CN113937615A - 用于激光器的冷却组件及冷却方法 - Google Patents

用于激光器的冷却组件及冷却方法 Download PDF

Info

Publication number
CN113937615A
CN113937615A CN202111044064.8A CN202111044064A CN113937615A CN 113937615 A CN113937615 A CN 113937615A CN 202111044064 A CN202111044064 A CN 202111044064A CN 113937615 A CN113937615 A CN 113937615A
Authority
CN
China
Prior art keywords
heat dissipation
laser
cooling
jet
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111044064.8A
Other languages
English (en)
Inventor
杨雪
吕坤鹏
王超
刘磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 11 Research Institute
Original Assignee
CETC 11 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 11 Research Institute filed Critical CETC 11 Research Institute
Priority to CN202111044064.8A priority Critical patent/CN113937615A/zh
Publication of CN113937615A publication Critical patent/CN113937615A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

本发明提出了一种用于激光器的冷却组件及冷却方法,冷却组件包括依次层叠设置的:盖板、射流层和微通道层,其中,盖板设有进口和出口,射流层由进口流入的散热介质经射流层时分支为多股,并呈射流状喷向微通道层,微通道层具有多条散热通道,每条散热通道用于接收喷出的至少部分散热介质,散热介质经散热通道从出口流出。根据本发明的用于激光器的冷却组件,采用射流冲击和微通道相结合的方式进行高功率器件散热,特别适用于高功率激光器板条散热,可以提高板条的换热系数、均匀板条表面温度。此外,本发明的用于激光器的冷却组件所需的冷却工质较少,还可以减轻激光器冷却系统的重量和体积。

Description

用于激光器的冷却组件及冷却方法
技术领域
本发明涉及冷却以及控温技术领域,尤其涉及一种用于激光器的冷却组件及冷却方法。
背景技术
近年来,随着激光介质材料、加工、激光二极管泵浦源、激光器设计和波前校正等技术的进步与发展,固体激光器的平均输出功率得到了很大的提高,连续波输出的激光已达百千瓦级,随之而来的问题是激光介质在受激辐射过程中产生越来越多的废热,需要从其表面散出,这就对激光器热管理提出了更高的要求,从而实现激光器的有效热管理,以达到高功率、高光束质量和可靠性高的精益目标。
目前,激光器冷却技术主要集中在两个方面:一是高热流密度冷却,二是冷却结构小型化,即在满足激光器散热需求、保证系统稳定的前提下,冷却系统尽量体积小、重量轻。激光器散热与目前迅猛发展的电子元件散热相比,相似之处在于热流密度都是越来越高,不同之处在于激光介质相对更脆弱,对环境、光学元件的平整度要求比较高。
传统的冷却方式已经不能满足实际的散热需求,高效固体激光冷却技术发展可以结合本身光学特性,借鉴电子元件散热机理,提出更多高效、紧凑的创新型冷却方式。目前,多种高效冷却散热技术被应用在各个领域,其中微通道冷却技术和射流冲击冷却技术备受关注。
微通道冷却技术中热沉在整体上具有较大的换热系数,这主要得益于它换热面积较大,比表面积较高、紧凑的结构,但是存在流动方向加热表面温升及通道压降较大的缺点。
射流冲击冷却方式中冷却介质在固体表面具有较高的压力梯度和冲击速度,这种特性让换热表面温度边界层变薄,也使得温度梯度增大,从而使得其换热得到有效的强化,而且射流冲击冷却方式的射流平均速度对传热系数在轴向和径向的分布有着较大的影响,因此,可以通过改变改变射流平均速度的方式有效的调节换热能力以适应热流边界分布复杂的情况。特别是对于局部高热流密度的电子元器件,能够有效消除局部热点,获得更好的温度稳定性。
单孔射流的优点是直接冲击到换热表面,驻点区的换热系数很高,但是存在离开驻点区的换热系数会急剧降低从而造成表面温度的变化的缺点,可以通过多孔排布来创建多个紧密间隔的驻点区,从而均匀冲击表面的温度。
发明内容
本发明要解决的技术问题是如何提高冷却组件的散热效率,本发明提出一种用于激光器的冷却组件及冷却方法。
根据本发明实施例的用于激光器的冷却组件,包括依次层叠设置的:
盖板,设有进口和出口;
射流层,由进口流入的散热介质经射流层时分支为多股,并呈射流状喷向微通道层;
微通道层,微通道层具有多条散热通道,每条散热通道用于接收喷出的至少部分散热介质,散热介质经散热通道从出口流出。
根据本发明实施例的用于激光器的冷却组件,采用射流冲击和微通道相结合的方式进行高功率器件散热,特别适用于高功率激光器板条散热,可以提高板条的换热系数、均匀板条表面温度。此外,本发明实施例的用于激光器的冷却组件所需的冷却工质较少,还可以减轻激光器冷却系统的重量和体积。
根据本发明的一些实施例,射流层设有射流腔和与射流腔连通的多个射流孔;
由进口流入的散热介质进入射流腔后,经多个射流孔形成多股射流喷出。
在本明发的一些实施例中,多个射流孔的正投影呈矩阵状排列,每条散热通道平行于矩阵的宽或长设置,且每条散热通道至少与部分射流孔正对设置,每条散热通道上与射流孔正对的位置处设有接收孔。
根据本发明的一些实施例,多个射流孔均沿射流层的厚度方向贯通射流层。
在本明发的一些实施例中,射流层设有与出口连通的汇流口,从微通道层流出的散热介质通过汇流口从出口流出。
根据本发明的一些实施例,微通道层设有与多条散热通道连通的微通道腔,经多条散热通道流出的散热介质经微通道腔汇流后流出。
在本明发的一些实施例中,散热通道的延伸方向平行于微通道层的宽度方向,多条散热通道沿微通道层的长度方向间隔设置。
根据本发明实施例的一种激光器,包括:冷却组件,冷却组件为根据如本发明一些实施例中的用于激光器的冷却组件。
根据本发明实施例的激光器,包括本发明实施例中的用于激光器的冷却组件,采用射流冲击和微通道相结合的方式进行高功率器件散热,可以提高激光器板条的换热系数、均匀板条表面温度。此外,本发明实施例的用于激光器的冷却组件所需的冷却工质较少,还可以减轻激光器的重量和体积。
根据本发明实施例的一种激光器的冷却方法,方法采用如本发明一些实施例中的用于激光器的冷却组件对激光器进行降温冷却,方法包括:
使散热介质通过进口进入冷却组件;
散热介质经射流层时分支为多股,并呈射流状喷出,以对激光器进行射流冷却;
经射流层喷出的散热介质流入多条散热通道,以对激光器进行微通道散热;
对激光器冷却后的散热介质从出口流出。
根据本发明实施例的激光器,包括本发明实施例中的用于激光器的冷却组件,采用射流冲击和微通道相结合的方式进行高功率器件散热,可以提高激光器板条的换热系数、均匀板条表面温度。此外,用于激光器的冷却组件所需的冷却工质较少,还可以减轻激光器的重量和体积。
在本明发的一些实施例中,散热介质为去离子水,在散热介质流入冷却组件之前,使散热介质的温度处于预设温度范围内。
附图说明
图1为根据本发明实施例的用于激光器的冷却组件的结构透视图;
图2为根据本发明实施例的用于激光器的冷却组件的爆炸图;
图3为根据本发明实施例的用于激光器的冷却组件的射流层的结构示意图;
图4为根据本发明实施例的用于激光器的冷却组件的微通道层的结构示意图;
图5为根据本发明实施例的用于激光器的冷却组件的剖视图;
图6为根据本发明实施例的冷却方法的流程图。
附图标记:
冷却组件1000,
盖板10,进口110,出口120,
射流层20,射流腔210,射流孔220,汇流口230,
微通道层30,散热通道310,接收孔320。
具体实施方式
为更进一步阐述本发明为达成预定目的所采取的技术手段及功效,以下结合附图及较佳实施例,对本发明进行详细说明如后。
随着技术的发展,固体激光器的输出功率正在日益增大,随之而来的问题是激光介质在受激辐射过程中产生越来越多的废热,需要从其表面散出,这就对激光器热管理提出了更高的要求,从而实现激光器的有效热管理,以达到高功率、高光束质量和可靠性高的精益目标。因此,需要更优化的设计来提升散热组件的散热效率。
本发明旨在一定程度上解决上述技术问题,提出了一种用于激光器的冷却组件1000及冷却方法。
如图2所示,根据本发明实施例的用于激光器的冷却组件1000,包括依次层叠设置的:盖板10、射流层20和微通道层30,其中,盖板10设有进口110和出口120,由进口110流入的散热介质经射流层20时分支为多股,并呈射流状喷向微通道层30,微通道层30具有多条散热通道310,每条散热通道310用于接收喷出的至少部分散热介质,散热介质经散热通道310从出口120流出。
根据本发明实施例的用于激光器的冷却组件1000,采用射流冲击和微通道相结合的方式进行高功率器件散热,特别适用于高功率激光器板条散热,可以提高板条的换热系数、均匀板条表面温度。此外,本发明实施例的用于激光器的冷却组件1000所需的冷却工质较少,还可以减轻激光器冷却系统的重量和体积。
如图2、图3所示,根据本发明的一些实施例,射流层20设有射流腔210和与射流腔210连通的多个射流孔220,由进口110流入的散热介质进入射流腔210后,经多个射流孔220形成多股射流喷出。由此,通过将散热介质以射流的形式喷出,使得散热介质在固体表面具有较高的压力梯度和冲击速度,能够有效消除局部热点,获得更好的温度稳定性。
如图2、图4所示,在本明发的一些实施例中,多个射流孔220的正投影呈矩阵状排列,每条散热通道310平行于矩阵的宽或长设置,且每条散热通道310至少与部分射流孔220正对设置,每条散热通道310上与射流孔220正对的位置处设有接收孔320。
值得说明的是,本发明实施例中多个射流孔220的正投影为目光垂直于冷却组件1000的长度和宽度方向的平面,顺着冷却组件1000的厚度方向看向所述冷却组件1000所得到的投影。
在上述技术方案中,通过将射流孔220以矩阵状排列,通过多孔排布来创建多个紧密间隔的驻点区,从而均匀冲击表面的温度。同时将散热通道310的接收孔320与射流孔220正对设置,减小流体从射流层20流入微通道层30流速的损失,提升散热的效果。
值得说明的是,射流孔220的排布和微通道层30的设计也有多种选择,例如,射流孔220也可以以矩阵排布之外的形式,如菱形或其他几何形状或仿生结构,来实现减阻等效果,从而提高散热效率。而微通道层30上的接收孔320可以设置为与射流孔220相同的圆孔状,也可以将散热通道310制成板状的散热鳍片,其上部就形成了开放的空间,相邻散热通道310上方的开放空间也可以作为接收孔320接受射流孔220射出的射流。
如图3所示,根据本发明的一些实施例,多个射流孔220均沿射流层20的厚度方向贯通射流层20。
如图3所示,在本明发的一些实施例中,射流层20设有与出口120连通的汇流口230,从微通道层30流出的散热介质通过汇流口230从出口120流出。由此,通过汇流口230,散热介质得以通过盖板10离开散热介质,从而带走热量,并且由于汇流口230与出口120直接相连,也可以减小散热介质的流动阻力,进一步提高冷却组件1000的散热效率。
如图2、图4所示,根据本发明的一些实施例,微通道层30设有与多条散热通道310连通的微通道腔,经多条散热通道310流出的散热介质经微通道腔汇流后流出。
如图4所示,在本明发的一些实施例中,散热通道310的延伸方向平行于微通道层30的宽度方向,多条散热通道310沿微通道层30的长度方向间隔设置。
根据本发明实施例的一种激光器,包括:冷却组件1000,冷却组件1000为根据如上所述的用于激光器的冷却组件1000。
根据本发明实施例的激光器,包括本发明实施例中的用于激光器的冷却组件1000,采用射流冲击和微通道相结合的方式进行高功率器件散热,可以提高激光器板条的换热系数、均匀板条表面温度。此外,本发明实施例的用于激光器的冷却组件1000所需的冷却工质较少,还可以减轻激光器的重量和体积。
根据本发明实施例的一种激光器的冷却方法,方法采用如本发明一些实施例中的用于激光器的冷却组件1000对激光器进行降温冷却,如图5、图6所示,方法包括:
S101:使散热介质通过进口进入冷却组件(箭头A)。
S102:散热介质经射流层时(箭头B)分支为多股(箭头C),并呈射流状喷出,以对激光器进行射流冷却。
S103:经射流层喷出的散热介质流入多条散热通道(箭头D),以对激光器进行微通道散热。
S104:对激光器冷却后的散热介质(箭头E)从出口流出。
根据本发明实施例的激光器,包括本发明实施例中的用于激光器的冷却组件1000,采用射流冲击和微通道相结合的方式进行高功率器件散热,可以提高激光器板条的换热系数、均匀板条表面温度。此外,本发明实施例的用于激光器的冷却组件1000所需的冷却工质较少,还可以减轻激光器的重量和体积。
在本明发的一些实施例中,散热介质为去离子水,在散热介质流入冷却组件1000之前,使散热介质的温度处于预设温度范围内。
下面参照附图具体的实施例详细描述根据本发明的用于激光器的冷却组件1000及冷却方法。值得理解的是,下述描述仅是示例性描述,而不是对本发明的具体限制。
本发明利用微通道和射流冲击各自的优点,设计了一种新型高功率板条冷却组件1000,整体结构如图1和图2所示,此结构有盖板10、射流层20以及微通道层30,各部门加工完成后用扩散焊的方式焊接在一起,以防此冷却组件1000漏水。
本发明的冷却组件1000的冷却原理为:散热介质在进入冷却组件1000之前,需降温处理,所选取的冷却介质为去离子水,进入冷却结构之前,控温在180℃,从盖板10的进口110进入,经过射流层20,通过射流腔210流入到各个射流孔220垂直地喷射出来,冲击到冷却组件1000壁面,起到射流冲击换热的作用,散热介质在微通道层30沿着散热通道310水平流动,增大了换热面积,起到对流换热的作用,同时均匀表面冲击温度,从而带走热源产生的大量热量,最后从冷却组件1000汇流口230、出口120流出。
此结构采用射流冲击和微通道相结合的方式进行高功率器件散热,特别适用于高功率激光器板条散热,可以提高板条的换热系数、均匀板条表面温度,此外,还可以减轻激光器冷却系统的重量和体积。
通过具体实施方式的说明,应当可对本发明为达成预定目的所采取的技术手段及功效得以更加深入且具体的了解,然而所附图示仅是提供参考与说明之用,并非用来对本发明加以限制。

Claims (10)

1.一种用于激光器的冷却组件,其特征在于,包括依次层叠设置的:
盖板,设有进口和出口;
射流层,由所述进口流入的所述散热介质经所述射流层时分支为多股,并呈射流状喷向微通道层;
微通道层,所述微通道层具有多条散热通道,每条所述散热通道用于接收喷出的至少部分所述散热介质,所述散热介质经所述散热通道从所述出口流出。
2.根据权利要求1所述的用于激光器的冷却组件,其特征在于,所述射流层设有射流腔和与所述射流腔连通的多个射流孔;
由所述进口流入的所述散热介质进入所述射流腔后,经多个所述射流孔形成多股射流喷出。
3.根据权利要求2所述的用于激光器的冷却组件,其特征在于,多个所述射流孔的正投影呈矩阵状排列,每条所述散热通道平行于所述矩阵的宽或长设置,且每条所述散热通道至少与部分射流孔正对设置,每条所述散热通道上与所述射流孔正对的位置处设有接收孔。
4.根据权利要求2所述的用于激光器的冷却组件,其特征在于,多个所述射流孔均沿所述射流层的厚度方向贯通所述射流层。
5.根据权利要求1所述的用于激光器的冷却组件,其特征在于,所述射流层设有与所述出口连通的汇流口,从所述微通道层流出的所述散热介质通过所述汇流口从所述出口流出。
6.根据权利要求1所述的用于激光器的冷却组件,其特征在于,所述微通道层设有与多条所述散热通道连通的微通道腔,经多条所述散热通道流出的所述散热介质经所述微通道腔汇流后流出。
7.根据权利要求1所述的用于激光器的冷却组件,其特征在于,所述散热通道的延伸方向平行于所述微通道层的宽度方向,多条所述散热通道沿所述微通道层的长度方向间隔设置。
8.一种激光器,其特征在于,包括:冷却组件,所述冷却组件为根据如权利要求1-7中任一项所述的用于激光器的冷却组件。
9.一种激光器的冷却方法,其特征在于,所述方法采用如权利要求1-7中任一项所述的用于激光器的冷却组件对所述激光器进行降温冷却,所述方法包括:
使散热介质通过所述进口进入所述冷却组件;
所述散热介质经所述射流层时分支为多股,并呈射流状喷出,以对所述激光器进行射流冷却;
经所述射流层喷出的所述散热介质流入多条所述散热通道,以对所述激光器进行微通道散热;
对所述激光器冷却后的所述散热介质从所述出口流出。
10.根据权利要求9所述的冷却方法,其特征在于,所述散热介质为去离子水,在所述散热介质流入所述冷却组件之前,使所述散热介质的温度处于预设温度范围内。
CN202111044064.8A 2021-09-07 2021-09-07 用于激光器的冷却组件及冷却方法 Pending CN113937615A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111044064.8A CN113937615A (zh) 2021-09-07 2021-09-07 用于激光器的冷却组件及冷却方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111044064.8A CN113937615A (zh) 2021-09-07 2021-09-07 用于激光器的冷却组件及冷却方法

Publications (1)

Publication Number Publication Date
CN113937615A true CN113937615A (zh) 2022-01-14

Family

ID=79275241

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111044064.8A Pending CN113937615A (zh) 2021-09-07 2021-09-07 用于激光器的冷却组件及冷却方法

Country Status (1)

Country Link
CN (1) CN113937615A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115714297A (zh) * 2023-01-06 2023-02-24 中国电子科技集团公司第十一研究所 一种非主动温控的空间固体激光器组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629850A (zh) * 2013-12-04 2014-03-12 中国科学院光电技术研究所 一种风冷、液冷两用散热器用液冷头
CN107329546A (zh) * 2017-07-13 2017-11-07 电子科技大学 一种散热装置、散热系统及散热装置的实验系统和方法
CN108807309A (zh) * 2018-06-08 2018-11-13 四川大学 一种具有射流结构的自相似微通道热沉
CN109524376A (zh) * 2018-09-18 2019-03-26 华中科技大学 一种多歧式射流微通道芯片液冷散热装置
CN111328245A (zh) * 2020-02-14 2020-06-23 西安交通大学 折返式射流微通道散热器及散热方法
CN111372422A (zh) * 2020-01-09 2020-07-03 西安交通大学 一种阵列微通道冷板制作方法
CN113286497A (zh) * 2021-05-25 2021-08-20 电子科技大学 一种带表面微槽的射流微通道散热器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103629850A (zh) * 2013-12-04 2014-03-12 中国科学院光电技术研究所 一种风冷、液冷两用散热器用液冷头
CN107329546A (zh) * 2017-07-13 2017-11-07 电子科技大学 一种散热装置、散热系统及散热装置的实验系统和方法
CN108807309A (zh) * 2018-06-08 2018-11-13 四川大学 一种具有射流结构的自相似微通道热沉
CN109524376A (zh) * 2018-09-18 2019-03-26 华中科技大学 一种多歧式射流微通道芯片液冷散热装置
CN111372422A (zh) * 2020-01-09 2020-07-03 西安交通大学 一种阵列微通道冷板制作方法
CN111328245A (zh) * 2020-02-14 2020-06-23 西安交通大学 折返式射流微通道散热器及散热方法
CN113286497A (zh) * 2021-05-25 2021-08-20 电子科技大学 一种带表面微槽的射流微通道散热器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115714297A (zh) * 2023-01-06 2023-02-24 中国电子科技集团公司第十一研究所 一种非主动温控的空间固体激光器组件

Similar Documents

Publication Publication Date Title
US9252069B2 (en) High power module cooling system
CN109524376B (zh) 一种多歧式射流微通道芯片液冷散热装置
US8427832B2 (en) Cold plate assemblies and power electronics modules
US7032651B2 (en) Heat exchanger
EP2291859A1 (en) Cooling system, in particular for electronic structural units
WO2000011922A1 (en) Heat sink, and semiconductor laser and semiconductor laser stacker using the same
KR102296543B1 (ko) 수냉식 히트싱크
WO2024032028A1 (zh) 一种具有微通道结构的激光器冷却热沉
CN115579715B (zh) 光学元件、冷却装置和方法、冷却流道结构及其制造方法
CN113937615A (zh) 用于激光器的冷却组件及冷却方法
CN111148409B (zh) 一种射流微通道冷板
EP3492978B1 (en) Colour wheel device and projector
EP3300189B1 (en) Solid laser amplification device
CN108712848B (zh) 一种内嵌式肋壁冲孔射流强化换热散热器
JP3462598B2 (ja) ヒートシンク付レーザダイオードアレイ
JP2002353551A (ja) 半導体レーザ装置
CN210806309U (zh) 一种高散热性能的半导体激光器宏通道水冷散热器
EP3288127B1 (en) Solid laser amplification device
CN219457593U (zh) 均温板
CN219677767U (zh) 运用于激光器泵源的冷却模组
CN217642122U (zh) 一种泵浦源散热结构
CN114094435A (zh) 3d打印的半导体激光器微通道散热装置
CN114025142B (zh) 一种液冷散热冷头、液冷散热系统及激光电视
CN218497458U (zh) 液冷板、导流件及液冷服务器
CN116667138A (zh) 运用于激光器泵源的冷却模组及激光器散热方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination