CN113950408B - 一种提高金属导电性能的复合材料及其制备方法 - Google Patents

一种提高金属导电性能的复合材料及其制备方法 Download PDF

Info

Publication number
CN113950408B
CN113950408B CN202180002252.6A CN202180002252A CN113950408B CN 113950408 B CN113950408 B CN 113950408B CN 202180002252 A CN202180002252 A CN 202180002252A CN 113950408 B CN113950408 B CN 113950408B
Authority
CN
China
Prior art keywords
graphene
ase
sub
composite material
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202180002252.6A
Other languages
English (en)
Other versions
CN113950408A (zh
Inventor
裴中正
章潇慧
柳柏杉
梁俊才
李要君
杨为三
陈强
王雅伦
孙帮成
龚明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CRRC Industry Institute Co Ltd
Original Assignee
CRRC Academy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CRRC Academy Co Ltd filed Critical CRRC Academy Co Ltd
Publication of CN113950408A publication Critical patent/CN113950408A/zh
Application granted granted Critical
Publication of CN113950408B publication Critical patent/CN113950408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/16Layered products comprising a layer of metal next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/246Vapour deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/06Coating on the layer surface on metal layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Non-Insulated Conductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及一种提高金属导电性能的复合材料及其制备方法,其中所述复合材料由n个A‑B‑A结构复合而成,其中,所述A为石墨烯碎片层,所述B为金属箔层,所述n为大于等于2的整数;所述石墨烯碎片层包括均匀平铺在所述金属箔层上的石墨烯碎片。使得常规金属材料的电导率至少提高18%以上,并保持其弯折后的电导率与正常情况下的电导率几乎持平。

Description

一种提高金属导电性能的复合材料及其制备方法
技术领域
本发明属于金属基复合材料技术领域,尤其涉及一种提高金属导电性能的复合材料及其制备方法。
背景技术
电力能源是当代社会生产生活中最重要的能源,国家统计局显示,我国年电力消费总额7.15万亿千瓦时(2018年),其中,年输配电损失达3351.7亿千瓦时,相当于三峡3年的发电量,因此提高导电材料的导电率可以显著降低输配电损失,为节能减排做出巨大的贡献。
文献CN106584976A公开了一种高导电石墨烯/铜基层状复合材料及其制备方法,其基于高纯度和具有单晶或接近单晶的铜基底,才能形成优于纯银的电导率。然而,上述复合材料在热压过程中会使得石墨烯无序的断裂,容易产生有些石墨烯碎片过大以及石墨烯碎片之间距离过小或过大的结构,碎片过大和/或碎片之间的距离过小时,石墨烯在弯曲状态下承受较大的应力,并导致进一步的无序断裂,无法形成均匀且良好的载流子通道,从而降低了材料在弯曲应用时的电导率,碎片距离过大时,亦无法形成良好的载流子通道。此外,对于常规的导电金属及其合金、复合材料等,由于其不同于铜表面的单晶结构以及非高纯度等原因,按照上述文献中的方式获得的这类复合材料,并不能提升相应的导电性能及弯曲或弯折时的导电性能。
基于目前越来越多在弯曲状态下的应用需求,急需解决常规导电金属材料的导电性能问题。
发明内容
本发明的目的在于提供一种提高金属导电性能的复合材料,解决目前常规金属材料导电率低以及进一步弯曲应用时导电率低的问题,使得常规金属材料的电导率至少提高18%以上,并保持其弯折后的电导率与正常情况下的电导率几乎持平。
具体地:
本申请涉及一种提高金属导电性能的复合材料,所述复合材料由n个A-B-A结构复合而成,其中,所述A为石墨烯碎片层,所述B为金属箔层,所述n为大于等于2的整数。
所述n优选10-30。处于该优选范围内,使得相对更容易获得以下质量分数和体积分数的复合材料。
进一步的,所述石墨烯碎片层包括均匀平铺在所述金属箔层上的石墨烯碎片。
进一步的,每个所述石墨烯碎片的面积均介于50-1000μm2之间,相邻所述石墨烯碎片之间的距离均介于5-20μm之间。
进一步的,所述石墨烯碎片为在断裂前是单层、双层或多层的未化学修饰过的石墨烯。
化学修饰如氧化还原石墨烯等,会给石墨烯带来很多缺陷和杂质,影响石墨烯的迁移率,不利于高导电复合材料的设计和制备。
进一步的,所述石墨烯碎片在所述复合材料中所占的质量分数为0.0004%-0.07%;或所述石墨烯碎片在所述复合材料中所占的体积分数为0.001%-0.05%。
上述质量分数根据所述体积分数以及不同金属箔层的密度来获得。
上述石墨烯碎片含量,不仅可以实现最优的导电性能,同时还能保证复合材料的拉抗强度、弯曲等性能,过高和过低的石墨烯碎片含量均无法实现上述性能。
进一步的,所述金属箔层选自常规的导电金属材料。并不仅仅限于高纯度的具有单晶结构的铜。
进一步的,所述金属箔层选自银、铜、铝、镁以及它们的合金或复合材料中的至少一种。
进一步的,所述金属箔层的厚度为10-50μm。
过厚的金属箔层和过薄的金属箔层都很难满足上述质量分数或体积分数的要求。
进一步的,本申请还涉及一种提高金属导电性能的方法,将n个A-B-A结构复合成复合材料,其中所述A为石墨烯碎片层,所述B为金属箔层,所述n为大于等于2的整数;所述石墨烯碎片层包括均匀平铺在所述金属箔层上的石墨烯碎片。
进一步的,将每个所述石墨烯碎片的面积均设置于50-1000μm2之间,将相邻所述石墨烯碎片之间的距离均设置于5-20μm之间。
进一步的,采用CVD法将石墨烯沉积在金属箔层的上下面,随后采用拉伸的方式使石墨烯均匀断裂而形成具有一定面积和距离的石墨烯碎片从而形成所述A-B-A结构,将所述n个A-B-A结构通过热压方式形成所述复合材料。
CVD法沉积石墨烯避免了化学修饰等方式的弊端,可以获得高质量缺陷小的石墨烯,有利于载流子通道的形成。
可以采用XY双向拉伸的方式使得石墨烯随着金属箔层的延展而均匀断裂,并通过拉伸力的控制使得产生一定面积和间距的石墨烯碎片,上述拉伸和控制方法采用一般的能够实现均匀拉伸的实验装置。
通过事先使石墨烯在金属箔层上断裂,使得石墨烯碎片的面积和碎片之间的间距可控,减小了石墨烯的应力,大大减少了在热压过程中进一步无序断裂和碎片化的可能性,防止在热压过程中形成间距过大的石墨烯碎片,使得无法形成载流子通道,也防止在热压过程中形成间距过小的石墨烯碎片,使得最终复合材料在弯曲状态下受到过大的应力而进一步导致无序断裂,从而降低了电导率或者出现电导率突降和不稳定的情况。
本发明的具体原理如下:一般认为,石墨烯和金属复合时,石墨烯越完整越好,但在热压过程中,不可能做到石墨烯的不断裂,传统的,都在往石墨烯不断裂以及减小断裂石墨烯之间距离方向研究。而本发明发现当石墨烯形成碎片,且碎片面积和碎片之间的间距处于一定范围内,使得石墨烯能够形成均匀的载流子通道的同时减少了较大面积石墨烯碎片的应力,不仅能够达到接近完整石墨烯复合材料的电导率,同时能够使得复合材料弯折后的电导率依然保持基本不变化,还能使得石墨烯适配各种常规金属导电材料,降低了对于金属材料的要求,能够提高常规金属导电材料至少18%的电导率。
本发明与现有技术相比具有如下优点:
1、本发明所提供的结构具有支撑金属复合材料实现高电导率的特点,因此,该结构可广泛应用于电机、变压器等工业驱动领域,新能源汽车、风力发电、光伏发电、核电等新能源领域,电缆、电气柜等电力行业,通讯芯片、工控芯片等高端应用领域。且由于本发明在弯曲条件下仍然保持优异的电导率性能,尤其适合材料弯曲状态下的应用,如电机的缠绕式线圈等。
2、本发明所提供的结构由于允许石墨烯存在大量的碎片以及相对较大的碎片间距,不需要和传统方式一样艰难的减少石墨烯的碎片化和碎片之间的距离,使得对石墨烯的层数和完整性、石墨烯碎片的形态、尺寸和间距、金属的种类要求不高。
3、本发明所提供的结构由于石墨烯碎片之间具有相对合适的距离,在能够实现电导率提高的同时保证了复合材料在弯曲时的电导率几乎不变化。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明2个A-B-A结构复合后的复合材料示意图;
图2为实施例1复合材料中石墨烯碎片层的扫描电子显微镜形貌,也可代表图1中A的形貌图;
图3为实施例1复合材料中金属被腐蚀液溶解后剩余石墨烯碎片的宏观形貌;
图4为实施例1复合材料中金属被腐蚀液溶解后剩余石墨烯碎片的Raman光谱图;
图5为对比例1复合材料中石墨烯碎片层的扫描电子显微镜形貌;
其中,A为石墨烯碎片层,B为金属箔层。
具体实施方式
为了进一步地理解本发明,下面结合一些实施例对本发明优选实施方案进行描述,但是这些描述只是进一步说明本发明的特征及优点,而不是对本发明权利要求的限制。
图1示出了本发明的其中一种实施方式,具体地,其表示一种提高金属导电性能的复合材料,所述复合材料由2个A-B-A结构复合而成,其中,A表示石墨烯碎片层,B表示金属箔层;石墨烯碎片层A包括均匀平铺在金属箔层B上的石墨烯碎片。
实施例1:
采用CVD法将石墨烯沉积在30μm厚的压延铜铜箔的两侧表面分别形成连续单层高质量石墨烯,控制所述石墨烯在复合材料中所占的质量分数约为0.0008%,或所述石墨烯在复合材料中所占的体积分数约为0.003%,进而得到石墨烯-铜箔三层结构,通过拉伸方式控制石墨烯均匀断裂,利用热等静压设备对20层石墨烯-铜箔施加920℃温度,45MPa压力进行成形,成形后的石墨烯-铜复合材料用四探针法测试电导率为119.84%IACS,抗拉强度为258MPa,弯折实验(弯折实验指各个角度均进行一定程度弯折的实验,以下弯折实验相同)后电导率为118.91%IACS。使用腐蚀液将石墨烯-铜复合材料一侧表面的铜刻蚀掉,暴露出石墨烯形貌并进行扫描电子显微镜观察,结果表明(图2),石墨烯在复合材料内部随机发生断裂后仍均匀分布在铜基体内,形态呈矩形碎片状,每个碎片面积为50-1000μm2,碎片间距在互相垂直的两个方向上都处于5-20μm之间。如图3所示,将石墨烯-铜复合材料用FeCl3溶液浸泡,铜被溶解后,观察到石墨烯的宏观形态为黑色颗粒状,亦说明石墨烯在复合材料中的形态不是完整的石墨烯薄膜,而是碎片状。图4为石墨烯-铜复合材料被FeCl3溶液溶解后剩余石墨烯的Raman光谱图,表明石墨烯层数较少且并未发生明显团聚。上述实验结果表明该实施例中的复合材料符合本发明的复合结构,即碎片化的高质量石墨烯连续均匀地分布在金属材料的基体里,并保证了石墨烯碎片具有合适的大小和间距,可以为载流子形成快速迁移通道,从而使导电金属的导电率提高18%以上。
实施例2:
采用CVD法将石墨烯沉积在40μm厚的电解铝铝箔(电导率59.1%IACS)的两侧表面分别形成连续多层高质量石墨烯,控制所述石墨烯在复合材料中所占的质量分数约为0.01%,或所述石墨烯在复合材料中所占的体积分数约为0.01%,进而得到石墨烯-铝箔三层结构,通过拉伸方式控制石墨烯均匀断裂,利用热压设备对10层石墨烯-铝箔施加480℃温度,15MPa压力进行成形,成形后的石墨烯-铝复合材料用四探针法测试电导率为71.52%IACS,抗拉强度为223MPa,弯折实验后电导率为69.98%IACS。使用腐蚀液将石墨烯-铝复合材料一侧表面的铝刻蚀掉,暴露出石墨烯形貌并进行扫描电子显微镜观察,结果表明石墨烯在复合材料内部随机发生断裂后均匀分布在铝基体内,形态呈多边形碎片状,每个碎片面积为50-1000μm2,碎片间距在互相垂直的两个方向上都处于5-20μm之间。
实施例3:
采用CVD法将石墨烯沉积在20μm厚的银箔(电导率107.8%IACS)的两侧表面分别形成连续双层高质量石墨烯,控制所述石墨烯在复合材料中所占的质量分数约为0.002%,或所述石墨烯在复合材料中所占的体积分数约为0.01%,进而得到石墨烯-银箔三层结构,通过拉伸方式控制石墨烯均匀断裂,利用热压设备对15层石墨烯-银箔施加800℃温度,40MPa压力进行成形,成形后的石墨烯-银复合材料用四探针法测试电导率为127.59%IACS,抗拉强度为129MPa,弯折实验后电导率为126.33%IACS。使用腐蚀液将石墨烯-银复合材料一侧表面的银刻蚀掉,暴露出石墨烯形貌并进行扫描电子显微镜观察,结果表明石墨烯在复合材料内部随机发生断裂后均匀分布在银基体内,形态呈矩形形碎片状,每个碎片面积为50-1000μm2,碎片间距在互相垂直的两个方向上都处于5-20μm之间。
对比例1:
采用与实施例1相同的方法,区别在于热压前不经历拉伸操作,石墨烯事先不断裂,和/或不控制其石墨烯碎片面积和间距大小。其成形后的石墨烯-铜复合材料用四探针法测试电导率为116.54%IACS,弯折实验后电导率为109%IACS。使用腐蚀液将石墨烯-铜复合材料一侧表面的铜刻蚀掉,暴露出石墨烯形貌并进行扫描电子显微镜观察,结果表明(图5),石墨烯在复合材料内部随机发生断裂后大小不一的分布在铜基体内,形态呈矩形碎片状,最大碎片面积约为2500μm2,碎片间距在互相垂直的两个方向上最小间距约2μm,最大间距约30μm,上述不均匀的碎片面积和间距,包括过大的碎片面积和过小的碎片间距,导致电导率的降低以及弯曲状态下应力的大幅提升,使得弯曲状态下无法保持优良的电导率。
对比例2:
采用与实施例2相同的方法,区别在于热压前不经历拉伸操作,石墨烯事先不断裂,和/或石墨烯碎片面积不都为50-1000μm2,碎片间距在互相垂直的两个方向上不都处于5-20μm之间,其成形后的石墨烯-铝复合材料用四探针法测试电导率为64.52%IACS,弯折实验后电导率为59.81%IACS。
对比例3:
采用与实施例3相同的方法,区别在于热压前不经历拉伸操作,石墨烯事先不断裂,和/或石墨烯碎片面积不都为50-1000μm2,碎片间距在互相垂直的两个方向上不都处于5-20μm之间,其成形后的石墨烯-银复合材料用四探针法测试电导率为118.89%IACS,弯折实验后电导率为109.92%IACS。
上述实施例和对比例仅仅是随机的举例,不代表只有上述实施例才能够实现本申请的效果。
由上述实施例和对比例可知,控制石墨烯碎片面积处于50-1000μm2之间,以及相邻石墨烯碎片之间的距离处于5-20μm之间的金属复合材料,能够明显提升金属材料的导电性能(至少提升18%)和保持弯曲导电性能。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做多种修改、补充、或采用类似的方法替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。

Claims (8)

1.一种提高金属导电性能的复合材料,其特征在于,所述复合材料由n个A-B-A结构复合而成,其中,所述A为石墨烯碎片层,所述B为金属箔层,所述n为大于等于2的整数;所述石墨烯碎片层包括均匀平铺在所述金属箔层上的石墨烯碎片;
每个所述石墨烯碎片的面积均介于50-1000μm2之间,相邻所述石墨烯碎片之间的距离均介于5-20μm之间。
2.如权利要求1所述的提高金属导电性能的复合材料,其特征在于,所述石墨烯碎片为在断裂前是单层、双层或多层的未化学修饰过的石墨烯。
3.如权利要求1所述的提高金属导电性能的复合材料,其特征在于,所述石墨烯碎片在所述复合材料中所占的质量分数为0.0004%-0.07%,或所述石墨烯碎片在所述复合材料中所占的体积分数为0.001%-0.05%。
4.如权利要求1所述的提高金属导电性能的复合材料,其特征在于,所述金属箔层选自常规的导电金属材料。
5.如权利要求1所述的提高金属导电性能的复合材料,其特征在于,所述金属箔层选自银、铜、铝、镁以及它们的合金或复合材料中的至少一种。
6.如权利要求1所述的提高金属导电性能的复合材料,其特征在于,所述金属箔层的厚度为10-50μm。
7.一种提高金属导电性能的方法,其特征在于,将n个A-B-A结构复合成复合材料,其中所述A为石墨烯碎片层,所述B为金属箔层,所述n为大于等于2的整数;所述石墨烯碎片层包括均匀平铺在所述金属箔层上的石墨烯碎片;
将每个所述石墨烯碎片的面积均设置于50-1000μm2之间,将相邻所述石墨烯碎片之间的距离均设置于5-20μm之间。
8.如权利要求7所述的提高金属导电性能的方法,其特征在于,采用CVD法将石墨烯沉积在金属箔层的上下面,随后采用拉伸的方式使石墨烯均匀断裂成石墨烯碎片从而形成所述A-B-A结构,将所述n个A-B-A结构通过热压方式形成所述复合材料。
CN202180002252.6A 2021-08-18 2021-08-18 一种提高金属导电性能的复合材料及其制备方法 Active CN113950408B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113324 WO2023019484A1 (zh) 2021-08-18 2021-08-18 一种提高金属导电性能的复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113950408A CN113950408A (zh) 2022-01-18
CN113950408B true CN113950408B (zh) 2023-01-17

Family

ID=79339318

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202180002252.6A Active CN113950408B (zh) 2021-08-18 2021-08-18 一种提高金属导电性能的复合材料及其制备方法

Country Status (5)

Country Link
US (1) US20240052491A1 (zh)
EP (1) EP4249630A4 (zh)
JP (1) JP2023543510A (zh)
CN (1) CN113950408B (zh)
WO (1) WO2023019484A1 (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102815695A (zh) * 2012-08-02 2012-12-12 许子寒 一种低成本大面积石墨烯透明导电膜制备方法
CN106584976A (zh) 2016-08-10 2017-04-26 上海交通大学 一种高导电石墨烯/铜基层状复合材料及其制备方法
CN110371955B (zh) * 2019-07-22 2021-10-29 长飞光纤光缆股份有限公司 一种石墨烯-金属复合材料的制备方法
US20220389540A1 (en) * 2021-06-07 2022-12-08 MetalKraft Technologies, LLC Ultra-Conductive Metal Composite and Methods of Making the Same

Also Published As

Publication number Publication date
WO2023019484A1 (zh) 2023-02-23
EP4249630A4 (en) 2024-05-15
EP4249630A1 (en) 2023-09-27
US20240052491A1 (en) 2024-02-15
JP2023543510A (ja) 2023-10-16
CN113950408A (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
Zhang et al. High‐capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure
Yin et al. Flexible 3D porous graphene film decorated with nickel nanoparticles for absorption-dominated electromagnetic interference shielding
CN108573763B (zh) 电线电缆导体、石墨烯包覆金属粉体和导体的制备方法
Miao et al. Silver nanowires intercalating Ti 3 C 2 T x MXene composite films with excellent flexibility for electromagnetic interference shielding
Liu et al. Regulating Deposition Behavior of Sodium Ions for Dendrite‐Free Sodium‐Metal Anode
CN106584976A (zh) 一种高导电石墨烯/铜基层状复合材料及其制备方法
CN109735826B (zh) 一种石墨烯/铜复合材料及其制备方法和应用
KR20140005143A (ko) 탄소질 재료, 탄소질 재료의 제조 방법, 박편화 흑연의 제조 방법 및 박편화 흑연
Jose et al. Enhanced supercapacitor performance of a 3D architecture tailored using atomically thin rGO–MoS 2 2D sheets
CN111069611B (zh) 一种石墨-石墨烯-金属复合材料的制备方法
Zhao et al. High ampacity of superhelix graphene/copper nanocomposite wires by a synergistic growth-twisting-drawing strategy
Choi et al. Multifunctional reduced graphene oxide-CVD graphene core–shell fibers
CN111696700A (zh) 具有期望的机械特性和电气特性组合的金属结构
CN114388167B (zh) 一种石墨烯铜线及其制备方法和电缆
CN105880284B (zh) 一种高硬度高导电性铜碳复合材料及其制备方法和应用
CN113950408B (zh) 一种提高金属导电性能的复合材料及其制备方法
Zhong et al. Constructing rich interfacial structure by carbon dots to improve the sodium storage capacity of Sb/C composite
CN112877561B (zh) 石墨烯-碳纳米管共同增强铜基复合材料及其制备方法
Li et al. Rational Design of Cross-Linked N-Doped C-Sn Nanofibers as Free-Standing Electrodes towards High-Performance Li-Ion Battery Anodes
Xia et al. Rheology Engineering for Dry‐Spinning Robust N‐Doped MXene Sediment Fibers toward Efficient Charge Storage
CN112962099A (zh) 一种高导电性的铜/石墨烯/铜复合材料及其制备方法
KR101417999B1 (ko) 동복알루미늄 선재 제조방법
TW201435127A (zh) 類鑽石薄膜及其製備方法
Li et al. Synergistic in-situ intercalation and surface modification strategy for Ti3C2Tx MXene-based supercapacitors with enhanced electrochemical energy storage
Zhang et al. Ultra-thin freestanding graphene films for efficient thermal insulation and electromagnetic interference shielding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant