的树枝状有机配体的合成步骤。
图2是本发明树枝状有机配体的核磁共振氢谱。
图3是本发明树枝状有机配体的核磁共振碳谱全谱图。
图4是本发明树枝状有机配体的核磁共振碳谱局部谱图。
图5是实施例3所得金属有机框架递送系统NPCN-8908的X射线粉末衍射结果图。
图6实施例4所得金属有机框架递送系统NPCN-8908的模拟结构图。
图7是实施例4所得金属有机框架递送系统NPCN-8908的热重分析图。
图8是实施例4所得纳米级金属有机框架递送系统NPCN-8908的生物兼容性表征图。
图9A是实施例4所得纳米级金属有机框架递送系统NPCN-8908催化磷脂键水解化学反应式;图9B是实施例4所得纳米级金属有机框架递送系统NPCN-8908催化磷脂键水解核磁共振表征图;图9C是实施例4所得纳米级金属有机框架递送系统NPCN-8908催化磷脂键水解效率计算图。
图10是实施例5金属有机框架递送系统负载质粒后(plasmid@ NPCN-8908)的粒径(图10A)和电势图(图10B)。
图11是实施例5金属有机框架递送系统负载质粒(plasmid@ NPCN-8908)的凝胶电泳图。
图12是实施例5金属有机框架递送系统负载质粒后(plasmid@ NPCN-8908), 在HCT-116细胞内编辑内源性基因VEGFA和DNMT1的效果图。
图13 是实施例5金属有机框架递送系统负载质粒后(plasmid@ NPCN-8908), 在HCT-116细胞内编辑内源性基因VEGFA和DNMT1的效果图。
图14 是实施例5金属有机框架递送系统负载质粒后(plasmid@ NPCN-8908), 在HCT-116细胞内编辑内源性基因VEGFA和DNMT1的效果图。
图15是实施例5金属有机框架递送系统负载质粒后(plasmid@NPCN-8908), 在小鼠皮下瘤模型种,治疗肿瘤的效果:治疗后剥离出的肿瘤明场图(图15A)、肿瘤体积大小统计(图15B)和肿瘤重量统计(图15C)。
实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明属于一种新型的基因编辑递送系统NPCN-8908合成和利用生物矿化方法负载质粒(plasmid@NPCN-8908)治疗肿瘤,包括:1)树枝状有机配体的合成;2)有机配体和金属簇构筑金属有机框架递送系统的合成;3)递送系统通过生物矿化方法负载质粒,在细胞层面上,编辑内源性基因(血管内皮生长因子基因,VEGFA和DNA甲基化转移酶基因,DNMT1),验证递送系统递送质粒和增强基因编辑能力;4)在动物层面上,递送系统递送质粒编辑VEGFA和DNMT1治疗肿瘤。
金属有机框架材料是由金属簇和有机配体构筑起来的有序多孔结构,由于结构类似于金属酶,已被广泛开发出来作为人造纳米酶。本发明合成多孔的金属有机框架材料,作为高负载能力的基因递送系统,同时,材料具有磷脂酶活性,水解磷脂键,增强基因编辑效率。以下结合具体实施例说明其机理:
实施例1
树枝状配体前体的合成
本发明的催化剂,采用树枝状有机配体和Zr的金属簇来搭建。树枝状有机配体的合成方法如图1所示,由四溴代苯基甲烷与甲氧羰基联苯硼酸酯经过Suzuki-Miyaura偶联反应后,再水解生成配体。
具体为在250 mL烧瓶中加入1.0 g 四溴代苯基甲烷、1.8 g 4-甲氧羰基联苯基苯硼酸、44.9 mg 二氯化钯三苯基膦、50 mL饱和碳酸氢钠和40 mL 四氢呋喃。在氩气保护下,70 ℃下反应3天,粗产品用二氯甲烷萃取,用石油醚:二氯甲烷=1:3的淋洗剂柱层析即可得到纯产品,产率为72.0 %。
实施例2
树枝状配体的合成
在250 mL烧瓶中加入0.5 g 4-甲氧羰基三联苯甲烷、20 mL 四氢呋喃、20 mL 乙醇、20 mL 6 M氢氧化钠,混合均匀后,70 ℃下反应8 h, 反应物冷却用 1 M的HCl中和,可得白色粗产品,用DMSO重结晶可得纯产品,产率87.0%。
实施例3
晶态金属有机框架材料合成
在4 mL反应瓶中加入2.2 mg四(4-羧基)三联苯甲烷, 2.6 mg ZrCl4, 72 mg苯甲酸和0.4 mL N,N-二乙基甲酰胺,120 ℃下反应3天即可得到100 μm左右的属有机框架催化剂。
图5是实施例3所得晶态金属有机框架材料的X射线粉末衍射结果图。X射线粉末衍射是将材料置于X射线粉末衍射仪上进行测试得到的,测试结果表明合成得到的材料具有晶态结构。X射线衍射曲线与模拟的曲线完全一致,而且都表现了较强的强度,表明金属有机框架递送系统材料纯度都较高,基本不含有杂质,这说明本发明制备方法具有很好的可重复性和准确性。
实施例4
纳米级金属有机框架递送系统NPCN-8908合成
四(4-羧基)三联苯甲烷与0.1 M的氢氧化钠水溶液反应,生成羧酸盐配体,将反应水溶液蒸干后在乙醇中回流1 h,过滤,干燥后,固体粉末溶于水中,向其中加入ZrCl4水溶液和少许研磨的金属有机框架催化剂粉晶,室温下静止4天,即可得到170 nm左右的催化剂。
图6本实施例所得金属有机框架递送系统NPCN-8908的模拟结构。
图7是本实施例所得金属有机框架递送系统NPCN-8908的热重分析图。热重分析显示在空气下加热材料重量可降低77.03%,符合金属有机框架递送系统的模拟结构。
图8 是本实施例所得纳米级金属有机框架递送系统NPCN-8908的生物兼容性表征,流式实验表明递送系统的浓度达到1200 μg mL-1, HCT-116细胞活性能达到93.5%,证明递送系统非常好的生物兼容性。
图9 是本实施例所得纳米级金属有机框架递送系统NPCN-8908催化磷脂键水解功能图。实验表明在1 h内,递送系统催化磷脂键水解效率能达到90%。
实施例5
递送系统负载质粒plasmid@NPCN-8908的合成
3 μg质粒和盐型树枝状配体混合成水溶液,然后加入ZrCl4和少许晶态金属有机框架材料作为晶种,混合后加入0.7 mg咪唑佐剂。上述混合物在室温下静止4天,即可得到负载质粒的递送系统plasmid@NPCN-8908。
图10 是本实施例金属有机框架递送系统负载质粒后(plasmid@ NPCN-8908)的粒径和电势图。
图11 是本实施例金属有机框架递送系统负载质粒(plasmid@ NPCN-8908)的凝胶电泳图。根据凝胶电泳计算载量为4.8 wt%。
图12是本实施例金属有机框架递送系统负载质粒后(plasmid@ NPCN-8908), 在HCT-116细胞内编辑内源性基因VEGFA和DNMT1的效果图。T7E1实验表明,在负载同样的3 μg质粒下,和传统的基因编辑递送系统ZIF-8相比,递送系统NPCN-8908具有更高的编辑效果,证明递送系统NPCN-8908能增强基因编辑效果。
图13 是本实施例金属有机框架递送系统负载质粒后(plasmid@ NPCN-8908), 在HCT-116细胞内编辑内源性基因VEGFA和DNMT1的效果图。PCR实验表明,在负载同样的3 μg质粒下,和传统的基因编辑递送系统ZIF-8相比,递送系统NPCN-8908具有3倍(VEGFA)和4倍(DNMT1)高的编辑效果,证明递送系统NPCN-8908能增强基因编辑效果。
图14 是本实施例金属有机框架递送系统负载质粒后(plasmid@ NPCN-8908), 在HCT-116细胞内编辑内源性基因VEGFA和DNMT1的效果图。Western blot实验表明,在负载同样的3 μg质粒下,和传统的基因编辑递送系统ZIF-8相比,递送系统NPCN-8908具有5倍(VEGFA)和7倍(DNMT1)高的编辑效果,证明递送系统NPCN-8908能增强基因编辑效果。
图15是本实施例金属有机框架递送系统负载质粒后(plasmid@NPCN-8908), 在小鼠皮下瘤模型种,治疗肿瘤的效果。结果表明,plasmid@NPCN-8908的治疗效果是传统递送系统plasmid@ZIF-8的治疗效果的3倍。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及等同物限定。

Claims (3)

1.一种具有增强基因编辑效率的递送系统负载质粒在制备治疗肿瘤药物中的用途,其特征在于:所述具有增强基因编辑效率的递送系统的制备方法如下:
步骤1:树枝状有机配体四(4-羧基)三联苯甲烷的合成,所述四(4-羧基)三联苯甲烷的结构式为:
步骤2:晶态金属有机框架材料合成:将4mL反应瓶中加入2.2 mg所述四(4-羧基)三联苯甲烷, 2.6 mg ZrCl4, 72 mg苯甲酸和0.4mL N,N-二乙基甲酰胺,120 ℃下反应3天即可得到100μm左右的晶态金属有机框架材料;
步骤3:纳米级金属有机框架递送系统NPCN-8908合成:将所述四(4-羧基)三联苯甲烷与0.1 M的氢氧化钠水溶液反应,生成羧酸盐配体,将反应水溶液蒸干后在乙醇中回流1 h,过滤,干燥后,固体粉末溶于水中,向其中加入ZrCl4水溶液和少许研磨的所述晶态金属有机框架材料,室温下静止4天,即可得到170nm左右粉末状固体的纳米级金属有机框架递送系统NPCN-8908。
2.根据权利要求1所述的一种具有增强基因编辑效率的递送系统负载质粒在制备治疗肿瘤药物中的用途,其特征在于,还包括活化步骤,通过活化除去递送系统中未反应的原料和溶剂分子,所述的活化方法包括如下步骤:将通过上述制备方法得到的纳米级金属有机框架递送系统NPCN-8908浸入无水N,N-二甲基甲酰胺中,于80 ℃下交换3天,每天换液3次;再浸入到丙酮中,于室温下交换3天,每天换液3次;然后用超临界二氧化碳进行交换。
3.根据权利要求2所述的一种具有增强基因编辑效率的递送系统负载质粒在制备治疗肿瘤药物中的用途,其特征在于,所述用超临界二氧化碳进行交换的具体方法包括如下步骤:首先将所述纳米级金属有机框架递送系统NPCN-8908材料放在超临界二氧化碳干燥仪样品室中,在样品室中加入液态二氧化碳并保持1.5h后放出二氧化碳,加入新的液态二氧化碳,重复此操作5次;然后将充满二氧化碳的样品室加热到35℃,并保持此状态1.5 h后将二氧化碳释放出来,得到多孔干燥的递送系统材料。
CN202111177004.3A 2021-10-09 2021-10-09 一种具有增强基因编辑效率的递送系统及制备方法、应用 Active CN113957094B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111177004.3A CN113957094B (zh) 2021-10-09 2021-10-09 一种具有增强基因编辑效率的递送系统及制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111177004.3A CN113957094B (zh) 2021-10-09 2021-10-09 一种具有增强基因编辑效率的递送系统及制备方法、应用

Publications (2)

Publication Number Publication Date
CN113957094A CN113957094A (zh) 2022-01-21
CN113957094B true CN113957094B (zh) 2023-11-21

Family

ID=79463465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111177004.3A Active CN113957094B (zh) 2021-10-09 2021-10-09 一种具有增强基因编辑效率的递送系统及制备方法、应用

Country Status (1)

Country Link
CN (1) CN113957094B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107383380A (zh) * 2017-07-11 2017-11-24 大连兴典生物科技有限公司 一种金属有机骨架聚阳离子衍生物及其制备方法和应用
CN113061259A (zh) * 2021-03-14 2021-07-02 华中科技大学同济医学院附属协和医院 用于缺血性脑卒中治疗的金属有机框架材料的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3595629A4 (en) * 2017-03-16 2021-01-06 Children's Medical Center Corporation NONVIRAL, NONCATIONIC NANOPARTICLE AND USES THEREOF

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107383380A (zh) * 2017-07-11 2017-11-24 大连兴典生物科技有限公司 一种金属有机骨架聚阳离子衍生物及其制备方法和应用
CN113061259A (zh) * 2021-03-14 2021-07-02 华中科技大学同济医学院附属协和医院 用于缺血性脑卒中治疗的金属有机框架材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A robust CRISPR–Cas12a biosensor coated with metal–organic framework;Lingjun Sha等;《J Mater Chem B 》;第9卷;第5451-5455页 *
MOF effectively deliver CRISPR and enhance gene-editing efficiency via MOF’s hydrolytic activity of phosphate ester bonds;Yang Wang等;《Chemical Engineering Journal》;第439卷;第1-7页 *
Nano-sized metal-organic frameworks: Synthesis and applications;Xuechao Cai等;《Coordination Chemistry Reviews》;第417卷;第1-21页 *

Also Published As

Publication number Publication date
CN113957094A (zh) 2022-01-21

Similar Documents

Publication Publication Date Title
Kukkar et al. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications
CN110787146B (zh) 氧化还原响应性肿瘤靶向顺铂纳米递药系统的制备方法及其应用
CN109985247A (zh) 一种用于药物释放的杂化金属有机骨架化合物的制备方法
CN113754793B (zh) 一种苯硼酸枝接的壳寡糖衍生物及其制备方法和应用
CN112245579B (zh) 一种缓解肿瘤乏氧的光动力治疗剂及其制备方法和应用
CN113941009B (zh) 一种金属有机骨架纳米载体及其制备方法与应用
CN113980926B (zh) 磁性纳米粒-糖基转移酶-无定型金属有机框架复合催化材料及其制备方法和应用
Arabbaghi et al. Zn-MOF: an efficient drug delivery platform for the encapsulation and releasing of Imatinib Mesylate
CN114409914B (zh) MOF-On-MOF架构的铁基金属有机框架复合材料的制备方法及所得产品和应用
CN115283016A (zh) 一种Co基复合催化剂及其制备方法和应用
Cui et al. Metal–organic framework-encapsulated nanoparticles for synergetic chemo/chemodynamic therapy with targeted H 2 O 2 self-supply
CN113957094B (zh) 一种具有增强基因编辑效率的递送系统及制备方法、应用
CN107446136A (zh) 一种高稳定性纳米级锆基金属有机框架材料及其制备方法和应用
JP2012254398A (ja) 複合触媒の製造方法
Halevas et al. Sol–gel encapsulation of binary Zn (II) compounds in silica nanoparticles. Structure–activity correlations in hybrid materials targeting Zn (II) antibacterial use
WO2020057086A1 (zh) 一种Fe 3+/2+-NO供体混价配位聚合物及其应用
CN101721711B (zh) 邻菲咯啉钌环糊精-金刚烷芘-单壁碳纳米管三元超分子体系的制备方法及应用
Xu et al. Facile synthesis of highly biocompatible folic acid-functionalised SiO 2 nanoparticles encapsulating rare-earth metal complexes, and their application in targeted drug delivery
CN111012925A (zh) 金属有机框架基sers纳米探针的制备方法及其产品和应用
Azhdari et al. Design and preparation of HPW-anchored magnetic carbon nitride nanosheets: an efficient and eco-friendly nanocomposite for one-pot synthesis of α-amino phosphonates
Grami et al. Fabrication of magnetic carbohydrate-modified iron oxide nanoparticles (Fe 3 O 4/pectin) decorated with bimetallic Co/Cu-MOF as an effective and recoverable catalyst for the Biginelli reaction
CN113501966A (zh) 一种二维锌钴双金属zif催化剂及其制备方法和应用
KR100907459B1 (ko) 금속 나노입자가 고정화된 이온성 액체-실리카 지지체복합체 및 금속 나노입자의 고정화방법
Yan et al. Crystal structure of chiral binaphthol lanthanide complexes and their catalysis in asymmetric transfer hydrogenation of acetophenone
Dou et al. Synthesis, electrochemical properties and fungicidal activity of 1, 1′‐bis (aroyl) ferrocenes and their derivatives

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant