CN113948612A - 一维二硒化铂纳米带的制备方法及制备的二硒化铂纳米带 - Google Patents

一维二硒化铂纳米带的制备方法及制备的二硒化铂纳米带 Download PDF

Info

Publication number
CN113948612A
CN113948612A CN202111211600.9A CN202111211600A CN113948612A CN 113948612 A CN113948612 A CN 113948612A CN 202111211600 A CN202111211600 A CN 202111211600A CN 113948612 A CN113948612 A CN 113948612A
Authority
CN
China
Prior art keywords
platinum
nanoribbon
diselenide
nanobelt
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111211600.9A
Other languages
English (en)
Inventor
谢丹
王怀鹏
孙翊淋
刘志方
任天令
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN202111211600.9A priority Critical patent/CN113948612A/zh
Publication of CN113948612A publication Critical patent/CN113948612A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

公开一种一维二硒化铂纳米带的制备方法,能够同时实现大规模、高质量制备和自取向制备。其包括:(1)在SiO2/Si衬底上旋涂聚甲基丙烯酸甲酯PMMA,使用电子束曝光产生纳米带图形;(2)使用显影液溶解曝光部分的PMMA,并用定影液去除残留的显影液;(3)使用电子束蒸发在衬底上淀积一层金属铂,使用无水丙酮溶解PMMA,将非纳米带区域的金属铂剥离掉,得到金属铂纳米带;(4)将金属铂纳米带放置于管式炉的中间位置,在上游位置放置硒源,将硒源加热到220~300℃;(5)密封管式炉的腔体并抽真空后,以流量为40~70sccm的氮气为载气,将腔体升温至420~500℃持续一小时后,自然冷却至室温,得到二硒化铂纳米带。

Description

一维二硒化铂纳米带的制备方法及制备的二硒化铂纳米带
技术领域
本发明涉及低维纳米材料的领域,尤其涉及一种一维二硒化铂纳米带的制备方法,以及按照该制备方法制备的二硒化铂纳米带。
背景技术
二硒化铂是一种新兴的二维过渡金属硫族化合物材料,其带隙可通过控制厚度在0~1.2eV的范围内进行调谐。因其具有丰富的电学和光学性质,二硒化铂被认为在微纳电子学和光电领域有着广泛的潜在应用。二硒化铂在不同的晶格取向上具有不同的物理化学性质,在锯齿形方向上具有相较于扶手椅方向更好的导电性,其各向异性也备受研究者的关注。制备一维纳米带是一种研究、应用二维材料各向异性的常用方法。
目前实验上制备一维纳米带的方法主要有两种。一种是通过高分辨率的表征方法(如角分辨偏振拉曼光谱)确定二维材料的晶格取向,然后利用电子束曝光等光刻方法进行图形化。这种方法能够精确地获得具有某一种晶格取向的一维纳米带,但是其复杂的制备流程决定了这种方法不适合进行大规模纳米带生长。另一种方法是化学切割法,通过液相电化学剥离对块状二维材料进行化学切割,从而获得一维纳米带结构。这种方法可以实现一维纳米带的大规模制备,但是会产生二维纳米片、零维量子点等副产物,再加上溶液中各种杂质离子及官能团,一起对纳米带的质量、均一性造成了影响。
除本发明外,目前并没有一种锯齿形自取向二硒化铂纳米带的合成方法。湘潭大学郝国林等人发明了一种基于空间限域策略制备单层二硒化钨纳米带的方法。该方法的具体步骤如下:
(1)将基底进行清洗处理;
(2)将处理后的基底置于高温管式炉的加热中心,按气流由上游至下游的顺序,将装有硒粉的氧化铝舟放置于上游,装有三氧化钨和基底的舟放置于下游的加热中心;
(3)向高温管式炉的反应腔内通入氩气和氢气,对反应腔进行清洗;
(4)升高管式炉的温度至800~850℃,从而使硒粉的温度控制在400~
450℃、三氧化钨的温度控制在800~850℃,进行二硒化钨的生长;
(5)二硒化钨生长结束后,温度降至室温,同时关闭氩气和氢气,即得到单层二硒化钨纳米带。
二硒化钨是一种在结构上与二硒化铂相似的层状材料,因此其制备方法在一定程度上也适用于二硒化铂。该方法的优点在于:
(1)可以实现二硒化钨纳米带的空间限域生长;
(2)生长方法简单易行,可以实现批量生长。
但是,该方法也存在如下缺点:
(1)无法控制所生长的纳米带的晶格取向;
(2)对于生长的纳米带的厚度、宽度不能进行自由调控。
发明内容
为克服现有技术的缺陷,本发明要解决的技术问题是提供了一种一维二硒化铂纳米带的制备方法,其能够同时实现大规模、高质量制备和自取向制备。
本发明的技术方案是:这种一维二硒化铂纳米带的制备方法,其包括以下步骤:
(1)在SiO2/Si衬底上旋涂聚甲基丙烯酸甲酯PMMA,使用电子束曝光产生纳米带图形;
(2)使用显影液溶解曝光部分的PMMA,并用定影液去除残留的显影液;
(3)使用电子束蒸发在衬底上淀积一层金属铂,使用无水丙酮溶解PMMA,将非纳米带区域的金属铂剥离掉,得到金属铂纳米带;
(4)将金属铂纳米带放置于管式炉的中间位置,在上游位置放置硒源,将硒源加热到220~300℃;
(5)密封管式炉的腔体并抽真空后,以流量为40~70sccm的氮气为载气,将腔体升温至420~500℃持续一小时后,自然冷却至室温,得到二硒化铂纳米带。
锯齿形取向的二硒化铂纳米带相较于扶手椅取向具有更低的表面能,因而在铂纳米带的硒化过程中会自发生长成为锯齿性取向的二硒化铂纳米带。本发明利用二硒化铂纳米带的这一特性,通过使用电子束蒸发在衬底上淀积一层金属铂,使用无水丙酮溶解PMMA,将非纳米带区域的金属铂剥离掉,得到金属铂纳米带,将金属铂纳米带放置于管式炉的中间位置,在上游位置放置硒源,将硒源加热到220~300℃,密封管式炉的腔体并抽真空后,以流量为40~70sccm的氮气为载气,将腔体升温至420~500℃持续一小时后,自然冷却至室温,得到二硒化铂纳米带,从而实现了锯齿形自取向的二硒化铂纳米带的制备。因此能够同时实现大规模、高质量制备和自取向制备。
还提供了这种制备方法制取的一维二硒化铂纳米带,为带有锯齿形自取向二硒化铂纳米带的衬底。
附图说明
图1为根据本发明的一维二硒化铂纳米带的制备方法中SiO2/Si衬底上旋涂PMMA的示意图。
图2为根据本发明的一维二硒化铂纳米带的制备方法中使用EBL完成了纳米带图形化后的衬底。
图3为根据本发明的一维二硒化铂纳米带的制备方法中使用电子束蒸发技术淀积了金属铂后的衬底。
图4为根据本发明的一维二硒化铂纳米带的制备方法中经过显影、定影后的带有铂纳米带的衬底。
图5为根据本发明的一维二硒化铂纳米带的制备方法中经过硒化后的带有锯齿形自取向二硒化铂纳米带的衬底。
图6为根据本发明的一维二硒化铂纳米带的制备方法的流程图。
标号说明:
1为硅衬底,2为热氧化法在硅衬底上生长的二氧化硅层,3为电子束胶PMMA,4为金属铂,5为锯齿形自取向二硒化铂纳米带。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“包括”以及任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。
如图6所示,这种一维二硒化铂纳米带的制备方法,其包括以下步骤:
(1)在SiO2/Si衬底上旋涂聚甲基丙烯酸甲酯PMMA,使用电子束曝光产生纳米带图形;
(2)使用显影液溶解曝光部分的PMMA,并用定影液去除残留的显影液;
(3)使用电子束蒸发在衬底上淀积一层金属铂,使用无水丙酮溶解PMMA,将非纳米带区域的金属铂剥离掉,得到金属铂纳米带;
(4)将金属铂纳米带放置于管式炉的中间位置,在上游位置放置硒源,将硒源加热到220~300℃;
(5)密封管式炉的腔体并抽真空后,以流量为40~70sccm的氮气为载气,将腔体升温至420~500℃持续一小时后,自然冷却至室温,得到二硒化铂纳米带。
锯齿形取向的二硒化铂纳米带相较于扶手椅取向具有更低的表面能,因而在铂纳米带的硒化过程中会自发生长成为锯齿性取向的二硒化铂纳米带。本发明利用二硒化铂纳米带的这一特性,通过使用电子束蒸发在衬底上淀积一层金属铂,使用无水丙酮溶解PMMA,将非纳米带区域的金属铂剥离掉,得到金属铂纳米带,将金属铂纳米带放置于管式炉的中间位置,在上游位置放置硒源,将硒源加热到220~300℃,密封管式炉的腔体并抽真空后,以流量为40~70sccm的氮气为载气,将腔体升温至420~500℃持续一小时后,自然冷却至室温,得到二硒化铂纳米带,从而实现了锯齿形自取向的二硒化铂纳米带的制备。因此能够同时实现大规模、高质量制备和自取向制备。
优选地,所述步骤(1)中,旋涂电子束胶PMMA,型号RE300.40.9,,转速3000rpm,旋涂持续60s。
优选地,所述步骤(1)中,将旋涂后的衬底置于170℃下烘烤15min,通过电子束光刻工艺在衬底上产生纳米带图形。
优选地,所述步骤(1)中,电子束光刻工艺采用NB5型电子束光刻机。
优选地,所述步骤(2)中,使用体积比甲基异丁酮MIBK:乙醇=3:1的显影液进行显影,显影时间5~10min;使用无水乙醇的定影液进行定影,定影时间50s。
优选地,所述步骤(3)中,通过电子束蒸发工艺在已有纳米带图形的衬底上淀积3~10nm的金属铂。
优选地,所述步骤(4)中,硒源为纯度99.99%的硒粉。
优选地,所述步骤(5)中,氮气的纯度为99.99%。
还提供了这种制备方法制取的一维二硒化铂纳米带,为带有锯齿形自取向二硒化铂纳米带的衬底。
以下给出本发明的一个具体实施例。
一种一维二硒化铂纳米带,制备方法包括如下步骤:
S1.在SiO2/Si衬底上旋涂PMMA(Re300.40.9),转速3000rpm,旋涂持续60s;将旋涂后的衬底置于170℃下烘烤15min。
S2.通过电子束光刻工艺在衬底上产生纳米带图形;使用显影液(体积比MIBK:乙醇=3:1)进行显影,显影时间5~10min;使用定影液(无水乙醇)进行定影,定影时间50s。
S3.通过电子束蒸发工艺在已有纳米带图形的衬底上淀积3~10nm的金属铂;使用无水丙酮溶解PMMA,剥离非纳米带区域的金属铂薄膜,得到金属铂纳米带。
S4.将金属铂纳米带放置于管式炉的中间位置;在上游位置放置硒源(纯度为99.99%的硒粉),将硒源加热到220~300℃;密封管式炉的腔体并抽真空后,以流量为40~70sccm的氮气为载气,将腔体升温至420~500℃持续一小时后,自然冷却至室温,得到二硒化铂纳米带。
实施例中的原料均可通过市售得到,具体如下:
硒粉,纯度为99.99%;
氮气,纯度为99.99%;
铂颗粒(靶材);
电子束胶聚甲基丙烯酸甲酯PMMA(型号RE300.40.9);
NB5型电子束光刻机;
显影液(甲基异丁酮MIBK与乙醇混合溶液,体积比为3:1);
定影液(无水乙醇);
无水丙酮;
除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
锯齿形取向的二硒化铂纳米带相较于扶手椅取向具有更低的表面能,因而在铂纳米带的硒化过程中会自发生长成为锯齿性取向的二硒化铂纳米带。本发明的技术关键点在于,利用二硒化铂纳米带的这一特性,通过“生长铂纳米带”、“对铂纳米带进行硒化”的两步骤合成策略,实现了锯齿形自取向的二硒化铂纳米带的制备。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案的保护范围。

Claims (9)

1.一维二硒化铂纳米带的制备方法,其特征在于:其包括以下步骤:
(1)在SiO2/Si衬底上旋涂聚甲基丙烯酸甲酯PMMA,使用电子束曝光产生纳米带图形;
(2)使用显影液溶解曝光部分的PMMA,并用定影液去除残留的显影液;
(3)使用电子束蒸发在衬底上淀积一层金属铂,使用无水丙酮溶解PMMA,将非纳米带区域的金属铂剥离掉,得到金属铂纳米带;
(4)将金属铂纳米带放置于管式炉的中间位置,在上游位置放置硒源,将硒源加热到220~300℃;
(5)密封管式炉的腔体并抽真空后,以流量为40~70sccm的氮气为载气,将腔体升温至420~500℃持续一小时后,自然冷却至室温,得到二硒化铂纳米带。
2.根据权利要求1所述的一维二硒化铂纳米带的制备方法,其特征在于:所述步骤(1)中,旋涂电子束胶PMMA,型号RE300.40.9,转速3000rpm,旋涂持续60s。
3.根据权利要求2所述的一维二硒化铂纳米带的制备方法,其特征在于:所述步骤(1)中,将旋涂后的衬底置于170℃下烘烤15min,通过电子束光刻工艺在衬底上产生纳米带图形。
4.根据权利要求3所述的一维二硒化铂纳米带的制备方法,其特征在于:所述步骤(1)中,电子束光刻工艺采用NB5型电子束光刻机。
5.根据权利要求4所述的一维二硒化铂纳米带的制备方法,其特征在于:所述步骤(2)中,使用体积比甲基异丁酮MIBK:乙醇=3:1的显影液进行显影,显影时间5~10min;使用无水乙醇的定影液进行定影,定影时间50s。
6.根据权利要求5所述的一维二硒化铂纳米带的制备方法,其特征在于:所述步骤(3)中,通过电子束蒸发工艺在已有纳米带图形的衬底上淀积3~10nm的金属铂。
7.根据权利要求6所述的一维二硒化铂纳米带的制备方法,其特征在于:所述步骤(4)中,硒源为纯度99.99%的硒粉。
8.根据权利要求7所述的一维二硒化铂纳米带的制备方法,其特征在于:所述步骤(5)中,氮气的纯度为99.99%。
9.一维二硒化铂纳米带,其特征在于:其根据权利要求1-8任一项所述的一维二硒化铂纳米带的制备方法制取,为带有锯齿形自取向二硒化铂纳米带的衬底。
CN202111211600.9A 2021-10-18 2021-10-18 一维二硒化铂纳米带的制备方法及制备的二硒化铂纳米带 Pending CN113948612A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111211600.9A CN113948612A (zh) 2021-10-18 2021-10-18 一维二硒化铂纳米带的制备方法及制备的二硒化铂纳米带

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111211600.9A CN113948612A (zh) 2021-10-18 2021-10-18 一维二硒化铂纳米带的制备方法及制备的二硒化铂纳米带

Publications (1)

Publication Number Publication Date
CN113948612A true CN113948612A (zh) 2022-01-18

Family

ID=79331329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111211600.9A Pending CN113948612A (zh) 2021-10-18 2021-10-18 一维二硒化铂纳米带的制备方法及制备的二硒化铂纳米带

Country Status (1)

Country Link
CN (1) CN113948612A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786961A (zh) * 2022-12-15 2023-03-14 大连理工大学 一种缺陷态硒化铂材料及其制备方法和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115786961A (zh) * 2022-12-15 2023-03-14 大连理工大学 一种缺陷态硒化铂材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
Castellanos-Gomez et al. Van der Waals heterostructures
Yang et al. Progress in pulsed laser deposited two-dimensional layered materials for device applications
Wong et al. Recent progress in chemical vapor deposition growth of two-dimensional transition metal dichalcogenides
Ramanujam et al. Silicon nanowire growth and properties: a review
CN110416065B (zh) 二硫化钼/二硒化钨垂直异质结的制备方法
Zhao et al. Electrochemical synthesis of ordered CdTe nanowire arrays
US20100006820A1 (en) Silica nanowire comprising silicon nanodots and method of preparing the same
CN113948612A (zh) 一维二硒化铂纳米带的制备方法及制备的二硒化铂纳米带
Fang et al. Transformation of monolayer MoS 2 into multiphasic MoTe 2: Chalcogen atom-exchange synthesis route
Li et al. Synthesis and optical properties of three-dimensional nanowall ZnO film prepared by atmospheric pressure chemical vapor deposition
Kim et al. In-plane mixed-dimensional 2D/2D/1D MoS2/MoTe2/Mo6Te6 heterostructures for low contact resistance optoelectronics
CN102953048B (zh) 一种纳米掺杂结构及其制备方法
Tatsuoka et al. Syntheses of a Variety of Silicide Nanowire and Nanosheet Bundles
CN108640091B (zh) 一种化学气相沉积法制备二硒化钽纳米片的方法
KR101397451B1 (ko) Cu(In,Ga)Se2 나노로드 또는 나노와이어의 제조방법 및 이를 포함하는 재료
Huang et al. Effects of RTA temperatures on conductivity and micro-structures of boron-doped silicon nanocrystals in Si-rich oxide thin films
CN106185897A (zh) 一种在多种基底上可控制备石墨烯纳米带的方法
Miseikis et al. Perfecting the growth and transfer of large single-crystal CVD graphene: a platform material for optoelectronic applications
CN113990738A (zh) 一种二维材料横向马赛克异质结阵列及其制备和应用
CN114959635A (zh) 一种硫化锡/二硫化钼混合维度范德华异质结的制备方法
EP2261402B1 (en) Method for producing germanium semiconductor nanowires
CN114368729A (zh) 一种定向生长的GeSe2纳米线及其制备方法
Gong et al. Controlling solid–liquid–solid GeSn nanowire growth modes by changing deposition sequences of a-Ge: H layer and SnO2 nanoparticles
Hu et al. Growth of Cu2O flower/grass-like nanoarchitectures and their photovoltaic effects
CN114232083A (zh) 二维氮化镓晶体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination