CN113937176A - 一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法 - Google Patents

一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法 Download PDF

Info

Publication number
CN113937176A
CN113937176A CN202111164439.4A CN202111164439A CN113937176A CN 113937176 A CN113937176 A CN 113937176A CN 202111164439 A CN202111164439 A CN 202111164439A CN 113937176 A CN113937176 A CN 113937176A
Authority
CN
China
Prior art keywords
layer
superlattice
inas
thickness
transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111164439.4A
Other languages
English (en)
Other versions
CN113937176B (zh
Inventor
陈意桥
于天
陈超
张国祯
傅祥良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Kunyuan Photoelectric Co ltd
Original Assignee
Suzhou Kunyuan Photoelectric Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Kunyuan Photoelectric Co ltd filed Critical Suzhou Kunyuan Photoelectric Co ltd
Priority to CN202111164439.4A priority Critical patent/CN113937176B/zh
Publication of CN113937176A publication Critical patent/CN113937176A/zh
Application granted granted Critical
Publication of CN113937176B publication Critical patent/CN113937176B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/16Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/12Production of homogeneous polycrystalline material with defined structure directly from the gas state
    • C30B28/14Production of homogeneous polycrystalline material with defined structure directly from the gas state by chemical reaction of reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

本发明公开了一种InAs/AlxGa1‑xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法,其中缓变超晶格过渡层由多个超晶格原胞重复堆叠N个周期形成,超晶格原胞包括InAs层,第一InAsxSb1‑x层,AlxGa1‑xSb层,第二InAsxSb1‑x层,相邻超晶格原胞对应层的厚度、AlxGa1‑xSb组分单调渐变,采用本发明结构的缓变超晶格过渡层及势垒型红外探测器,使过渡层的能带结构过渡平滑,消除因材料参数突变而产生的带阶,提高器件载流子输运性能与量子效率。

Description

一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的 InAs/GaSb势垒型红外探测器及生长方法
技术领域
本发明属于半导体材料领域,具体是一种InAs/AlxGa1-xSb缓变过渡层超晶格及其生长方法,该过渡层可被应用于中波、长波红外波段锑化物二类超晶格红外探测器,同时还涉及具有该缓变过渡层的 InAs/GaSb势垒型红外探测器。
背景技术
锑化物II类超晶格由于拥有生长技术成熟、量子效率高以及能带调控灵活等优点,成为红外探测器的优选材料之一。其中InAs/GaSb 超晶格最具有代表性,该结构中电子被限制在InAs层,空穴被限制在GaSb层,这一点使我们可以对电子与空穴能级独立进行调制,技术上通过调节各层厚度,可以实现在2-30μm范围内的红外光吸收。
理论上,由InAs/GaSb超晶格作为吸收层、InAs/AlSb超晶格作为势垒层材料构成的势垒型红外探测器可以将器件耗尽层限制在势垒层中,这种结构能够抑制产生-复合电流,从而大幅减小器件暗电流,提高探测率。为了形成这种结构,吸收层和势垒层会用到不同的材料与组分,而这种材料与组分的突变会导致吸收层与势垒层之间产生能带带阶,成为载流子输运障碍,导致器件量子效率降低。因此,锑化物势垒型II类超晶格探测器中有必要引入超晶格过渡层结构,使能带结构从InAs/GaSb吸收层过渡到势垒层。
发明内容
本发明的目的在于针对现有技术中InAs/GaSb超晶格作为吸收层、InAs/AlSb超晶格作为势垒层材料构成的势垒型红外探测器在吸收层和势垒层间产生能带带阶,成为截流子输运障碍,导致器件量子效率降低的不足,提供一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法,其能有效减小能带带阶,提高器件载流子输运性能和量子效率。
本发明提供一种InAs/AlxGa1-xSb缓变超晶格过渡层,其特征在于:由多个超晶格原胞重复堆叠N个周期形成,超晶格原胞包括 InAs层,第一InAsxSb1-x层,AlxGa1-xSb层,第二InAsxSb1-x层,相邻超晶格原胞对应层的厚度、AlxGa1-xSb组分单调渐变;
第n周期(2≦n≦N)过渡层超晶格原胞内各层厚度如下
InAs层
Figure BDA0003291459300000021
第一InAsSb层
Figure BDA0003291459300000022
AlxGa1-xSb层
Figure BDA0003291459300000023
Figure BDA0003291459300000024
第二InAsSb层
Figure BDA0003291459300000025
第n周期超晶格原胞内AlxGa1-xSb层中Al平均组分
Figure BDA0003291459300000026
Figure BDA0003291459300000027
其中DInAs、DInAsSb1、DAlxGa1-xSb、DInAsSb2依次为过渡层首个超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度,D′InAs、D′InAsSb1、D′AlxGa1-xSb、D′InAsSb2依次为过渡层末尾的超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度。 XAlGaSb为过渡层首个超晶格原胞AlxGa1-xSb层Al组分,X′AlGaSb为过渡层末尾的超晶格原胞AlxGa1- xSb层Al组分;
过渡层首个超晶格原胞具有和所接触的对象完全一致的超晶格原胞结构,过渡层末尾的超晶格原胞具有和所接触的对象完全一致的超晶格原胞结构;
缓变超晶格过渡层首个和末尾的超晶格原胞所接触的对象均为 InAs/AlxGa1-xSb超晶格;所接触的对象中InAs层厚度
Figure BDA0003291459300000031
第一InAsSb层厚度0nm<dInAsSb1≤0.5nm, AlxGa1-xSb层厚度0<dAlGaSb≤5nm,第二InAsSb层厚度0< dInAsSb2≤0.5nm,AlxGa1-xSb层Al组分0≤x≤1,且首个和末尾的所接触的对象中Al组分不相等。
一种InAs/AlxGa1-xSb缓变超晶格过渡层,采用如下生长方法获得:采用分子束外延(MBE)方法生长,源材料包括In、Ga、Al、As、Sb,各源分开放置且独立控温加热,以产生相应元素的蒸气,通过控制Ga、Al源炉温度控制超晶格原胞各层的厚度与组分及生长速率,具体如下:
第n周期(2≦n≦N)过渡层超晶格原胞内各层厚度如下
InAs层
Figure BDA0003291459300000032
第一InAsSb层
Figure BDA0003291459300000033
AlxGa1-xSb层
Figure BDA0003291459300000041
Figure BDA0003291459300000042
第二InAsSb层
Figure BDA0003291459300000043
第n周期超晶格原胞内AlxGa1-xSb层中Al平均组分
Figure BDA0003291459300000044
Figure BDA0003291459300000045
其中DInAs、DInAsSb1、DAlxGa1-xSb、DInAsSb2依次为过渡层首个超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度,D′InAs、D′InAsSb1、D′AlxGa1-xSb、D′InAsSb2依次为过渡层末尾的超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度。 XAlGaSb为过渡层首个超晶格原胞AlxGa1-xSb层Al组分,X′AlGaSb为过渡层末尾的超晶格原胞AlxGa1- xSb层Al组分。
且Al与Ga的生长速率之和r不随生长时间变化,是恒定的,
通过控制Ga和Al源炉温度满足所述过渡层超晶格原胞内各层厚度、Al平均组分x及Al与Ga的生长速率的要求,Ga和Al源炉温度与生长时间变化关系如下:
Ga源炉温度
Figure BDA0003291459300000046
Al源炉温度
Figure BDA0003291459300000047
其中a为与元素种类相关的常数,对于Ga和Al来说a≈0.023, t为生长时间,Δt为InAs/AlxGa1-xSb缓变超晶格过渡层生长总时长,式中
Figure BDA0003291459300000048
Figure BDA0003291459300000049
两个常数分别为Ga和Al各自在生长速率r对应的源炉温度。
本发明提供一种InAs/AlxGa1-xSb缓变超晶格过渡层的生长方法,采用分子束外延(MBE)方法生长,源材料包括In、Ga、Al、As、Sb,各源分开放置且独立控温加热,以产生相应元素的蒸气,通过控制源炉温度控制超晶格原胞各层的厚度与组分使其满足下列要求,
第n周期(2≦n≦N)过渡层超晶格原胞内各层厚度如下
InAs层
Figure BDA0003291459300000051
第一InAsSb层
Figure BDA0003291459300000052
Figure BDA0003291459300000053
AlxGa1-xSb层
Figure BDA0003291459300000054
Figure BDA0003291459300000055
第二InAsSb层
Figure BDA0003291459300000056
第n周期超晶格原胞内AlxGa1-xSb层中Al平均组分
Figure BDA0003291459300000057
Figure BDA0003291459300000058
其中DInAs、DInAsSb1、DAlxGa1-xSb、DInAsSb2依次为过渡层首个超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度,D′InAs、D′InAsSb1、D′AlxGa1-xSb、D′InAsSb2依次为过渡层末尾的超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度。 XAlGaSb为过渡层首个超晶格原胞AlxGa1-xSb层Al组分,X′AlGaSb为过渡层末尾的超晶格原胞AlxGa1- xSb层Al组分;
且Al与Ga的生长速率之和r不随生长时间变化,是恒定的,
通过控制Ga和Al源炉温度满足所述过渡层超晶格原胞内各层厚度、Al平均组分x及Al与Ga的生长速率的要求,Ga和Al源炉温度与生长时间变化关系如下:
Ga源炉温度
Figure BDA0003291459300000061
Al源炉温度
Figure BDA0003291459300000062
其中a为与元素种类相关的常数,对于Ga和Al来说a≈0.023, t为生长时间,Δt为InAs/AlxGa1-xSb缓变超晶格过渡层生长总时长,式中
Figure BDA0003291459300000063
Figure BDA0003291459300000064
两个常数分别为Ga和Al各自在生长速率r对应的源炉温度;
Al与Ga的生长速率之和r为0nm/s<r≤0.2nm/s;或Al与Ga的生长速率之和r为0.1;
包括InAs/GaSb超晶格吸收层和InAs/AlSb超晶格势垒层,所述的InAs/AlxGa1-xSb缓变超晶格过渡层采用权利要求1-4任一项所述的 InAs/AlxGa1-xSb缓变超晶格过渡层,所述缓变超晶格过渡层插入在 InAs/GaSb超晶格吸收层和InAs/AlSb超晶格势垒层之间,与超晶格吸收层接触的InAs/AlxGa1-xSb缓变超晶格过渡层的第1周期生长厚度及材料组分与吸收层超晶格生长厚度与材料组分一致,与势垒层接触的InAs/AlxGa1-xSb缓变超晶格过渡层的第1周期生长厚度及材料组分与势垒层超晶格生长厚度与材料组分一致,吸收层超晶格原胞8内各层厚度依次为:InAs层(5)dInAs,第一InAsSb层(6a)dInAsSb1,GaSb 层(7)dGasb,第二InAsSb层(6b)dInAsab2;势垒层超晶格原胞(12)内各层依次为:InAs层(9)d′InAs,第一InAsSb层(10a) d′InAsSb1,AlSb层(11)d′AlSb,第二InAsSb层(10)bd′InAsSb2
第n周期(2≦n≦N)过渡层超晶格原胞内各层厚度如下:
InAs层
Figure BDA0003291459300000071
第一InAsSb层
Figure BDA0003291459300000072
AlxGa1-xSb层
Figure BDA0003291459300000073
第二InAsSb层
Figure BDA0003291459300000074
第n周期过渡层超晶格原胞内AlxGa1-xSb层中Al组分
Figure BDA0003291459300000075
用分子束外延(MBE)方法生长,源材料包括In、Ga、Al、As、 Sb,各源分开放置且独立控温加热,以产生相应元素的蒸气,通过控制源炉温度控制超晶格原胞各层的厚度与组分,具体如下:
InAs/GaSb超晶格吸收层、InAs/AlxGa1-xSb超晶格过渡层、 InAs/AlSb超晶格势垒层依次生长,
第1周期生长厚度及材料组分与吸收层超晶格生长厚度与材料组分一致;
第n周期(2≦n≦N)过渡层超晶格原胞内各层厚度如下式(2):
InAs层
Figure BDA0003291459300000076
第一InAsSb层
Figure BDA0003291459300000077
AlxGa1-xSb层
Figure BDA0003291459300000078
第二InAsSb层
Figure BDA0003291459300000079
第n周期超晶格原胞内AlxGa1-xSb层中Al组分
Figure BDA00032914593000000710
且Al与 Ga的速率之和r恒定,
通过控制源炉温度使其随着生长时间变化以得到满足式(2)条件的超晶格过渡层,Ga和Al源炉温度与生长时间关系如式(1): (2)Ga源炉温度
Figure BDA0003291459300000081
Al源炉温度
Figure BDA0003291459300000082
其中a=0.023,t为生长时间,Δt为InAs/AlxGa1-xSb缓变超晶格过渡层生长总时长,式中
Figure BDA0003291459300000083
Figure BDA0003291459300000084
两个常数分别为速率r对应的Ga 和Al源炉温度;
0nm/s<r≦0.2nm/s,或r=0.1nm/s。
与现有技术相比,本发明中InAs/AlxGa1-xSb缓变超晶格过渡层结构的有益效果是:相邻周期内的超晶格原胞的厚度渐变、组分渐变,使过渡层的能带结构过渡平滑,消除因材料参数突变而产生的带阶,提高器件载流子输运性能与量子效率。
缓变超晶格过渡层的生长方法,在超晶格生长过程中采用微分的方法通过控制炉源的温度控制生长厚度与组分,生长出的过渡层相邻周期的超晶格原胞的厚度与组分实现了渐变,可通过控制温度变化调整渐变的常数,使缓变超晶格过渡层结构的生长具有可控性和调节性。
采用本发明方法制备红外探测器结构,通过控制源炉温度使Ga源炉温度
Figure BDA0003291459300000085
Al源炉温度
Figure BDA0003291459300000086
使 Ga、Al源炉温度随时间变化而变化控制材料的生长速率同时控制组分,且采用对数的方法进行处理,因此,使得超晶格原胞内各层的厚度达到了微分级的变化。实现器件吸收层与势垒层之间能带结构平滑过渡,消除因材料参数突变而产生的带阶,提高器件载流子输运性能与量子效率。
附图说明
图1是本发明的超晶格结构示意图。
图2是本发明的超晶格原胞的结构示意图。
图3是本发明的应用结构示意图。
图4是本发明的能带结构示意图,a为应用了本发明的结构,b为未应用本发明的结构。
图5是本发明使用不同速率生长后材料表面原子力显微镜照片对比图,照片视场为20μm×20μm,图片a为实施例4材料表面原子力显微镜照片,其生长速率r为0.1nm/s,b为实施例5材料表面原子力显微镜照片,它的生长速率为0.27nm/s。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,用以下示例性实施例结合附图对本发明进行进一步说明。
如图1-4所示,本发明所述InAs/AlxGa1-xSb缓变超晶格过渡层由多个超晶格原胞4重复堆叠形成,超晶格原胞4周期数为N,超晶格原胞包括InAs层1,第一InAsxSb1-x层2a,AlxGa1-xSb层3,第二InAsxSb1-x层2b,相邻超晶格原胞5之间的厚度、AlxGa1-xSb组分中Al和Ga的组分渐变且变化趋势满足单调性。
第n周期(2≦n≦N)过渡层超晶格原胞内各层厚度如下
InAs层
Figure BDA0003291459300000101
第一InAsSb层
Figure BDA0003291459300000102
AlxGa1-xSb层
Figure BDA0003291459300000103
Figure BDA0003291459300000104
第二InAsSb层
Figure BDA0003291459300000105
第n周期超晶格原胞内AlxGa1-xSb层中Al平均组分
Figure BDA0003291459300000106
Figure BDA0003291459300000107
其中DInAs、DInAsSb1、DAlxGa1-xSb、DInAsSb2依次为过渡层首个超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度,D′InAs、D′InAsSb1、D′AlxGa1-xSb、D′InAsSb2依次为过渡层末尾的超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度。 XAlGaSb为过渡层首个超晶格原胞AlxGa1-xSb层Al组分,X′AlGaSb为过渡层末尾的超晶格原胞AlxGa1- xSb层Al组分。
采用上述结构的InAs/AlxGa1-xSb缓变超晶格过渡层,超晶格的厚度和组分是渐变的,缓变超晶格过渡层内的材料组分随着过渡层生长连续增加或连续减少,把过渡层内的阶梯进行了微分,从而把离散的过渡变为连续过渡,缓变超晶格过渡层内没有阶梯,因此,过渡层的能带变化平滑,超晶格过渡层内没有阻挡,载流子输运在过渡层内无障碍,载流子可以顺畅通过过渡层。
通过控制厚度控制带隙,厚度增加会使带隙减小,厚度减小会使带隙增大,组分变化同样也会影响能带结构,但和厚度带来的影响有区别,组分的变化会在改变带隙大小的同时改变能带整体高度,通过控制厚度、组分、带隙来调整能带结构,过渡层中各周期中超晶格原胞的厚度、组分是渐变的,相邻超晶格原胞间厚度、组分无阶梯,每个阶梯内的厚度和材料组分不是固定的,是渐渐变化的,保证能带平滑。
本发明中,采用分子束外延(MBE)方法制备本发明的缓变超晶格过渡层。在进行分子束外延生长时,在超高真空腔室中,通过控制源炉温度控制蒸汽压使超晶格过渡层各超晶格原胞的厚度、组分逐渐变化,使Al与Ga的速率之和r时刻保持恒定。为达到上述要求,控制 Ga和Al源炉温度,使随Ga和Al源炉温度和生长时间满足如下条件: Ga源炉温度
Figure BDA0003291459300000111
Al源炉温度
Figure BDA0003291459300000112
其中a=0.023,t为生长时间,Δt为InAs/AlxGa1-xSb缓变超晶格过渡层生长总时长,式中常数
Figure BDA0003291459300000113
为Ga的生长速率为r时对应的Ga 源炉温度,常数
Figure BDA0003291459300000114
为Al的生长速率不r时对应的Ga源炉温度。
当然,过渡层超晶格原胞的生长周期越长,得到的能带越平滑,但随之而来的是所消耗的生长时间很长,越不经济,生长周期越小,能太滑不平滑,综合经济性和能带光滑性要求,优选周期数N为 40-60。
本发明还提供一种具有InAs/AlxGa1-xSb缓变超晶格过渡层的 InAs/GaSb势垒型红外探测器,包括InAs/GaSb超晶格吸收层和 InAs/AlSb超晶格势垒层及前述的InAs/AlxGa1-xSb缓变超晶格过渡层,过渡层位于InAs/GaSb超晶格吸收层和InAs/AlSb超晶格势垒层之间,与吸收层接触的InAs/AlxGa1-xSb缓变超晶格过渡层的超晶格原胞各层的厚度及材料组分与吸收层超晶格各层的厚度及材料组分一致,与势垒层接触的InAs/AlxGa1-xSb缓变超晶格过渡层的超晶格原胞各层的厚度及材料组分与势垒层超晶格各层的厚度及材料组分一致,第n周期超晶格原胞内AlxGa1-xSb层中Al组分
Figure BDA0003291459300000121
第n周期(2≦n≦N)超晶格原胞内各层厚度如下:
InAs层
Figure BDA0003291459300000122
第一InAsSb层
Figure BDA0003291459300000123
AlxGa1-xSb层
Figure BDA0003291459300000124
第二InAsSb层
Figure BDA0003291459300000125
其中吸收层超晶格原胞8内各层厚度依次为:InAs层5dInAs,第一InAsSb层6adInAsSb1,GaSb层7dGaSb,第二InAsSb层6b dInAsSb2;势垒层超晶格原胞12内各层依次为:InAs层9d′InAs,第一InAsSb层10ad′InAsSb1,AlSb层11d′AlSb,第二InAsSb层10b d′InAsSb2
其中第n周期超晶格原胞内AlxGa1-xSb层中Al组分
Figure BDA0003291459300000126
采用分子束外延(MBE)方法制备具有InAs/AlxGa1-xSb缓变超晶格过渡层的InAs/GaSb势垒型红外探测器。在超高真空腔室中进行分子束外延生长,采用高纯度源逐层沉积薄膜材料。分子束外延生长是现有技术,生长时源材料包括In、Ga、Al、As、Sb,各源分开放置且独立控温加热,以产生相应元素的蒸气。将薄膜组成元素的各路蒸气引导至加热的生长衬底上,经过一定时间后,即在衬底上形成所需厚度的半导体材料。各元素生长速率与元素蒸汽压成正比关系,与源炉温度满足以下经验公式:
Figure BDA0003291459300000131
其中R为材料生长速率,T为源炉温度,a为与元素种类相关的常数,对于Ga和Al来说a≈0.023,T0为材料生长速率r对应的源炉温度。
请参阅图3,分子束外延生长时,InAs/GaSb超晶格吸收层、 InAs/AlxGa1-xSb缓变超晶格过渡层、InAs/AlSb超晶格势垒层依次生长,其中第n周期超晶格原胞内AlxGa1-xSb层中Al组分
Figure BDA0003291459300000132
且Al 与Ga的速率之和r为恒定值,为达到上述要求,控制Ga和Al源炉温度,Ga和Al源炉温度与生长时间的关系如下:
Ga源炉温度
Figure BDA0003291459300000133
Al源炉温度
Figure BDA0003291459300000134
其中a=0.023,t为生长时间,Δt为InAs/AlxGa1-xSb缓变超晶格过渡层生长总时长,式中常数
Figure BDA0003291459300000135
为Ga的生长速率为r时对应的Ga 源炉温度,常数
Figure BDA0003291459300000136
为Al的生长速率不r时对应的Ga源炉温度。本发明中优选r满足0nm/s<r≤0.2nm/s,最好r=0.1nm/s。若速率r高于0.2nm/s,生长材料表面粗糙度和缺陷密度会急剧增加,如图5所示分别是用0.1nm/s和0.27nm/s速率生长的过渡层表面原子力显微镜照片,前者表面明显更加平整,代表了更高的材料质量。
吸收层超晶格原胞内,InAs层厚度0nm<dInAs≤5nm,第一 InAsSb层厚度0nm<dInAsSb1≤0.5nm,GaSb层厚度0nm<dAlGaSb≤5nm,第二InAsSb层厚度0nm<dInAsSb2≤0.5nm。势垒层超晶格原胞内,InAs层厚度0nm<dInAs≤5nm,第一InAsSb层厚度0nm<dInAsSb1≤0.5nm,AlSb层厚度0nm<dAlGaSb≤1.5nm,第二InAsSb层厚度0nm<dInAsSb2≤0.5nm。
以上接触层超晶格原胞各层的实际取值根据接触层用途决定,例如以下取值dInAs=4.5nm,dInAsSb1=0.2nm,dAlGasb=2.1nm, dInAsSb1=0.4nm,AlxGa1-xSb中x=0对应结构可用于截至波长约10um 的长波红外探测器。
表1给出了实际操作中以上各值可取的4个实例。
表格1实例中参数的可取值
Figure BDA0003291459300000141
Figure BDA0003291459300000151
以上5个实施例的能带结构形状基本没有差别,其中实例4制成 长波红外探测器件100%截至波长在10μm左右,该器件能带示意如 图4a所示。作为对比例,图4b给出了未插入InAs/AlxGa1-xSb缓变超 晶格过渡层结构的器件的能带结构示意图。对比可见应用本发明的实 施例完全消除了器件吸收层与势垒层之间的带阶,从而增强器件载流 子输运性能与量子效率。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例,并不限制本发明,凡在本发明的精神和原则之类,所做的任何修改、替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种InAs/AlxGa1-xSb缓变超晶格过渡层,其特征在于:由多个超晶格原胞重复堆叠N个周期形成,超晶格原胞包括InAs层,第一InAsxSb1-x层,AlxGa1-xsb层,第二InAsxSb1-x层,相邻超晶格原胞对应层的厚度、AlxGa1-xSb组分单调渐变。
2.权利要求1所述的一种InAs/AlxGa1-xSb缓变超晶格过渡层,其特征在于:
第n周期(2≤n≤N)过渡层超晶格原胞内各层厚度如下
InAs层
Figure FDA0003291459290000011
第一InAsSb层
Figure FDA0003291459290000012
AlxGa1-xSb层
Figure FDA0003291459290000013
Figure FDA0003291459290000014
第二lnAsSb层
Figure FDA0003291459290000015
第n周期超晶格原胞内AlxGa1-xSb层中Al平均组分
Figure FDA0003291459290000016
Figure FDA0003291459290000017
其中DInAs、DInAsSb1、DAlxGa1-xsb、DInAsSb2依次为过渡层首个超晶格原胞lnAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度,D′InAs、D′InAsSb1、D′AlxGa1-xSb、D′InAsSb2依次为过渡层末尾的超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度。XAlGaSb为过渡层首个超晶格原胞AlxGa1-xSb层Al组分,X′AlGaSb为过渡层末尾的超晶格原胞AlxGa1-xSb层Al组分。
3.权利要求1所述的一种InAs/AlxGa1-xSb缓变超晶格过渡层,其特征在于:过渡层首个超晶格原胞具有和所接触的对象完全一致的超晶格原胞结构,过渡层末尾的超晶格原胞具有和所接触的对象完全一致的超晶格原胞结构。
4.权利要求3所述的一种InAs/AlxGa1-xSb缓变超晶格过渡层,其特征在于:缓变超晶格过渡层首个和末尾的超晶格原胞所接触的对象均为InAs/AlxGa1-xSb超晶格;所接触的对象中InAs层厚度
Figure FDA0003291459290000021
第一InAsSb层厚度0nm<dInAsSb1≤0.5nm,AlxGa1- xsb层厚度0<dAlGaSb≤5nm,第二InAsSb层厚度0<dInAsSb2≤0.5nm,AlxGa1-xSb层Al组分0≤x≤1,且首个和末尾的所接触的对象中Al组分不相等。
5.一种InAs/AlxGa1-xSb缓变超晶格过渡层,其特征在于:采用如下生长方法获得:采用分子束外延(MBE)方法生长,源材料包括In、Ga、A1、As、Sb,各源分开放置且独立控温加热,以产生相应元素的蒸气,通过控制Ga、Al源炉温度控制超晶格原胞各层的厚度与组分及生长速率,具体如下:
第n周期(2≤n≤N)过渡层超晶格原胞内各层厚度如下
InAs层
Figure FDA0003291459290000022
第一InAsSb层
Figure FDA0003291459290000023
AlxGas-xSb层
Figure FDA0003291459290000024
Figure FDA0003291459290000025
第二InAsSb层
Figure FDA0003291459290000026
第n周期超晶格原胞内AlxGa1-xSb层中Al平均组分
Figure FDA0003291459290000031
Figure FDA0003291459290000032
其中DInAs、DInAsSb1、DAlxGa1-xsb、DInAsSb2依次为过渡层首个超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度,D′InAs、D′InAsSb1、D′AlxGa1-xSb、D′InAsSb2依次为过渡层末尾的超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度。XAlGaSb为过渡层首个超晶格原胞AlxGa1-xSb层Al组分,X′AlGaSb为过渡层末尾的超晶格原胞AlxGa1-xSb层Al组分;
且Al与Ga的生长速率之和r不随生长时间变化,是恒定的,
通过控制Ga和Al源炉温度满足所述过渡层超晶格原胞内各层厚度、Al平均组分x及Al与Ga的生长速率的要求,Ga和Al源炉温度与生长时间变化关系如下:
Figure FDA0003291459290000033
Figure FDA0003291459290000034
其中a为与元素种类相关的常数,对于Ga和Al来说a≈0.023,t为生长时间,Δt为InAs/AlxGa1-xsb缓变超晶格过渡层结构生长总时长,式中
Figure FDA0003291459290000035
Figure FDA0003291459290000036
两个常数分别为Ga和A1各自在生长速率r对应的源炉温度。
6.一种InAs/AlxGa1-xsb缓变超晶格过渡层的生长方法,其特征在于:采用分子束外延(MBE)方法生长,源材料包括In、Ga、Al、As、Sb,各源分开放置且独立控温加热,以产生相应元素的蒸气,通过控制源炉温度控制超晶格原胞各层的厚度与组分使其满足下列要求,
第n周期(2≤n≤N)过渡层超晶格原胞内各层厚度如下:
lnAs层
Figure FDA0003291459290000041
第一InAsSb层
Figure FDA0003291459290000042
AlxGa1-xSb层
Figure FDA0003291459290000043
Figure FDA0003291459290000044
第二InAsSb层
Figure FDA0003291459290000045
第n周期超晶格原胞内AlxGa1-xSb层中Al平均组分
Figure FDA0003291459290000046
Figure FDA0003291459290000047
其中DInAs、DInAsSb1、DAlxGa1-xSb、DInAsSb2依次为过渡层首个超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度,D′InAs、D′InAsSb1、D′AlxGa1-xSb、D′InAsSb2依次为过渡层末尾的超晶格原胞InAs层、第一InAsSb层、AlxGa1-xSb层、第二InAsSb层的厚度。XAlGaSb为过渡层首个超晶格原胞AlxGa1-xSb层Al组分,X′AlGaSb为过渡层末尾的超晶格原胞AlxGa1-xSb层Al组分;
且Al与Ga的生长速率之和r不随生长时间变化,是恒定的,
通过控制Ga和Al源炉温度满足所述过渡层超晶格原胞内各层厚度、Al平均组分x及Al与Ga的生长速率的要求,Ga和Al源炉温度与生长时间变化关系如下:
Figure FDA0003291459290000048
Figure FDA0003291459290000049
其中a为与元素种类相关的常数,对于Ga和A1来说a≈0.023,t为生长时间,Δt为InAs/AlxGa1-xSb缓变超晶格过渡层结构生长总时长,式中
Figure FDA0003291459290000051
Figure FDA0003291459290000052
两个常数分别为Ga和Al各自在生长速率r对应的源炉温度。
7.如权利要求5所述的一种InAs/AlxGa1-xSb缓变超晶格过渡层的生长方法,其特征在于:Al与Ga的生长速率之和r为0nm/s<r≤0.2nm/s;或Al与Ga的生长速率之和r为0.1。
8.一种具有InAs/AlxGa1-xSb缓变超晶格过渡层的InAs/GaSb势垒型红外探测器,其特征在于:包括InAs/GaSb超晶格吸收层和InAs/AlSb超晶格势垒层,所述的InAs/AlxGa1-xSb缓变超晶格过渡层采用权利要求1-4任一项所述的InAs/AlxGa1-xSb缓变超晶格过渡层结构,所述缓变超晶格过渡层插入在InAs/GaSb超晶格吸收层和InAs/AlSb超晶格势垒层之间,与超晶格吸收层接触的InAs/AlxGa1-xSb缓变超晶格过渡层的第1周期生长厚度及材料组分与吸收层超晶格生长厚度与材料组分一致,与势垒层接触的InAs/AlxGa1-xsb缓变超晶格过渡层的第1周期生长厚度及材料组分与势垒层超晶格生长厚度与材料组分一致,吸收层超晶格原胞8内各层厚度依次为:InAs层(5)dInAs,第一InAsSb层(6a)dInAsSb1,GaSb层(7)dGaSb,第二InAsSb层(6b)dInAsSb2;势垒层超晶格原胞(12)内各层依次为:InAs层(9)d′InAs,第一InAsSb层(10a)d′InAsSb1,AlSb层(11)d′AlSb,第二InAsSb层(10)b d′InAsSb2
第n周期(2≤n≤N)过渡层超晶格原胞内各层厚度如下:
InAs层
Figure FDA0003291459290000061
第一InAsSb层
Figure FDA0003291459290000062
AlxGa1-xSb层
Figure FDA0003291459290000063
第二InAsSb层
Figure FDA0003291459290000064
第n周期过渡层超晶格原胞内AlxGa1-xSb层中Al组分
Figure FDA0003291459290000065
9.一种具有InAs/AlxGa1-xSb缓变超晶格过渡层的InAs/GaSb势垒型红外探测器的制备方法,其特征在于:
用分子束外延(MBE)方法生长,源材料包括In、Ga、Al、As、Sb,各源分开放置且独立控温加热,以产生相应元素的蒸气,通过控制源炉温度控制超晶格原胞各层的厚度与组分,具体如下:
InAs/GaSb超晶格吸收层、InAs/AlxGa1-xsb超晶格过渡层、InAs/Alsb超晶格势垒层依次生长,
第1周期生长厚度及材料组分与吸收层超晶格生长厚度与材料组分一致;
第n周期(2≤n≤N)过渡层超晶格原胞内各层厚度如下式(2):
InAs层
Figure FDA0003291459290000066
第一InAsSb层
Figure FDA0003291459290000067
AlxGa1-xSb层
Figure FDA0003291459290000068
第二InAsSb层
Figure FDA0003291459290000069
第n周期超晶格原胞内AlxGa1-xSb层中Al组分
Figure FDA00032914592900000610
且Al与Ga的速率之和r恒定,
通过控制源炉温度使其随着生长时间变化以得到满足式(2)条件的超晶格过渡层结构,Ga和Al源炉温度与生长时间关系如式(1):(1)
Figure FDA0003291459290000071
Figure FDA0003291459290000072
其中a=0.023,t为生长时间,Δt为InAs/AlxGa1-xSb缓变超晶格过渡层结构生长总时长,式中
Figure FDA0003291459290000073
Figure FDA0003291459290000074
两个常数分别为速率r对应的Ga和Al源炉温度。
10.一种具有InAs/AlxGa1-xSb缓变超晶格过渡层的InAs/GaSb势垒型红外探测器的制备方法,其特征在于:0nm/s<r≤0.2nm/s,或r=0.1nm/s。
CN202111164439.4A 2021-10-01 2021-10-01 一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法 Active CN113937176B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111164439.4A CN113937176B (zh) 2021-10-01 2021-10-01 一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111164439.4A CN113937176B (zh) 2021-10-01 2021-10-01 一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法

Publications (2)

Publication Number Publication Date
CN113937176A true CN113937176A (zh) 2022-01-14
CN113937176B CN113937176B (zh) 2024-04-30

Family

ID=79277667

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111164439.4A Active CN113937176B (zh) 2021-10-01 2021-10-01 一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法

Country Status (1)

Country Link
CN (1) CN113937176B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115621340A (zh) * 2022-12-15 2023-01-17 苏州焜原光电有限公司 一种InAs基InGaAs/InAsSb超晶格nBn型红外探测器材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196745A (ja) * 1992-12-24 1994-07-15 Nec Corp 赤外線検出器
JPH09237889A (ja) * 1996-02-29 1997-09-09 Hitachi Ltd 半導体結晶積層体及びそれを用いた半導体装置
US20060017063A1 (en) * 2004-03-10 2006-01-26 Lester Luke F Metamorphic buffer on small lattice constant substrates
US20080073639A1 (en) * 2006-08-02 2008-03-27 Hudait Mantu K Dislocation-free InSb quantum well structure on Si using novel buffer architecture
US20110197956A1 (en) * 2010-02-12 2011-08-18 National Chiao Tung University Thin film solar cell with graded bandgap structure
US20160372623A1 (en) * 2015-06-18 2016-12-22 Board Of Regents, The University Of Texas System STAIRCASE AVALANCHE PHOTODIODE WITH A STAIRCASE MULTIPLICATION REGION COMPOSED OF AN AlInAsSb ALLOY
JP2019169601A (ja) * 2018-03-23 2019-10-03 旭化成エレクトロニクス株式会社 赤外線発光素子
CN113035992A (zh) * 2021-02-26 2021-06-25 中国科学院半导体研究所 互补势垒超晶格长波红外探测器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06196745A (ja) * 1992-12-24 1994-07-15 Nec Corp 赤外線検出器
JPH09237889A (ja) * 1996-02-29 1997-09-09 Hitachi Ltd 半導体結晶積層体及びそれを用いた半導体装置
US20060017063A1 (en) * 2004-03-10 2006-01-26 Lester Luke F Metamorphic buffer on small lattice constant substrates
US20080073639A1 (en) * 2006-08-02 2008-03-27 Hudait Mantu K Dislocation-free InSb quantum well structure on Si using novel buffer architecture
US20110197956A1 (en) * 2010-02-12 2011-08-18 National Chiao Tung University Thin film solar cell with graded bandgap structure
US20160372623A1 (en) * 2015-06-18 2016-12-22 Board Of Regents, The University Of Texas System STAIRCASE AVALANCHE PHOTODIODE WITH A STAIRCASE MULTIPLICATION REGION COMPOSED OF AN AlInAsSb ALLOY
JP2019169601A (ja) * 2018-03-23 2019-10-03 旭化成エレクトロニクス株式会社 赤外線発光素子
CN113035992A (zh) * 2021-02-26 2021-06-25 中国科学院半导体研究所 互补势垒超晶格长波红外探测器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115621340A (zh) * 2022-12-15 2023-01-17 苏州焜原光电有限公司 一种InAs基InGaAs/InAsSb超晶格nBn型红外探测器材料

Also Published As

Publication number Publication date
CN113937176B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US7560394B2 (en) Nanodots formed on silicon oxide and method of manufacturing the same
JP3468866B2 (ja) 3次元量子閉じ込めを利用した半導体装置
US8368048B2 (en) Nanostructured layers, methods of making nanostructured layers, and application thereof
CN111235632B (zh) 一种二维超薄BiOBr单晶纳米片的制备方法及其应用
CN113937176B (zh) 一种InAs/AlxGa1-xSb缓变超晶格过渡层、具有缓变过渡层的InAs/GaSb势垒型红外探测器及生长方法
Gudovskikh et al. Low temperature plasma enhanced deposition of GaP films on Si substrate
JP4790723B2 (ja) 発光素子用シリコン窒化膜及びこれを利用した発光素子、並びに、発光素子用シリコン窒化膜の製造方法
Huang et al. Novel Si nanodisk fabricated by biotemplate and defect-free neutral beam etching for solar cell application
Holman et al. Plasma production of nanodevice-grade semiconductor nanocrystals
CN112382929A (zh) 半导体红光激光器及其制作方法
CN116779736A (zh) 发光二极管外延片及其制备方法、led
Chen et al. Formation and temperature effect of inn nanodots by PA-MBE via droplet epitaxy technique
CN116364819A (zh) 发光二极管外延片及其制备方法、led
CN112575311B (zh) 一种高二次电子发射系数的双层薄膜及其制备方法
JP4989101B2 (ja) GeSn半導体デバイスの製造方法
KR100334344B1 (ko) 비정질 실리콘 양자점 미세구조를 포함하는 실리콘 질화물 박막 및 이를 이용한 발광소자
Huang et al. Self-assembled large-scale and cylindrical CuInSe2 quantum dots on indium tin oxide films
CN114335265B (zh) 一种近红外led外延结构制作方法及外延结构
US11139280B2 (en) Light emitting device
US7749787B2 (en) Method for forming quantum dots by alternate growth process
WO2016152106A1 (ja) 半導体ウエハ、半導体装置及び半導体ウエハの製造方法
CN214379252U (zh) 半导体红光激光器
CN116988151A (zh) 一种半导体异质结的构筑方法
Chen et al. Formation and Temperature Effect of InN Nanodots by PA-MBE via Droplet Epitaxy
CN118335834A (zh) 一种InGaAs-AlGaAs纳米线及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant