CN113929146A - 一种核壳结构MnO/Mn3O4电极材料的制备及应用 - Google Patents

一种核壳结构MnO/Mn3O4电极材料的制备及应用 Download PDF

Info

Publication number
CN113929146A
CN113929146A CN202111118842.3A CN202111118842A CN113929146A CN 113929146 A CN113929146 A CN 113929146A CN 202111118842 A CN202111118842 A CN 202111118842A CN 113929146 A CN113929146 A CN 113929146A
Authority
CN
China
Prior art keywords
mno
core
shell structure
electrode material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111118842.3A
Other languages
English (en)
Other versions
CN113929146B (zh
Inventor
严乙铭
王诗雨
杨志宇
姚舒允
刘若琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202111118842.3A priority Critical patent/CN113929146B/zh
Publication of CN113929146A publication Critical patent/CN113929146A/zh
Application granted granted Critical
Publication of CN113929146B publication Critical patent/CN113929146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种核壳结构MnO/Mn3O4电极材料的制备及应用,属于材料制备领域。MnO为核,Mn3O4为壳,包括以下合成步骤:在室温下,将Mn(NO3)2溶解于蒸馏水中形成溶液,配制过氧化氢水溶液和四甲基氢氧化铵溶液,搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤,得到锰氧化物前驱体;置于管式炉中煅烧,获得核壳结构MnO/Mn3O4。本发明通过异质结的作用,从而提高了锰氧化物电极材料的电化学性能和稳定性,该方法制备安全,简单,易于操作。

Description

一种核壳结构MnO/Mn3O4电极材料的制备及应用
技术领域
本发明属于电极材料制备领域,主要涉及超级电容器电极材料的制备方法。
背景技术
随着工业的迅猛发展,传统的不可再生能源如煤炭、石油等化石燃料日益枯竭,全球将面临能源危机。同时,使用化石燃料会排放大量的有害气体,导致出现全球变暖等一系列环境问题。因此,实现能源的安全和可持续发展是人类面临的严峻挑战。目前各国都在积极研究和开发绿色可再生的新能源,如太阳能、风能以及热能等。但是直接使用这些能源会受到一些制约,需要储能系统先将能量储存起来,从而实现能量的稳定供给。当今三大主要的储能系统包括电容器、电池和超级电容器。超级电容器的性能介于电池和传统电容器之间,具有高于电池的功率密度和传统电容器的能量密度,综合了电池和传统电容器的优点。因此,近年来超级电容器引起了人们极大的研究兴趣。目前,在油电混合车和电动汽车以及一些便携式电子设备领域中,超级电容器都发挥着不可或缺的作用。
在目前常见的电极材料中,过渡金属氧化物由于其低成本和高理论电容而受到广泛关注。四氧化三锰、二氧化锰是常见的作为电极材料的过渡金属氧化物。不过近几年来人们发现Mn3O4是制备锂离子电池正极材料锂锰氧的优质原料,其效果优于MnO2。而Mn3O4用于超级电容器的报道较少,其中,林等人通过溶胶凝胶法制备了Mn2O3和Mn3O4纳米复合膜,该锰的氧化物膜的比电容最高可达230.5F·g-1。陈等人研究了Mn3O4和碳纳米管复合电极的超级电容器。显然纯Mn3O4电极的比电容值还比较低,可以通过改进Mn3O4的制备方法,如制备Mn3O4的纳米材料,增大其比表面积来提高比电容。Mn3O4的制备方法很多,如高价锰氧化物以甲烷为还原气体在250~500℃温度下还原生成Mn3O4,另外水热法,溶剂热法,微波辐射法等都可以制备Mn3O4材料。然而,低电导率、大体积变化和在反应过程中易团聚限制了其实际应用。
我们提出了一种异质结策略,可以促进电荷转移,提高电极材料的电导率和氧化还原活性。通过简单的化学沉淀法和煅烧处理,成功合成了核壳结构MnO/Mn3O4。得到核壳结构MnO/Mn3O4具有离域电子构型,显著加速了电子转移。界面处的电场可以有效地降低离子扩散能垒,促进Na+输运动力学。结果表明,在1A g-1条件下,Ov-Mn3O4的Na+存储容量为331.2F g-1,在20A g-1条件下,其Na+存储容量为192F g-1。基于Ov-Mn3O4阴极的非对称超级电容器(ASC)在功率密度为1000W kg-1时,能提供40.56Wh kg-1的能量密度。
发明内容
本发明的首要目的是制备一种核壳结构MnO/Mn3O4电极材料,提高锰氧化物的稳定性和电化学性能。
为实现上述技术目的,本发明采用的技术方案如下:
本发明所述的核壳结构MnO/Mn3O4电极材料的制备方法,其中MnO为核,Mn3O4为壳,包括以下合成步骤:
步骤1:在室温下,将Mn(NO3)2溶解于蒸馏水中形成溶液,配制过氧化氢水溶液和四甲基氢氧化铵溶液,搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤,得到锰氧化物前驱体;
优选每0.811gMn(NO3)2对应过氧化氢0.009mmol-0.027mmol、四甲基氢氧化铵0.022mmol-0.088mmol。
步骤2:将步骤1的固体粉末置于管式炉中煅烧,获得核壳结构MnO/Mn3O4
其中步骤2的煅烧为氩气氛围下450℃-650℃/1-3h,管式炉的升温速率为3℃/min。
本发明所得材料用于超级电容器。
采用本发明的方法制备的电极材料,具有较大的电容和较小的电阻。在MnO和Mn3O4之间形成异质的结界面,两种不同带隙的纳米晶体偶极子可以激发纳米晶体内嵌的电场效应,从而实现快速的电荷传输和令人满意的反应动力学,提高了电化学性能。
附图说明
图1为得到核壳结构MnO/Mn3O4材料和Mn3O4材料的SEM对比
图2为得到核壳结构MnO/Mn3O4材料和Mn3O4材料的TEM和HRTEM对比
图3核壳结构MnO/Mn3O4材料和Mn3O4材料的XRD对比。
图4核壳结构MnO/Mn3O4材料和Mn3O4材料XPS的Mn 3s对比。
图5核壳结构MnO/Mn3O4材料和Mn3O4材料循环伏安测试结果(扫描速率为5mV s-1)和恒电流充放电测试结果(电流密度为1A g–1)。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
在室温下,将0.811gMn(NO3)2溶解于蒸馏水中形成10ml溶液,配制过氧化氢水溶液(浓度为30%的过氧化氢水0.625mL溶于7ml去离子水)和四甲基氢氧化铵溶液(浓度为25%的TMA·OH水4.3ml溶于7ml水中),搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤,得到锰氧化物前驱体。将得到的固体粉末置于管式炉氩气氛围中煅烧(500℃,2h),获得核壳结构MnO/Mn3O4
实施例2(对比例)
在室温下,将0.811gMn(NO3)2溶解于蒸馏水中形成10ml溶液,配制过氧化氢水溶液(0.625mL溶于7mL去离子水)和四甲基氢氧化铵溶液(4.3mL TMA·OH溶于7mL水中),搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤。将得到的固体粉末置于管式炉氩气氛围中煅烧(280℃,2h),获得Mn3O4
图1为得到核壳结构MnO/Mn3O4材料(a)和Mn3O4材料(b)的SEM图;
图2为得到核壳结构MnO/Mn3O4材料和Mn3O4材料的TEM图和HRTEM图。
其中(a)为MnO/Mn3O4的TEM图,(b)为Mn3O4的TEM图。(c)为MnO/Mn3O4的HRTEM图,(d)为Mn3O4的HRTEM图。晶格间距被归属于氧化锰的距离为
Figure BDA0003275992940000031
对应于其(200)晶面,晶格间距被归属于四氧化三锰的距离为
Figure BDA0003275992940000032
对应于(112)晶面;晶格间距被归属于四氧化三锰的距离
Figure BDA0003275992940000033
分别对应于(101)、(112)晶面。
图3为得到核壳结构MnO/Mn3O4材料和Mn3O4材料的XRD对比图。从图3可以看出MnO/Mn3O4与Mn3O4材料的晶型都与标准卡片对应,证明材料的合成成功。
图4核壳结构MnO/Mn3O4材料和Mn3O4材料XPS的Mn 3s对比。从Mn 3s图可知,MnO/Mn3O4的两峰间距相较于MnO2更宽,表明Mn的价态变低了,证明材料的合成成功。
图5为核壳结构MnO/Mn3O4材料和Mn3O4材料循环伏安测试结果和恒电流充放电测试结果。电化学测量是在1M Na2SO4水溶液中,以Ag/AgCl和铂箔分别作为参比电极和对电极的三电极配置进行的。循环伏安法(CV)和恒电流充放电(GCD)测试在0到1V的电位窗口内进行。图5(a)(b)为在5mV/s扫描速率下核壳结构MnO/Mn3O4和Mn3O4电极相对于Hg/HgO参考电极的典型CV曲线和在1A·g-1电流密度下的GCD曲线。结果显示Mn3O4具有比较差的电化学性能,其比电容为191F·g-1在1A·g-1电流密度下,而MnO/Mn3O4的比电容高达331.2F·g-1。对实施例1与实施例2所得到的电极材料进行电化学性能的对比,说明了异质结对锰氧化物的性能起到了促进作用,核壳结构MnO/Mn3O4具备更优异的电化学性能。

Claims (5)

1.一种核壳结构MnO/Mn3O4电极材料的制备方法,其特征在于,其中MnO为核,Mn3O4为壳,包括以下合成步骤:
步骤1:在室温下,将Mn(NO3)2溶解于蒸馏水中形成溶液,配制过氧化氢水溶液和四甲基氢氧化铵溶液,搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤,得到锰氧化物前驱体;
步骤2:将步骤1的固体粉末置于管式炉中煅烧,获得核壳结构MnO/Mn3O4
2.按照权利要求1所述的一种核壳结构MnO/Mn3O4电极材料的制备方法,其特征在于,每0.811gMn(NO3)2对应过氧化氢0.009mmol-0.027mmol、四甲基氢氧化铵0.022mmol-0.088mmol。
3.按照权利要求1所述的一种核壳结构MnO/Mn3O4电极材料的制备方法,其特征在于,步骤2的煅烧为氩气氛围下450℃-650℃煅烧1-3h,管式炉的升温速率为3℃/min。
4.按照权利要求1-3任一项所述的方法制备得到的核壳结构MnO/Mn3O4电极材料。
5.按照权利要求1-3任一项所述的方法制备得到的核壳结构MnO/Mn3O4电极材料的应用,用于超级电容器。
CN202111118842.3A 2021-09-23 2021-09-23 一种核壳结构MnO/Mn3O4电极材料的制备及应用 Active CN113929146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111118842.3A CN113929146B (zh) 2021-09-23 2021-09-23 一种核壳结构MnO/Mn3O4电极材料的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111118842.3A CN113929146B (zh) 2021-09-23 2021-09-23 一种核壳结构MnO/Mn3O4电极材料的制备及应用

Publications (2)

Publication Number Publication Date
CN113929146A true CN113929146A (zh) 2022-01-14
CN113929146B CN113929146B (zh) 2023-04-28

Family

ID=79276540

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111118842.3A Active CN113929146B (zh) 2021-09-23 2021-09-23 一种核壳结构MnO/Mn3O4电极材料的制备及应用

Country Status (1)

Country Link
CN (1) CN113929146B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173603A (zh) * 2021-04-19 2021-07-27 武汉纺织大学 混合价锰基氧化物复合材料的合成方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928040A (zh) * 2010-06-29 2010-12-29 北京科技大学 一种超级电容器电极材料二氧化锰的制备方法
CN109574078A (zh) * 2018-11-29 2019-04-05 中南大学 一种一氧化锰纳米颗粒及其应用和制备方法
CN109887761A (zh) * 2019-01-30 2019-06-14 绍兴文理学院 一种Al掺杂锰氧复合材料的制备及电化学性能的测试方法
WO2020010410A1 (en) * 2018-07-12 2020-01-16 Newsouth Innovations Pty Limited Synthesis of manganese oxide and zinc oxide nanoparticles simultaneously from spent zinc-carbon batteries using a thermal nanosizing process
CN111994958A (zh) * 2020-08-27 2020-11-27 陕西科技大学 一种制备高比容量复合电极材料MnO2/Mn3O4的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101928040A (zh) * 2010-06-29 2010-12-29 北京科技大学 一种超级电容器电极材料二氧化锰的制备方法
WO2020010410A1 (en) * 2018-07-12 2020-01-16 Newsouth Innovations Pty Limited Synthesis of manganese oxide and zinc oxide nanoparticles simultaneously from spent zinc-carbon batteries using a thermal nanosizing process
CN109574078A (zh) * 2018-11-29 2019-04-05 中南大学 一种一氧化锰纳米颗粒及其应用和制备方法
CN109887761A (zh) * 2019-01-30 2019-06-14 绍兴文理学院 一种Al掺杂锰氧复合材料的制备及电化学性能的测试方法
CN111994958A (zh) * 2020-08-27 2020-11-27 陕西科技大学 一种制备高比容量复合电极材料MnO2/Mn3O4的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113173603A (zh) * 2021-04-19 2021-07-27 武汉纺织大学 混合价锰基氧化物复合材料的合成方法及应用

Also Published As

Publication number Publication date
CN113929146B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
Tang et al. Advanced batteries based on manganese dioxide and its composites
Liu et al. Understanding the dual-phase synergy mechanism in Mn2O3–Mn3O4 catalyst for efficient Li–CO2 batteries
Chen et al. Simple preparation of ZnCo2O4 porous quasi-cubes for high performance asymmetric supercapacitors
Wang et al. Molecule-assisted modulation of the high-valence Co3+ in 3D honeycomb-like CoxSy networks for high-performance solid-state asymmetric supercapacitors
Lan et al. Metal-organic framework-derived porous MnNi2O4 microflower as an advanced electrode material for high-performance supercapacitors
Chen et al. Advanced hybrid supercapacitors assembled with high-performance porous MnCo2O4. 5 nanosheets as battery-type cathode materials
Zeng et al. Vanadium oxide/carbonized chestnut needle composites as cathode materials for advanced aqueous zinc-ion batteries
Zhou et al. Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors
Salehi et al. Facile synthesis of hierarchical porous Na3V2 (PO4) 3/C composites with high-performance Na storage properties
CN105552393A (zh) 一种碱性水系金属/空气电池用双功能催化剂及其制备方法
CN104157858B (zh) 分级多孔四氧化三铁/石墨烯纳米线及其制备方法和应用
Liu et al. ReS2 nanosheets anchored on rGO as an efficient polysulfides immobilizer and electrocatalyst for Li-S batteries
Chen et al. A novel hollow Co3O4@ N-doped carbon nanobubble film composite for high-performance anode of lithium-ion batteries
CN112886029B (zh) 以中空碳纳米管为载体的双功能氧电催化剂的制备及应用
Zhen et al. An integrated cathode with bi-functional catalytic effect for excellent-performance lithium-sulfur batteries
Ma et al. Doping-induced morphology modulation for boosting the capacity and stability of nanocrystals assembled Ni1-xCoxSe2
Zhao et al. Phosphate ions functionalized spinel iron cobaltite derived from metal organic framework gel for high-performance asymmetric supercapacitors
Wei et al. Molybdenum and sulfur co-doped CoNiO2 with tremella-like nano-structures as electrode material for high-performance supercapacitors
Wen et al. An interwoven carbon nanotubes/cerium dioxide electrocatalyst accelerating the conversion kinetics of lithium sulfide toward high-performance lithium-sulfur batteries
Shuang et al. Engineering the modulation of the active sites and pores of pristine metal–organic frameworks for high-performance sodium-ion storage
CN115036516A (zh) 一种钴、氮共掺杂的中空管状多孔碳复合材料及其制备方法与应用
CN110681417A (zh) 一种纳米Co3O4/碳纳米管一体式空气电极催化材料的制备方法
Deng et al. Solvent‐Mediated Synthesis of Functional Powder Materials from Deep Eutectic Solvents for Energy Storage and Conversion: A Review
CN113929146B (zh) 一种核壳结构MnO/Mn3O4电极材料的制备及应用
Mohanty et al. Carbamide-mediated facile sol-gel synthesis of porous flower-like ZnCo2O4 microspheres for high-performance asymmetric coin cell supercapacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant