CN113929146A - 一种核壳结构MnO/Mn3O4电极材料的制备及应用 - Google Patents
一种核壳结构MnO/Mn3O4电极材料的制备及应用 Download PDFInfo
- Publication number
- CN113929146A CN113929146A CN202111118842.3A CN202111118842A CN113929146A CN 113929146 A CN113929146 A CN 113929146A CN 202111118842 A CN202111118842 A CN 202111118842A CN 113929146 A CN113929146 A CN 113929146A
- Authority
- CN
- China
- Prior art keywords
- mno
- core
- shell structure
- electrode material
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011258 core-shell material Substances 0.000 title claims abstract description 28
- 239000007772 electrode material Substances 0.000 title claims abstract description 18
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 68
- 239000011572 manganese Substances 0.000 claims abstract description 31
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims abstract description 24
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 17
- 238000002360 preparation method Methods 0.000 claims abstract description 17
- 238000003756 stirring Methods 0.000 claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000001354 calcination Methods 0.000 claims abstract description 8
- 239000002243 precursor Substances 0.000 claims abstract description 7
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 5
- 239000012153 distilled water Substances 0.000 claims abstract description 5
- 238000001914 filtration Methods 0.000 claims abstract description 5
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 claims abstract description 5
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 5
- 239000003990 capacitor Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 6
- 239000012300 argon atmosphere Substances 0.000 claims description 4
- 239000000843 powder Substances 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 27
- 239000000243 solution Substances 0.000 description 12
- 238000012360 testing method Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 238000002484 cyclic voltammetry Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 3
- 239000002159 nanocrystal Substances 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000024 high-resolution transmission electron micrograph Methods 0.000 description 2
- 238000002173 high-resolution transmission electron microscopy Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000282414 Homo sapiens Species 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005685 electric field effect Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G45/00—Compounds of manganese
- C01G45/02—Oxides; Hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
- C01P2004/82—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
- C01P2004/84—Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一种核壳结构MnO/Mn3O4电极材料的制备及应用,属于材料制备领域。MnO为核,Mn3O4为壳,包括以下合成步骤:在室温下,将Mn(NO3)2溶解于蒸馏水中形成溶液,配制过氧化氢水溶液和四甲基氢氧化铵溶液,搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤,得到锰氧化物前驱体;置于管式炉中煅烧,获得核壳结构MnO/Mn3O4。本发明通过异质结的作用,从而提高了锰氧化物电极材料的电化学性能和稳定性,该方法制备安全,简单,易于操作。
Description
技术领域
本发明属于电极材料制备领域,主要涉及超级电容器电极材料的制备方法。
背景技术
随着工业的迅猛发展,传统的不可再生能源如煤炭、石油等化石燃料日益枯竭,全球将面临能源危机。同时,使用化石燃料会排放大量的有害气体,导致出现全球变暖等一系列环境问题。因此,实现能源的安全和可持续发展是人类面临的严峻挑战。目前各国都在积极研究和开发绿色可再生的新能源,如太阳能、风能以及热能等。但是直接使用这些能源会受到一些制约,需要储能系统先将能量储存起来,从而实现能量的稳定供给。当今三大主要的储能系统包括电容器、电池和超级电容器。超级电容器的性能介于电池和传统电容器之间,具有高于电池的功率密度和传统电容器的能量密度,综合了电池和传统电容器的优点。因此,近年来超级电容器引起了人们极大的研究兴趣。目前,在油电混合车和电动汽车以及一些便携式电子设备领域中,超级电容器都发挥着不可或缺的作用。
在目前常见的电极材料中,过渡金属氧化物由于其低成本和高理论电容而受到广泛关注。四氧化三锰、二氧化锰是常见的作为电极材料的过渡金属氧化物。不过近几年来人们发现Mn3O4是制备锂离子电池正极材料锂锰氧的优质原料,其效果优于MnO2。而Mn3O4用于超级电容器的报道较少,其中,林等人通过溶胶凝胶法制备了Mn2O3和Mn3O4纳米复合膜,该锰的氧化物膜的比电容最高可达230.5F·g-1。陈等人研究了Mn3O4和碳纳米管复合电极的超级电容器。显然纯Mn3O4电极的比电容值还比较低,可以通过改进Mn3O4的制备方法,如制备Mn3O4的纳米材料,增大其比表面积来提高比电容。Mn3O4的制备方法很多,如高价锰氧化物以甲烷为还原气体在250~500℃温度下还原生成Mn3O4,另外水热法,溶剂热法,微波辐射法等都可以制备Mn3O4材料。然而,低电导率、大体积变化和在反应过程中易团聚限制了其实际应用。
我们提出了一种异质结策略,可以促进电荷转移,提高电极材料的电导率和氧化还原活性。通过简单的化学沉淀法和煅烧处理,成功合成了核壳结构MnO/Mn3O4。得到核壳结构MnO/Mn3O4具有离域电子构型,显著加速了电子转移。界面处的电场可以有效地降低离子扩散能垒,促进Na+输运动力学。结果表明,在1A g-1条件下,Ov-Mn3O4的Na+存储容量为331.2F g-1,在20A g-1条件下,其Na+存储容量为192F g-1。基于Ov-Mn3O4阴极的非对称超级电容器(ASC)在功率密度为1000W kg-1时,能提供40.56Wh kg-1的能量密度。
发明内容
本发明的首要目的是制备一种核壳结构MnO/Mn3O4电极材料,提高锰氧化物的稳定性和电化学性能。
为实现上述技术目的,本发明采用的技术方案如下:
本发明所述的核壳结构MnO/Mn3O4电极材料的制备方法,其中MnO为核,Mn3O4为壳,包括以下合成步骤:
步骤1:在室温下,将Mn(NO3)2溶解于蒸馏水中形成溶液,配制过氧化氢水溶液和四甲基氢氧化铵溶液,搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤,得到锰氧化物前驱体;
优选每0.811gMn(NO3)2对应过氧化氢0.009mmol-0.027mmol、四甲基氢氧化铵0.022mmol-0.088mmol。
步骤2:将步骤1的固体粉末置于管式炉中煅烧,获得核壳结构MnO/Mn3O4。
其中步骤2的煅烧为氩气氛围下450℃-650℃/1-3h,管式炉的升温速率为3℃/min。
本发明所得材料用于超级电容器。
采用本发明的方法制备的电极材料,具有较大的电容和较小的电阻。在MnO和Mn3O4之间形成异质的结界面,两种不同带隙的纳米晶体偶极子可以激发纳米晶体内嵌的电场效应,从而实现快速的电荷传输和令人满意的反应动力学,提高了电化学性能。
附图说明
图1为得到核壳结构MnO/Mn3O4材料和Mn3O4材料的SEM对比
图2为得到核壳结构MnO/Mn3O4材料和Mn3O4材料的TEM和HRTEM对比
图3核壳结构MnO/Mn3O4材料和Mn3O4材料的XRD对比。
图4核壳结构MnO/Mn3O4材料和Mn3O4材料XPS的Mn 3s对比。
图5核壳结构MnO/Mn3O4材料和Mn3O4材料循环伏安测试结果(扫描速率为5mV s-1)和恒电流充放电测试结果(电流密度为1A g–1)。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
在室温下,将0.811gMn(NO3)2溶解于蒸馏水中形成10ml溶液,配制过氧化氢水溶液(浓度为30%的过氧化氢水0.625mL溶于7ml去离子水)和四甲基氢氧化铵溶液(浓度为25%的TMA·OH水4.3ml溶于7ml水中),搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤,得到锰氧化物前驱体。将得到的固体粉末置于管式炉氩气氛围中煅烧(500℃,2h),获得核壳结构MnO/Mn3O4。
实施例2(对比例)
在室温下,将0.811gMn(NO3)2溶解于蒸馏水中形成10ml溶液,配制过氧化氢水溶液(0.625mL溶于7mL去离子水)和四甲基氢氧化铵溶液(4.3mL TMA·OH溶于7mL水中),搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤。将得到的固体粉末置于管式炉氩气氛围中煅烧(280℃,2h),获得Mn3O4。
图1为得到核壳结构MnO/Mn3O4材料(a)和Mn3O4材料(b)的SEM图;
图2为得到核壳结构MnO/Mn3O4材料和Mn3O4材料的TEM图和HRTEM图。
其中(a)为MnO/Mn3O4的TEM图,(b)为Mn3O4的TEM图。(c)为MnO/Mn3O4的HRTEM图,(d)为Mn3O4的HRTEM图。晶格间距被归属于氧化锰的距离为对应于其(200)晶面,晶格间距被归属于四氧化三锰的距离为对应于(112)晶面;晶格间距被归属于四氧化三锰的距离分别对应于(101)、(112)晶面。
图3为得到核壳结构MnO/Mn3O4材料和Mn3O4材料的XRD对比图。从图3可以看出MnO/Mn3O4与Mn3O4材料的晶型都与标准卡片对应,证明材料的合成成功。
图4核壳结构MnO/Mn3O4材料和Mn3O4材料XPS的Mn 3s对比。从Mn 3s图可知,MnO/Mn3O4的两峰间距相较于MnO2更宽,表明Mn的价态变低了,证明材料的合成成功。
图5为核壳结构MnO/Mn3O4材料和Mn3O4材料循环伏安测试结果和恒电流充放电测试结果。电化学测量是在1M Na2SO4水溶液中,以Ag/AgCl和铂箔分别作为参比电极和对电极的三电极配置进行的。循环伏安法(CV)和恒电流充放电(GCD)测试在0到1V的电位窗口内进行。图5(a)(b)为在5mV/s扫描速率下核壳结构MnO/Mn3O4和Mn3O4电极相对于Hg/HgO参考电极的典型CV曲线和在1A·g-1电流密度下的GCD曲线。结果显示Mn3O4具有比较差的电化学性能,其比电容为191F·g-1在1A·g-1电流密度下,而MnO/Mn3O4的比电容高达331.2F·g-1。对实施例1与实施例2所得到的电极材料进行电化学性能的对比,说明了异质结对锰氧化物的性能起到了促进作用,核壳结构MnO/Mn3O4具备更优异的电化学性能。
Claims (5)
1.一种核壳结构MnO/Mn3O4电极材料的制备方法,其特征在于,其中MnO为核,Mn3O4为壳,包括以下合成步骤:
步骤1:在室温下,将Mn(NO3)2溶解于蒸馏水中形成溶液,配制过氧化氢水溶液和四甲基氢氧化铵溶液,搅拌均匀,将过氧化氢溶液和四甲基氢氧化铵溶液倒入硝酸锰溶液中,搅拌过夜,过滤,得到锰氧化物前驱体;
步骤2:将步骤1的固体粉末置于管式炉中煅烧,获得核壳结构MnO/Mn3O4。
2.按照权利要求1所述的一种核壳结构MnO/Mn3O4电极材料的制备方法,其特征在于,每0.811gMn(NO3)2对应过氧化氢0.009mmol-0.027mmol、四甲基氢氧化铵0.022mmol-0.088mmol。
3.按照权利要求1所述的一种核壳结构MnO/Mn3O4电极材料的制备方法,其特征在于,步骤2的煅烧为氩气氛围下450℃-650℃煅烧1-3h,管式炉的升温速率为3℃/min。
4.按照权利要求1-3任一项所述的方法制备得到的核壳结构MnO/Mn3O4电极材料。
5.按照权利要求1-3任一项所述的方法制备得到的核壳结构MnO/Mn3O4电极材料的应用,用于超级电容器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111118842.3A CN113929146B (zh) | 2021-09-23 | 2021-09-23 | 一种核壳结构MnO/Mn3O4电极材料的制备及应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111118842.3A CN113929146B (zh) | 2021-09-23 | 2021-09-23 | 一种核壳结构MnO/Mn3O4电极材料的制备及应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113929146A true CN113929146A (zh) | 2022-01-14 |
CN113929146B CN113929146B (zh) | 2023-04-28 |
Family
ID=79276540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111118842.3A Active CN113929146B (zh) | 2021-09-23 | 2021-09-23 | 一种核壳结构MnO/Mn3O4电极材料的制备及应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113929146B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113173603A (zh) * | 2021-04-19 | 2021-07-27 | 武汉纺织大学 | 混合价锰基氧化物复合材料的合成方法及应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101928040A (zh) * | 2010-06-29 | 2010-12-29 | 北京科技大学 | 一种超级电容器电极材料二氧化锰的制备方法 |
CN109574078A (zh) * | 2018-11-29 | 2019-04-05 | 中南大学 | 一种一氧化锰纳米颗粒及其应用和制备方法 |
CN109887761A (zh) * | 2019-01-30 | 2019-06-14 | 绍兴文理学院 | 一种Al掺杂锰氧复合材料的制备及电化学性能的测试方法 |
WO2020010410A1 (en) * | 2018-07-12 | 2020-01-16 | Newsouth Innovations Pty Limited | Synthesis of manganese oxide and zinc oxide nanoparticles simultaneously from spent zinc-carbon batteries using a thermal nanosizing process |
CN111994958A (zh) * | 2020-08-27 | 2020-11-27 | 陕西科技大学 | 一种制备高比容量复合电极材料MnO2/Mn3O4的方法 |
-
2021
- 2021-09-23 CN CN202111118842.3A patent/CN113929146B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101928040A (zh) * | 2010-06-29 | 2010-12-29 | 北京科技大学 | 一种超级电容器电极材料二氧化锰的制备方法 |
WO2020010410A1 (en) * | 2018-07-12 | 2020-01-16 | Newsouth Innovations Pty Limited | Synthesis of manganese oxide and zinc oxide nanoparticles simultaneously from spent zinc-carbon batteries using a thermal nanosizing process |
CN109574078A (zh) * | 2018-11-29 | 2019-04-05 | 中南大学 | 一种一氧化锰纳米颗粒及其应用和制备方法 |
CN109887761A (zh) * | 2019-01-30 | 2019-06-14 | 绍兴文理学院 | 一种Al掺杂锰氧复合材料的制备及电化学性能的测试方法 |
CN111994958A (zh) * | 2020-08-27 | 2020-11-27 | 陕西科技大学 | 一种制备高比容量复合电极材料MnO2/Mn3O4的方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113173603A (zh) * | 2021-04-19 | 2021-07-27 | 武汉纺织大学 | 混合价锰基氧化物复合材料的合成方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
CN113929146B (zh) | 2023-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tang et al. | Advanced batteries based on manganese dioxide and its composites | |
Liu et al. | Understanding the dual-phase synergy mechanism in Mn2O3–Mn3O4 catalyst for efficient Li–CO2 batteries | |
Chen et al. | Simple preparation of ZnCo2O4 porous quasi-cubes for high performance asymmetric supercapacitors | |
Wang et al. | Molecule-assisted modulation of the high-valence Co3+ in 3D honeycomb-like CoxSy networks for high-performance solid-state asymmetric supercapacitors | |
Lan et al. | Metal-organic framework-derived porous MnNi2O4 microflower as an advanced electrode material for high-performance supercapacitors | |
Chen et al. | Advanced hybrid supercapacitors assembled with high-performance porous MnCo2O4. 5 nanosheets as battery-type cathode materials | |
Zeng et al. | Vanadium oxide/carbonized chestnut needle composites as cathode materials for advanced aqueous zinc-ion batteries | |
Zhou et al. | Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors | |
Salehi et al. | Facile synthesis of hierarchical porous Na3V2 (PO4) 3/C composites with high-performance Na storage properties | |
CN105552393A (zh) | 一种碱性水系金属/空气电池用双功能催化剂及其制备方法 | |
CN104157858B (zh) | 分级多孔四氧化三铁/石墨烯纳米线及其制备方法和应用 | |
Liu et al. | ReS2 nanosheets anchored on rGO as an efficient polysulfides immobilizer and electrocatalyst for Li-S batteries | |
Chen et al. | A novel hollow Co3O4@ N-doped carbon nanobubble film composite for high-performance anode of lithium-ion batteries | |
CN112886029B (zh) | 以中空碳纳米管为载体的双功能氧电催化剂的制备及应用 | |
Zhen et al. | An integrated cathode with bi-functional catalytic effect for excellent-performance lithium-sulfur batteries | |
Ma et al. | Doping-induced morphology modulation for boosting the capacity and stability of nanocrystals assembled Ni1-xCoxSe2 | |
Zhao et al. | Phosphate ions functionalized spinel iron cobaltite derived from metal organic framework gel for high-performance asymmetric supercapacitors | |
Wei et al. | Molybdenum and sulfur co-doped CoNiO2 with tremella-like nano-structures as electrode material for high-performance supercapacitors | |
Wen et al. | An interwoven carbon nanotubes/cerium dioxide electrocatalyst accelerating the conversion kinetics of lithium sulfide toward high-performance lithium-sulfur batteries | |
Shuang et al. | Engineering the modulation of the active sites and pores of pristine metal–organic frameworks for high-performance sodium-ion storage | |
CN115036516A (zh) | 一种钴、氮共掺杂的中空管状多孔碳复合材料及其制备方法与应用 | |
CN110681417A (zh) | 一种纳米Co3O4/碳纳米管一体式空气电极催化材料的制备方法 | |
Deng et al. | Solvent‐Mediated Synthesis of Functional Powder Materials from Deep Eutectic Solvents for Energy Storage and Conversion: A Review | |
CN113929146B (zh) | 一种核壳结构MnO/Mn3O4电极材料的制备及应用 | |
Mohanty et al. | Carbamide-mediated facile sol-gel synthesis of porous flower-like ZnCo2O4 microspheres for high-performance asymmetric coin cell supercapacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |