CN113929081A - 上下转换双发射全色光谱碳点及其合成方法和应用 - Google Patents

上下转换双发射全色光谱碳点及其合成方法和应用 Download PDF

Info

Publication number
CN113929081A
CN113929081A CN202111189663.9A CN202111189663A CN113929081A CN 113929081 A CN113929081 A CN 113929081A CN 202111189663 A CN202111189663 A CN 202111189663A CN 113929081 A CN113929081 A CN 113929081A
Authority
CN
China
Prior art keywords
cds
carbon
carbon dots
emission
fluorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111189663.9A
Other languages
English (en)
Other versions
CN113929081B (zh
Inventor
谭克俊
洪玉双
田雪莲
洪丹
周秋菊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN202111189663.9A priority Critical patent/CN113929081B/zh
Publication of CN113929081A publication Critical patent/CN113929081A/zh
Application granted granted Critical
Publication of CN113929081B publication Critical patent/CN113929081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Abstract

本发明属于纳米发光材料技术领域,具体涉及上下转换双发射全色光谱碳点及其合成方法和应用。所述碳点以罗丹明B(RhB)和1,4‑二氨基蒽醌为碳源和氮源制备得到;在260nm和865nm的激发光下,均呈现出位于496nm附近和580nm附近的两处荧光发射。该碳点还具备较好的光漂白性、pH稳定性和耐盐性。另外,基于该碳点建立了荧光比率探针,用于铜离子的可视化定量检测。该探针不仅具较高灵敏度,较好的选择性,还具有十分优异的稳定性。上转换检测的线性范围为0.05~15μM,LOD为2.76nM。下转换检测的线性范围为0.05~10μM,LOD为5nM。

Description

上下转换双发射全色光谱碳点及其合成方法和应用
技术领域
本发明属于纳米发光材料技术领域,具体涉及上下转换双发射全色光谱碳点及其合成方法和应用。
背景技术
碳点作为一种新型的发光纳米材料,因其毒性低、生物相容性好和发光性能优异受到广泛关注。目前, CDs已广泛用于生物成像、信息加密、生化分析及LED等领域。然而,已报道的碳点多为单波长发射,因其色调单一,可视化效果差且缺乏自校准能力,限制了其广泛应用,而多波长发射碳点可弥补这些缺陷,赵的团队以尿素和柠檬酸为前驱体合成了荧光波长分别为445nm和617nm的双发射CDs,实现了四环素的比率荧光检测,具有良好的可视化效果。通过改变前驱体和时间,杨的团队逐步获得了从蓝色到红色的多色碳点,用于制备彩色LED。然而,这些方法都是多步合成,操作复杂,而一步合成全谱CDs的报道很少。
传感分析是碳点的一个重要应用,不仅用于离子传感还用于分子传感,既用于体外定量也用于体内实时监测。目前,大多数CDs是由紫外光激发的下转换发光,其高能紫外光对生物体形成伤害,且无法避免背景干扰,限制了其在生物体内的应用,而上转换发光可以克服这些缺点。然而,目前报道的上转换CD 大多属于单波长发射。上转换多发射CD要么掺杂稀土元素,要么多组分构建。例如,庄课题组报告了从单分散NaErF4:0.5%Tm@NaYF4:20%Yb制备655nm超亮红色发射上转换纳米晶体,并将其应用于墨水和细胞成像。稀土金属的存在虽然提高了量子产率(QY),但也增加了材料的毒性,成本昂贵。因此,一步合成无稀土上转换双发射碳点具有重要意义。
铜是最常见的过渡金属之一。它也是人体必需的微量矿物质。研究表明,人体铜缺乏会导致血浆胆固醇升高,增加动脉粥样硬化的风险,从而导致心脏病、贫血、头发异常、骨骼和动脉异常,甚至脑部疾病.。但是,铜作为一种重金属,过量摄入也会对人体造成严重危害,如肾损害、尿毒症、神经系统疾病、老年痴呆症等,同时,环境水体中Cu2+含量过高会严重影响水质,而且饮酒者容易出现恶心、头晕等不良症状。目前,铜离子的定量测定方法有原子吸收光谱法、电感耦合等离子体光谱法、电化学发光法和伏安法。虽然有些检测限低至0.31nM,但这些方法存在操作复杂、成本高、耗时长等缺点。因此,建立一种简单有效的分析方法是非常重要的。
发明内容
本发明要解决的技术问题是提供一种可用于Cu2+检测的碳点。
本发明的技术方案是上下转换双发射全色光谱碳点,以罗丹明B(RhB)和1,4-二氨基蒽醌为碳源和氮源制备得到。
优选的,所述碳点在260nm和865nm的激发光下,均呈现出位于496nm附近和580nm附近的两处荧光发射。
优选的,所述碳点经柱分离,得到了由蓝到红的全色谱碳点。
优选的,所述全色谱碳点为分别是R-CDs、O-CDs、Y-CDs、G-CDs和C-CDs,其发光中心分别位于 440nm,500nm,520nm,580nm和620nm处。
本发明还提供了所述碳点的合成方法,包括如下步骤:将原料溶于溶剂中,120~220℃下反应2~8h;所述溶剂为纯水和乙二醇的混合液;所述原料为RhB和1,4-二氨基蒽醌;每5mL溶剂使用20~120mg原料;所述溶剂中纯水和乙醇的体积比为1~4︰4~1;所述RhB和1,4-二氨基蒽醌质量比为1︰1~11。
进一步的,所述反应温度为180~220℃。
优选的,所述反应温度为200℃。
更优选的,所述反应时间为8h。
其中,所述溶剂中纯水和乙二醇的体积比为1~3︰4~2。
进一步的,所述溶剂中纯水和乙二醇的体积比为1︰4。
具体的,所述RhB和1,4-二氨基蒽醌质量比为1︰3~9。
优选的,所述RhB和1,4-二氨基蒽醌质量比为1︰5。
其中,所述合成方法还包括如下步骤:将反应后的产物冷却至室温,并溶解于乙醇中;离心、透析、干燥,收集固体物即为碳点UD D-CDs。
具体的,所述离心为以12000rpm/min离心10min。
进一步的,所述透析为用纤维素酯透析膜透析,取上清液。
优选的,所述纤维素酯透析膜规格为500MWCO。
其中,所述干燥为冷冻干燥。
本发明还提供了上述方法合成得到的碳点。
本发明还提供了所述碳点在检测Cu2+中的用途。
进一步的,所述用途为碳点在制备检测Cu2+的探针中的用途。
具体的,所述用途中,该碳点为探针在上转换情况下检测Cu2+的线性范围为0.05~15μM,LOD为2.76 nM;该碳点为探针在下转换情况下检测Cu2+的线性范围为0.05~10μM,LOD为5nM。
本发明还提供了采用所述碳点检测Cu2+的方法,包括如下步骤:将待测样品与碳点混合后孵育,测量在260nm以及865nm激发光下的荧光发射光谱;将Na2HPO4-NaOH缓冲液加入到碳点中,所述孵育时间 60~100min,所述孵育温度为5~35℃。
优选的,缓冲液pH=11.16,培孵育时间为69min,孵育温度为15~25℃。
本发明还提供了所述碳点在制备LED光源中的用途。
本发明的有益效果:
本发明以RhB和1,4-二氨基蒽醌为原料,首次采用一步水热法合成了具有上下转换双发射的无镧系荧光UD D-CDs。该碳点具有上下转换具有绿色和橙色的双发射CDs;经过柱分离得到了由蓝到红的全色谱荧光碳点,并将各发光中心分别归因于碳核发光、表面态发光、内在缺陷发光及分子态发光。此外,该碳点还具备较好的光漂白性、pH稳定性和耐盐性。另外,基于该碳点建立了荧光比率探针,用于铜离子的可视化定量检测。该探针不仅具较高灵敏度,较好的选择性,还具有十分优异的稳定性。上转换荧光的检测的线性范围为0.05~15μM,LOD低至2.76nM;下转换荧光检测的线性范围为0.05~10μM,LOD为5nM。本发明还发现UD D-CDs的荧光猝灭是由于非放射性光诱导电子转移效应和Cu2+与UD D-CDs之间的氧化还原反应。使用该碳点进行检测的过程简单、可靠、经济、选择性好、抗干扰能力强。由于近红外激发光能量较低,对生物体的伤害和背景荧光的干扰大大降低,且无镧系的掺入也减小了材料本身的毒性,UD D-CDs的制备为生物体内Cu2+的检测奠定了基础。
附图说明
图1.UD D-CDs合成时不同(a)原料比例;(b)原料质量;(c)溶剂比例和(d)温度下的荧光发射光谱;横坐标为发射波长,纵坐标为发射峰的强度。
图2.不同合成条件下UD D-CDs的荧光发射光谱。
图3.(a)UD D-CDs的TEM图;(b)UD D-CDs的XRD图谱;(c)UD D-CDs的紫外可见吸收光谱、激发及发射光谱光谱(插图:UD D-CDs在日光和254nm激发光下的图像);(d)UD D-CDs的FTIR光谱; (e-h)UD D-CDs的XPS总谱和C1s、N 1s、O 1s的高分辨率XPS窄扫光谱(英文译文:spectrum光谱; sum拟合光谱;background基线)。b图横坐标为衍射谱仪扫描的角度,纵坐标为此处(角度)的衍射峰的强度。c图横坐标为波长,纵坐标为归一化的荧光及吸收强度。d图横坐标为红外峰的波数,纵坐标为透过率。e-h的横坐标为电子结合能,纵坐标为信号强度。
图4.UD D-CDs的Zeta电位。横坐标为电位值,纵坐标为电位强度。
图5.标准物质和UD D-CDs的荧光QY标准曲线(图中英文译文:sodiumfluorescein荧光素钠;RhB罗丹明B)。横坐标表示吸光度,纵坐标表示峰面积。
图6.(a)UD D-CDs在不同激发波长下的荧光发射光谱;(b)UD D-CDs的3D荧光图。
图7.UD D-CDs柱分离实验示意图(ethyl acetate/petroleum ether/dichloromethane/ethyl alcohol分别指:乙酸乙酯/石油醚/二氯甲烷/乙醇)。b图中横坐标表示发射波长,纵坐标表示激发波长。
图8(a)R-CDs,(b)O-CDs,(c)Y-CDs,(d)G-CDs和(e)c-CDs的3D荧光图,图中圈出的部分代表发射中心。
图9.在不同(a-b)激发时间和(c-d)不同pH值下,UD D-CDs的荧光强度(其中a,c的激发波长为260 nm,b,d为865nm)。
图10.λex=260nm时,不同浓度的氯化钠(0.1~1.1mol/L)下碳点的荧光强度。
图11.探针在不同检测条件下的响应;(a)pH,(b)缓冲液类型,(c)反应时间和(d)温度(λex=260nm)。图12.在(a)λex=260nm和(e)λex=865nm时加入不同浓度Cu2+的UD D-CDs的荧光光谱;(d)λex=254 nm紫外灯下的图片;(b)λex=260nm和(f)λex=865nm时Fx/F0与Cu2+浓度之间的关系;(c)和(g) 分别为(b)和(f)的曲线所拟合的线性。
图13.探针的选择性和干扰测试;(a)和(c)是金属阳离子,(b)和(d)是阴离子(插图:UD D-CDs的荧光图像,λex=254nm,左边的第一个是空白样品,左边的第二个是UD D-CDs加入Cu2+,然后依次为 UD D-CDs中加入其他离子)。(a)和(c)中离子顺序为Cu2+/blank,Mg2+,Ba2+,Al3+,K+,Zn2+,Mn2+, Ca2+,Mo2+,NH4 +,Ni2+,Co2+,Cd2+,Na+,Hg+,Cr3+,Fe2+,Fe3+,Pb2+,Cr6+,Ag+;(b)中离子顺序为Cu2+,CO3 2-,I-,SCN-,H2PO4 2-,SO4 2-,BrO3 -,NO3 -,Br-,PO4 3-,HCO3 -,IO3 -,F-,Ac-,Cl-,HPO4 2- and ClO-;(d)中离子顺序为blank,CO3 2-,I-,SO4 2-,BrO3 -,NO3 -,Br-,IO3 -,F-,Ac-,H2O2,SCN-, HCO3 -,Cl-,PO4 3-,HPO4 2-and ClO-
图14.有无Cu2+的UD D-CDs的(a)紫外可见吸收光谱和(b)荧光衰变曲线;(c)含Cu2 +的UD D-CDs 的XPS测量光谱和(d)Cu 2p的高分辨率窄扫XPS光谱;(e)Cu2+的XAES光谱;(f)有Cu2+的UD D-CDs, (g)UD D-CDs和(h)Cu2+的循环伏安图;图中箭头代表细节放大,指向的位置为原位置放大图。f-h的横坐标为电位,纵坐标为工作电极上通过的电流。
图15.含Cu2+的UD D-CDs(a)C 1s,(b)O 1s,(C)N 1s的高分辨率窄扫描XPS光谱。
图16.UD D-CDs发光的基本原理和Cu2+的猝灭机制(Not-radiative PET非辐射光诱导电子转移效应;Energy level能级)。
图17.(a)基于CDs的LED的荧光图像和(b)LED的色度坐标;I-V分别代表R-、O-、Y-、G-和C-CD。
图18.不同合成时间下的UD D-CDs的荧光发射光谱(λex=260nm)。
具体实施方式
下述实施例中用的的主要试剂:
罗丹明B(RhB)、1,4-二氨基蒽醌和乙二醇从阿拉丁化学有限公司(中国上海)获得。六水合氯化铬(CrCl3·6H2O)和氯化钠(NaCl)购自科龙化学试剂厂(中国成都)。所有化学品均为分析试剂,未经进一步纯化即可使用。在整个实验过程中使用超纯水(25℃时为18.2Ω.cm)。采用磷酸氢二钠-氢氧化钠 (Na2HPO4-NaOH)缓冲溶液控制酸度。
下述实施例中用的的主要仪器与设备:
使用FL光谱仪(日本东京日立F-7000)记录UD D-CDs的荧光光谱,狭缝宽度为10nm,用于260nm 的激发和发射,20nm用于865nm的激发和发射。使用岛津UV-2600分光光度法(日本东京)测量吸收光谱。我们使用FE20/EL20 pH计(中国上海)测量pH值。荧光寿命由Fls980全功能稳态/瞬态荧光光谱仪 (英国爱丁堡)测量。
实施例1合成方法的筛选
RhB具有较大的共轭平面,因此被选为材料合成的原料。分别以RhB和1,4-二氨基蒽醌为碳源和氮源,采用一步水热法合成目标碳点。步骤如下:将1,4-二氨基蒽醌与RhB混合并溶解于乙二醇(4mL)和超纯水(1mL)中。然后将混合物转移到聚四氟乙烯衬里(25mL)中,并在不锈钢高压釜中加热反应。将产物冷却至室温,并溶解于乙醇中。以12000rpm/min离心10min后,用纤维素酯透析膜(500MWCO)透析上清液。最后,通过冷冻干燥收集品红固体UD D-CDs。为了确定最佳条件,设计了一个四因素三水平的正交表,如表1所示。
表1四因素三水平正交表
Figure BDA0003300660920000051
结果如图1和图18所示,在如下条件下即可得到碳点:120~220℃下反应2~8h;溶剂为纯水和乙二醇的混合液;每5mL溶剂使用20~120mg原料;所述溶剂中纯水和乙醇的体积比为1~4︰4~1;所述RhB 和1,4-二氨基蒽醌质量比为1︰1~11。
优选的反应条件是RhB与1,4-二氨基蒽醌的质量配比为1︰3~9之间,而RhB的用量在20~30mg 间;温度在180~220℃之间;时间在4~8小时。当在溶剂用量为乙二醇(4mL)和超纯水(1mL)时,RhB 与1,4-二氨基蒽醌的质量分别为20和100mg,纯水和乙二醇的体积比为1︰4,合成温度为200℃,合成时间为8h时,可获得最优的碳点,即前述合成条件为最佳条件。获得的9个CDs(CDs 1-9)在最佳激发下均具有双重发射特性,但在荧光强度和半峰宽上存在一定的差异(图2)。其中CDs 4(红色线)荧光强度最强,半峰宽相对较窄。
实施例2 UD D-CDs的表征
通过透射电子显微镜(TEM)揭示了UD D-CDs(以表1中的4号样品来进行的表征)的形貌和晶体结构特征,结果如图3a,UD D-CDs为均匀分布的圆形小颗粒,平均粒径约为1.8nm,粒径较小。高分辨 TEM显示UD D-CDs的晶格间距为0.18nm,和图3b中XRD位于29.5°的峰相呼应,对应于石墨烯的(101) 面。另外利用傅立叶变换红外光谱(FTIR)分析了UD D-CDs的表面官能团。图3d显示几个特征吸收峰包括1662cm-1、1609cm-1、677cm-1分别对应于ν(C=O),ν(C=C),以及γ(=C-H),这表明在碳化过程中 UD D-CDs中形成了多环芳烃结构。此外,在3600cm-1-2960cm-1处有一宽的振动吸收峰,主要源于ν(O-H) 和ν(N-H)。以上结果表明,UD D-CDs表面存在很多羧基和氨基等官能团。此外,紫外-可见吸收光谱如图3c所示,在250nm处有一个明显的峰值(黑线),归因于C=C键的π-π*跃迁。而可见光区域位于550nm处的吸收峰可归因于UD D-CDs的表面官能团缺陷。
利用X射线光电子能谱(XPS)研究了UD D-CDs的组成和表面状态,结果显示在图3e-h中。XPS 总谱分别在532.0eV、285.0eV和399.8eV处显示三个峰,表明UD D-CDs主要由C/N/O元素组成,原子比分别为68.4%、2.02%和29.58%。C 1s的高分辨率XPS光谱分解出三个结合能分别为288.9eV、286.2eV 和284.9eV的峰,对应于C=O、C-O/C-N和C-C键.。O 1s的窄扫光谱在531.1eV和532.7eV处有两个峰值证明了C-O键和C=O/-COOH的存在。此外,N1s的高分辨XPS光谱可分解为三个峰:石墨N为400.6 eV,C-N为399.8eV,N-H为398.8eV。上述数据证实了UD D-CDs表面存在许多负电子基团,如羧基和氨基。该结果也可以与图4中的zeta电位和此前的FT-IR光谱相匹配。这些基团的存在为UD D-CDs的发光提供了基础。
实施例3 UD D-CDs的光学性质
为了详细研究UD D-CDs的荧光性质,对其荧光发射光谱进行了分析。如图3c显示,当激发为260nm 时,UD D-CDs显示出位于496nm和580nm处的两个显著发射峰(红线),并在254nm的紫外激发光下呈浅青色(图3c的插图)。利用荧光素钠和罗丹明B作为标准测定了双峰的相对荧光量子产率(QY)。由于合成的UD D-CDs具有独特的多发射特性,选择水中的荧光素钠(Φ荧光素钠=65%)和RhB(ΦRhB=65%) 作为不同激发下的参考标准,以确定两个峰的QYs,并通过以下方程式计算QYs:
Figure BDA0003300660920000061
式中Φ为荧光QY,m为QY标准曲线的斜率,η为折射率,ηX和ηQS均为1.33,下标X、QS分别指UD D-CD和参考标准。
结果如图5,根据公式计算可得两处发射的QY分别为11.99%和49.01%。图6a显示UD D-CDs在240~ 280nm范围内表现出激发独立性。令人惊讶的是,UD D-CDs不仅具有下转换双发射特性,而且还具有优良的上转换双发射特性。如3D图(图6b)所示,随着激发波长从840nm增加到880nm,与下转换相同波长处的上转换荧光峰强度逐渐增加,并在865nm处达到最大值。这种上转换的双发射行为十分少见。
另外,将UD D-CDs通过柱色谱分离法获得了由蓝到红的全色光谱碳点,如图7所示。图8分别是 R-CDs、O-CDs、Y-CDs、G-CDs和C-CDs的荧光2D图,图中显示其发光中心总结起来分别位于440nm, 500nm,520nm,580nm和620nm,实现了一步合成全色谱碳点。
实施例4碳点的稳定性
基于UD D-CDs优异的发光性能,利用496nm和580nm的双发射实现视觉传感成为可能。因此,进一步研究了UD D-CDs的光漂白性、pH稳定性和耐盐性,具体如下:
光漂白性:将UD D-CDs置于260nm的紫外光下激发并曝光半小时,利用分光光度计测量其曝光过程中发射强度的变化。
pH稳定性:取100μL UD D-CDs溶液转移到EP管中,随后加入100μL不同pH值的BR缓冲液,并用超纯水稀释至1mL,然后测量其荧光发射光谱。观察发射峰的荧光强度变化。
耐盐性:取100μL UD D-CDs溶液转移到EP管中,随后加入0~1.1M氯化钠溶液,并用超纯水稀释至1mL,然后测量其荧光发射光谱。观察发射峰的荧光强度变化。
结果显示在图9。图9a可见,UD D-CDs在260nm的紫外激发光下曝光并激发半小时的过程中,发射峰的荧光强度几乎无变化。同样,当pH值由酸不断增加过渡至碱时,UD D-CDs溶液的荧光强度也保持着稳定,如图9c所示(溶液的pH值用Britton-Robinson(BR)缓冲液调节)。在865nm的激发波长下,这些性质仍然存在(图9b和d)。不仅如此,UD D-CDs还具有理想的耐盐性。如图10示,即使在1.1M 氯化钠溶液中,UD D-CDs的强度也可以保持稳定。
实施例5Cu2+的传感
众所周知,过量摄入Cu2+可导致严重疾病。因此,有必要研制一种灵敏、选择性的Cu2+探针。本实验采用上下转换双发射的UD D-CDs作为荧光比探针检测Cu2+,并分别研究了上下转换荧光对Cu2+的响应性能。
具体操作步骤:取100μL UD D-CDs溶液转移到EP管中,随后加入100μL缓冲液,然后向混合物中加入一定浓度的Cu2+,并用超纯水稀释至1mL,保证Cu2+的终浓度为0.05~15μM。涡旋震荡后孵育一段时间,在测量溶液在激发为260以及865nm激发光下的荧光发射光谱。
并优化了包括pH、缓冲种类、孵育时间和温度在内的各检测条件。优化过程是,在传感铜离子的基础上,固定铜离子的终浓度为2μM,改变缓冲的pH、种类、孵育时间、温度等条件。具体操作:
1.pH值:取100μL UD D-CDs溶液转移到EP管中,随后加入不同pH值的缓冲液100μL,然后向混合物中加入100μL 20μM的Cu2+,并用超纯水稀释至1mL。涡旋震荡后,孵育一段时间。最后测量其荧光发射光谱。
2.缓冲种类:在上述操作基础上,确定缓冲液的pH,并更换缓冲的种类,其他不变。
3.孵育时间:在确定pH值和缓冲种类的基础上,其他不变,仅改变孵育时间为1~120分钟。并每隔五分钟测量荧光发射光谱。
在上述所有条件固定以后,将改变溶液的孵育温度,即在5~65℃(每隔10℃)下孵育确定的孵育时间后,测定荧光发射光谱。
结果如图11所示,Na2HPO4-NaOH缓冲液中,所述孵育时间60~100min,所述孵育温度为5~35℃时,检测效果也较好;在室温下以Na2HPO4-NaOH(pH=11.16)作为缓冲液,培养探针69分钟可获得最佳的检测效果。该条件下所得荧光发射光谱如图12a示,在260nm激发下,随着Cu2+从0.05μM增加到 10μM,位于496nm处的发射峰被猝灭,而580nm处的发射峰几乎保持不变。图12c显示在254nm的紫外光下,UD D-CDs的颜色也从青色到黄色在逐渐变为橙色。FX/F0的值在0.05~10μM的范围内与Cu2+的浓度呈线性相关(FX和F0分别表示加Cu2+前后UD D-CDs前峰与后峰的FL强度之比),回归方程如下: Y=k×X,其中Y=3.0617-FX/F0和X=1/(1+c[Cu2+]/2.88321.7936),R2=0.9983,根据公式LOD=3σ/k,LOD 低至5.0nM(图12b)。与其他荧光探针相比,比率荧光探针具有更好的可视化效果,更有利于识别待测物质的浓度变化。且这种响应行为也存在于上转换荧光中。与下转换荧光类似,FX/F0的值在0.05-15μM范围内与Cu2+浓度呈线性相关,LOD计算为2.76nM(图12d和12e)。这种上转换比荧光探针在生物体离子检测中起着至关重要的作用。由于其低激发能量,可以消除背景荧光的干扰,减少对生物体的损伤,在实际检测中尤为体现。与其它Cu2+探针相比,表4中的结果表明,本发明的探针具有其他探针所不具备的出色的上转换和下转换双发射特性,并且LOD低于大多数报告的探针。以上结果进一步证明了由本发明碳点作为探针的优越性。
表4.不同的Cu2+探针参数
响应信号 上转换 线性范围(μM) LOD(M) 参考文献序号
单发射 - 5-120 2.36×10<sup>-7</sup> [10]
单发射 - 0.05-30 3.6×10<sup>-9</sup> [11]
双发射 - 0.78-156.2 1.91×10<sup>-7</sup> [12]
双发射 - 0.01-11.0 3.63×10<sup>-9</sup> [13]
单发射 - 2.5-20 1.2×10<sup>-7</sup> [14]
单发射 - 0.05-8 3.5×10<sup>-8</sup> [15]
双发射 - 0-1.18 5.4×10<sup>-8</sup> [16]
双发射 - 0.05-1.85 1.6×10<sup>-8</sup> [17]
双发射 0.05-15 2.76×10<sup>-9</sup> 本发明探针
为了考察UD D-CDs对Cu2+的选择性,在上述检测铜离子的步骤基础上,将铜离子更换为其他离子或者不加铜离子(即空白),测定其荧光发射光谱。若其他离子所得发射光谱与空白相似,则选择性良好。具体选择了如下这些离子:Mg2+,Ba2+,Al3+,K+,Zn2+,Mn2+,Ca2+,Mo2+,NH4 +,Ni2+,Co2+,Cd2+,Na+,Hg+,Cr3+, Fe2+,Fe3+,Pb2+,Cr6+,Ag+,CO3 2-,I-,SCN-,H2PO4 2-,SO4 2-,BrO3 -,NO3 -,Br-,PO4 3-,HCO3 -,IO3 -,F-,Ac-,Cl-, HPO4 2-和ClO-(其中Cu2+浓度是5μM,Fe2+,Fe3+,Cr6+,Ag+浓度为50μM,Cr3+,Pb2+,ClO-浓度为100μM, 其余离子浓度均为500μM)等阴阳离子与UD D-CDs的响应情况进行了研究。从图13a可见,在选择性实验中,Cu2+的响应信号明显高于其他阴阳离子,插图也显示在254nm紫外灯下仅Cu2+存在时UD D-CDs 呈橙色,而加入其他离子的UD D-CDs荧光基本与空白无异。
另外,为了探究UD D-CDs检测Cu2+的可行性,进行了干扰性实验。在上述检测铜离子的步骤基础上,将铜离子更换为铜离子和其他离子的混合液,在测定其发射光谱。若结果与仅添加铜离子相似,则抗干扰性良好。结果如图13c和13d所示,当Cu2+和其他离子共同存在时,其他阴阳离子基本无竞争干扰,因此该检测方法具有优异的抗干扰能力。
为了探讨探针对铜离子的响应机制,对其进行了一系列如紫外可见吸收光谱、荧光寿命、XPS、XAES、循环伏安法等表征。如图14a所示,Cu2+的吸收光谱在400-600nm所研究的波段基本无吸收。因此,首先排除了内滤效应和共振能量转移导致荧光猝灭的可能18。探针的吸收峰(黑色线)在加入铜离子后基本保持原位,仅在强度上有所改变。另外,探针加入Cu2+前后的496nm处的荧光峰的荧光寿命也进行了测量,图14b显示寿命分别为3.5109ns和3.4643ns,基本无改变。因此,该荧光猝灭行为属于动态淬灭和静态淬灭相结合。
为了进一步研究荧光猝灭的机理,用XPS、XAES和循环伏安法对Cu2+探针进行了检测。XPS结果图 14和15所示。添加Cu2+后,N1s和O1s的高分辨率XPS光谱在406eV和536.2eV处出现新的卷积峰, 分别为N-Cu和O-Cu键。进一步证明了Cu2+成功的与表面官能团发生了络合反应。从图14d可以看出, 在Cu 2p的高分辨率XPS光谱中,位于931.16eV和951.23eV处观察到Cu 2p 3/2和Cu 2p 1/2的自旋轨 道分裂,表明系统中可能存在Cu0,另外,位于932.65eV和953.80eV处的峰也证实了铜离子与表面基团 的络合。此外,在XAES光谱中发现一个以573eV为中心的卷积峰,表明了系统中仍存在Cu2+。同时, 观察到位于563.6eV处的峰,这证实了Cu0的形成。因此,在添加Cu2+后,系统中可能发生氧化还原反应。 为了验证这一推测,使用循环伏安法检测含有和不含Cu2+的UD D-CDs。结果如图14f和14g所示,添加Cu2+后,UD D-CDs在约0.055eV和0.41eV处出现新的还原和氧化峰。UD D-CDs在-0.58eV处的还原峰 也增强,这进一步证实了这一假设。
详细分析了图14g-f的Cu2+和UD D-CDs的循环伏安法测定结果。根据公式(1)计算出UD D-CDs 和的Cu2+的Ered分别为-0.376V和-0.336V,分别对应的ELUMO为-4.024eV和-4.064eV。另外,使用公式2 估算UD D-CDs及Cu2+的EHOMO。其中Eg是HOMO与LUMO之间的能隙19。从UD D-CDs的吸收光谱的边缘粗略计算出UD D-CDs的Eg为2.09eV。此外,调查显示Cu2+的Eg为1.14eV.。因此,UD D-CDs和 Cu2+的EHOMO被计算为-6.114eV和-5.204eV。
ELUMO=-(Ered+4.4) (1)
Eg=ELUMO-EHOMO (2)
根据两者之间的HOMO和LUMO能级,认为UD D-CDs和Cu2+之间可能存在非辐射的光诱导电子转移。一方面,UD D-CDs基态电子在HOMO轨道获得能量,然后跃迁到LUMO轨道。当激发态电子降到 HOMO时,部分电子转移到Cu2+的LUMO轨道上,限制了UD D-CDs的辐射跃迁,从而导致荧光猝灭。另一方面,由于电子和空穴的复合,产生了强烈的荧光。当Cu2+加入到UDD-CDs中时,Cu2+在UD D-CDs 表面反应生成铜。铜可以负载UD D-CDs的某些激发电子,从而阻断UD-D-CDs中电子与空穴的复合,导致UD D-CDs荧光强度的降低。UD D-CDs发光的基本原理和Cu2+的猝灭机制具体见图16。
实施例6实际样的检测
为了检验该比率探针在实际应用中的有效性,以健康人体的人血清作为实际样品进行检测,采用标准加入法计算实际样品的回收率(n=5)。将100.0μLUD D-CDs和100.0μL缓冲液加入2.0mL EP管中,然后分别加入一定体积的血清和Cu2+(Cu2+终浓度为0.5μM),并用超纯水稀释至1mL。一段时间后,测量其荧光发射光谱,并根据光谱结果计算回收率,计算公式为:(检测浓度-加标浓度)的绝对值/加标浓度×100%。结果如表5所示,在激发波长为865nm时,回收率在98%至107%之间,相对标准偏差小于4.1%。血清样品在激发波长为260nm时回收率为80%(表6)。这种现象可能是由于血清样本中存在复杂的生物发光小分子,而这种内源性的小分子荧光在近红外激发下不显示,因此对检测的影响可以忽略。这一结果再次验证了上转换发光在体内应用的优势。
表5.在λex=865nm下血清样品中标准添加的回收率检测
样品 加标浓度(μM) 检测浓度(μM,n=5) 回收率(%)(n=5) RSD(%)
1 0.5 0.4924,0.5130,0.5379,0.4916,0.4921 98.32-107.58 4.06
2 0.7 0.7094,0.6994,0.7172,0.7340,0.7054 99.91-104.85 1.91
3 1 1.0023,0.9840,1.0007,0.9826,0.9826 98.26-100.23 1.01
表6.在λex=260nm下血清样品中标准添加的回收率检测
Figure BDA0003300660920000101
另外,全光谱碳点可用于制作彩色LEDs。将分离出的CDs与PVA混合,制备出不同颜色的荧光膜。然后,我们将薄膜涂覆在商用UV LED芯片上,以获得五种颜色的LED:红色、橙色、黄色、绿色和青色 (图17)。如图17b所示,每个LED的CIE坐标分别为(0.41,0.21)、(0.52,0.47)、(0.33,0.46)、(0.19,0.59) 和(0.21,0.33)。
具体操作:将3g PVA固体溶于10ml超纯水中,加热,不断搅拌直至固体完全溶解。将200μL的CDs 溶液加入到PVA溶液中,并不断搅拌,形成均匀的PVA/CDs混合物。将混合物加热脱水至凝胶状态后,涂覆在LED表面,在室温下固化,得到LED器件。
本发明采用一步水热法合成了上下转换双发射CDs(UD D-CDs)。在260和865nm的激发下,它们都在496和580nm处显示出两种发射。经过分离纯化,得到从蓝色到红色的全色CDs,并用于制备彩色发光二极管(LED)灯。对其发光机理进行了详细的研究,其发光分别来源于碳核发光、表面态发光、分子态发光和内部缺陷态发光。基于UD D-CDs与铜离子(Cu2+)的相互作用,分别建立了上转换及下转换比率荧光检测Cu2+的方法。上转换发射比率荧光法的线性范围为0.05~15μM,检测限为2.76nM。下转换探针的线性范围为0.05~10μM,LOD为5nM。该方法已成功应用于高背景人血清中Cu2+的检测。
参考文献
1.Xu,X.K.;Zhang,X.J.;Hu,C.F.;Zheng,Y.H.;Lei,B.F.;Liu,Y.L.;Zhuang,J.L.,Construction of NaYF4:Yb,Er(Tm)@CDs composites for enhancing red and NIRupconversion emission.J.Mater.Chem.C 2019,7(21), 6231-6235.
2.Zheng,Y.X.;Arkin,K.;Hao,J.W.;Zhang,S.Y.;Guan,W.;Wang,L.L.;Guo,Y.N.;Shang,Q.K.,Multicolor Carbon Dots Prepared by Single-Factor Control ofGraphitization and Surface Oxidation for High-Quality White Light -EmittingDiodes.Adv.Opt.Mater.2021.
3.Zhao,Y.N.;Ou,C.L.;Yu,J.K.;Zhang,Y.Q.;Song,H.Q.;Zhai,Y.P.;Tang,Z.Y.;Lu,S.Y.,Facile Synthesis of Water-Stable Multicolor Carbonized Polymer Dotsfrom a Single Unconjugated Glucose for Engineering White Light-EmittingDiodes with a High Color Rendering Index.ACS Appl.Mater.Interfaces 2021,13(25),30098-30105.
4.Rigodanza,F.;
Figure BDA0003300660920000111
L.;Arcudi,F.;Prato,M.,Customizing theElectrochemical Properties of Carbon Nanodots by Using Quinones in Bottom-UpSynthesis.Angew.Chem.Int.Ed.2018,57(18),5062-5067.
5.Ding,Y.F.;Zheng,J.X.;Wang,J.L.;Yang,Y.Z.;Liu,X.G.,Direct blendingof multicolor carbon quantum dots into fluorescent films for white lightemitting diodes with an adjustable correlated color temperature.J.Mater.Chem.C 2019,7(6),1502-1509.
6.Ding,H.;Yu,S.B.;Wei,J.S.;Xiong,H.M.,Full-Color Light-EmittingCarbon Dots with a Surface-State-Controlled Luminescence Mechanism.ACS Nano2016,10(1),484-91.
7.Ju,B.;Nie,H.;Liu,Z.H.;Xu,H.J.;Li,M.J.;Wu,C.F.;Wang,H.D.;Zhang,S.X.-A.,Full-colour carbon dots:integration of multiple emission centres intosingle particles.Nanoscale 2017,9(35),13326-13333.
8.Wang,H.;Yi,J.H.;Yu,Y.Y.;Zhou,S.Q.,NIR upconversion fluorescenceglucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH.Nanoscale 2017,9(2),509-516.
9.Gogoi,S.;Khan,R.,NIR upconversion characteristics of carbon dotsfor selective detection of glutathione.New J. Chem.2018,42(8),6399-6407.
10.Xie,H.F.;Yu,C.J.;Huang,Y.L.;Xu,H.;Zhang,Q.L.;Sun,X.H.;Feng,X.;Redshaw,C.,A turn-off fluorescent probe for the detection of Cu2+based on atetraphenylethylene-functionalized salicylaldehyde Schiff-base. MaterialsChemistry Frontiers 2020,4(5),1500-1506.
11.Qiu,S.Y.;Wei,Y.H.;Tu,T.H.;Xiang,J.J.;Zhang,D.W.;Chen,Q.L.;Luo,L.G.;Lin,Z.Y., Triazole-stabilized fluorescence sensor for highly selectivedetection of copper in tea and animal feed.Food Chem. 2020,317,126434.
12.Du,T.;Wang,J.;Zhang,T.S.;Zhang,L.;Yang,C.Y.;Yue,T.L.;Sun,J.;Li,T.;Zhou,M.G.;Wang,J.,An Integrating Platform of Ratiometric FluorescentAdsorbent for Unconventional Real-Time Removing and Monitoring of CopperIons.ACS Appl.Mater.Interfaces 2020,12(11),13189-13199.
13.Guo,X.R.;Huang,J.Z.;Wang,M.;Wang,L.S.,A dual-emission water-soluble g-C3N4@AuNCs-based fluorescent probe for label-free and sensitiveanalysis of trace amounts of ferrous(II)and copper(II)ions.Sens. Actuators BChem.2020,309,127766.
14.Jiang,H.;Tang,D.;Li,N.;Li,J.;Li,Z.;Han,Q.;Liu,X.;Zhu,X.,A novelchemosensor for the distinguishable detections of Cu(2+)and Hg(2+)by off-onfluorescence and ratiometric UV-visible absorption. Spectrochim Acta A MolBiomol Spectrosc 2021,250,119365.
15.Feng,F.;Miao,C.F.;Zhang,Y.L.;Huang,Z.J.;Weng,S.H.,PositivelyCharged and pH-sensitive Carbon Dots for Fluorescence Detection of CopperIon.Bull.Korean Chem.Soc.2020.
16.Awad,F.S.;AbouZied,K.M.;Bakry,A.M.;Abou El-Maaty,W.M.;El-Wakil,A.M.;El-Shall,M.S.,Highly fluorescent hematoporphyrin modified graphene oxidefor selective detection of copper ions in aqueous solutions. Anal.Chim.Acta2020,1140,111-121.
17.Peng,B.;Fan,M.M.;Xu,J.M.;Guo,Y.;Ma,Y.J.;Zhou,M.;Bai,J.L.;Wang,J.F.;Fang,Y.J., Dual-emission ratio fluorescent probes based on carbon dotsand gold nanoclusters for visual and fluorescent detection of copperions.Mikrochim.Acta 2020,187(12),660.
18.Liu,L.Z.;Mi,Z.;Hu,Q.;Li,C.Q.;Li,X.H.;Feng,F.,Green synthesis offluorescent carbon dots as an effective fluorescence probe for morindetection.Anal.Methods 2019,11(3),353-358.
19.Zhang,Y.H.;Wu,Y.G.;Wang,J.;Hu,Y.;Fang,W.H.;Dang,J.Q.;Wu,Y.;Li,X.J.;Zhao,H.;Li,Z.X., Optimization of Ionic Liquid-Mediated Red-EmissionCarbon Dots and Their Imaging Application in Living Cells.ACSSustain.Chem.Eng.2020,8(45),16979-16989.

Claims (10)

1.上下转换双发射全色光谱碳点,其特征在于,以罗丹明B(RhB)和1,4-二氨基蒽醌为碳源和氮源制备得到;
优选的,所述碳点在260 nm和865 nm的激发光下,均呈现出位于496 nm附近和580 nm附近的两处荧光发射;
优选的,所述碳点经柱分离,得到了由蓝到红的全色谱碳点;
优选的,所述全色谱碳点为分别是R-CDs、O-CDs、Y-CDs、G-CDs和C-CDs,其发光中心分别位于440 nm,500 nm,520 nm,580 nm和 620 nm处。
2.上下转换双发射全色光谱碳点的合成方法,其特征在于,包括如下步骤:将原料溶于溶剂中,120~220℃下反应2~8h;所述溶剂为纯水和乙二醇的混合液;所述原料为RhB和1,4-二氨基蒽醌;每5mL溶剂使用20~120mg原料;所述溶剂中纯水和乙二醇的体积比为1~4︰4~1;所述RhB和1,4-二氨基蒽醌质量比为1︰1~11。
3.如权利要求2所述合成方法,其特征在于,所述反应温度为180~220℃;
优选的,所述反应温度为200℃;
更优选的,所述反应时间为8h。
4.如权利要求2或3所述合成方法,其特征在于,所述溶剂中纯水和乙二醇的体积比为1~3︰4~2;
优选的,所述溶剂中纯水和乙二醇的体积比为1︰4。
5.如权利要求2~4任一项所述合成方法,其特征在于,所述RhB和1,4-二氨基蒽醌质量比为1︰3~9;
优选的,所述RhB和1,4-二氨基蒽醌质量比为1︰5。
6.如权利要求2~5任一项所述合成方法,其特征在于,所述合成方法还包括如下步骤:将反应后的产物冷却至室温,并溶解于乙醇中;离心、透析、干燥,收集固体物即为碳点UDD-CDs;
优选的,所述离心为以12000 rpm/min离心10 min;
优选的,所述透析为用纤维素酯透析膜透析,取上清液;
优选的,所述纤维素酯透析膜规格为500 MWCO;
优选的,所述干燥为冷冻干燥。
7.权利要求2~6任一项所述方法合成得到的碳点。
8.权利要求1或7所述碳点在检测Cu2+中的用途。
9.如权利要求8所述用途,其特征在于,所述用途为碳点在制备检测Cu2+的探针中的用途;
优选的,该碳点为探针在上转换情况下检测Cu2+的线性范围为0.05~15 μM,LOD为2.76nM;该碳点为探针在下转换情况下检测Cu2+的线性范围为0.05~10μM,LOD为5 nM;
优选的,本发明还提供了所述碳点在制备LED光源中的用途。
10.权利要求1或7所述碳点检测Cu2+的方法,其特征在于,包括如下步骤:将待测样品与碳点混合后孵育,测定在260nm以及865 nm激发光下的荧光发射光谱;在混合前,将Na2HPO4-NaOH缓冲液加入到碳点中,所述孵育时间60~100min,所述孵育温度为5~35℃;
优选的,缓冲液pH11.16,培孵育时间为69min,孵育温度为15~25℃。
CN202111189663.9A 2021-10-13 2021-10-13 上下转换双发射全色光谱碳点及其合成方法和应用 Active CN113929081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111189663.9A CN113929081B (zh) 2021-10-13 2021-10-13 上下转换双发射全色光谱碳点及其合成方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111189663.9A CN113929081B (zh) 2021-10-13 2021-10-13 上下转换双发射全色光谱碳点及其合成方法和应用

Publications (2)

Publication Number Publication Date
CN113929081A true CN113929081A (zh) 2022-01-14
CN113929081B CN113929081B (zh) 2023-04-14

Family

ID=79278602

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111189663.9A Active CN113929081B (zh) 2021-10-13 2021-10-13 上下转换双发射全色光谱碳点及其合成方法和应用

Country Status (1)

Country Link
CN (1) CN113929081B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769477A (zh) * 2023-05-22 2023-09-19 西南大学 一种双发射碳点及其制备方法和应用
CN116769477B (zh) * 2023-05-22 2024-04-26 西南大学 一种双发射碳点及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103497762A (zh) * 2013-06-26 2014-01-08 上海交通大学 基于一步单组分水热合成氮掺杂碳量子点的方法
CN104591130A (zh) * 2015-01-19 2015-05-06 山西大学 一种荧光碳量子点及其制备方法和应用
CN105492011A (zh) * 2013-04-08 2016-04-13 丹尼斯·M·布朗 不理想给药化学化合物的治疗增效
CN106590641A (zh) * 2016-11-17 2017-04-26 中国林业科学研究院林产化学工业研究所 具有荧光性能的碳量子点及其制备方法和应用
US20200348231A1 (en) * 2019-05-05 2020-11-05 Jiangnan University Molecularly imprinted fluorescence sensor based on carbon dots for detecting chloramphenicol and its preparation method and its application

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492011A (zh) * 2013-04-08 2016-04-13 丹尼斯·M·布朗 不理想给药化学化合物的治疗增效
CN103497762A (zh) * 2013-06-26 2014-01-08 上海交通大学 基于一步单组分水热合成氮掺杂碳量子点的方法
CN104591130A (zh) * 2015-01-19 2015-05-06 山西大学 一种荧光碳量子点及其制备方法和应用
CN106590641A (zh) * 2016-11-17 2017-04-26 中国林业科学研究院林产化学工业研究所 具有荧光性能的碳量子点及其制备方法和应用
US20200348231A1 (en) * 2019-05-05 2020-11-05 Jiangnan University Molecularly imprinted fluorescence sensor based on carbon dots for detecting chloramphenicol and its preparation method and its application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116769477A (zh) * 2023-05-22 2023-09-19 西南大学 一种双发射碳点及其制备方法和应用
CN116769477B (zh) * 2023-05-22 2024-04-26 西南大学 一种双发射碳点及其制备方法和应用

Also Published As

Publication number Publication date
CN113929081B (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
Liu et al. Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications
Zhu et al. Fluorescent probe based nitrogen doped carbon quantum dots with solid-state fluorescence for the detection of Hg2+ and Fe3+ in aqueous solution
Yang et al. Green preparation of carbon dots with mangosteen pulp for the selective detection of Fe3+ ions and cell imaging
Wang et al. Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications
Gu et al. Green preparation of carbon quantum dots with wolfberry as on-off-on nanosensors for the detection of Fe3+ and l-ascorbic acid
Wu et al. A specific turn-on fluorescent sensing for ultrasensitive and selective detection of phosphate in environmental samples based on antenna effect-improved FRET by surfactant
Ye et al. Preparation of europium complex-conjugated carbon dots for ratiometric fluorescence detection of copper (II) ions
Amin et al. Construction of a novel" Off-On" fluorescence sensor for highly selective sensing of selenite based on europium ions induced crosslinking of nitrogen-doped carbon dots
Xiao et al. Porous carbon quantum dots: one step green synthesis via L-cysteine and applications in metal ion detection
Zeng et al. A novel carbon dots derived from reduced l-glutathione as fluorescent probe for the detection of the l-/d-arginine
Xu et al. Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg 2+ and oxytetracycline
Zhou et al. Optical detection of anthrax biomarkers in an aqueous medium: The combination of carbon quantum dots and europium ions within alginate hydrogels
Hu et al. An investigation on the chemical structure of nitrogen and sulfur codoped carbon nanoparticles by ultra-performance liquid chromatography-tandem mass spectrometry
Xu et al. A ratiometric nanosensor based on lanthanide-functionalized attapulgite nanoparticle for rapid and sensitive detection of bacterial spore biomarker
Wang et al. Mn (II)-coordinated fluorescent carbon dots: preparation and discrimination of organic solvents
Wang et al. Dual-emission carbon dots achieved by luminescence center modulation within one-pot synthesis for a fluorescent ratiometric probe of pH, Hg 2+, and glutathione
Chen et al. Phosphorus-doped carbon dots for sensing both Au (III) and L-methionine
Sun et al. Carbon dots-decorated hydroxyapatite nanowires–lanthanide metal–organic framework composites as fluorescent sensors for the detection of dopamine
Xiao‐Yan et al. Crown daisy leaf waste–derived carbon dots: A simple and green fluorescent probe for copper ion
Adegoke et al. Conjugation of mono-substituted phthalocyanine derivatives to CdSe@ ZnS quantum dots and their applications as fluorescent-based sensors
Peng et al. A novel dual emission ratiometric fluorescence sensor Eu3+/CDs@ UiO-66 to achieve Cu2+ detection in water environment
Zhu et al. Precise Modulation of Intramolecular Aggregation‐induced Electrochemiluminescence by Tetraphenylethylene‐based Supramolecular Architectures
Shi et al. A novel sustainable biomass-based fluorescent probe for sensitive detection of salicylic acid in rice
Liao et al. Facile preparation of carbon dots with multicolor emission for fluorescence detection of ascorbic acid, glutathione and moisture content
Cao et al. Construction of multicolor fluorescence hydrogels based on the dual-emission CDs@ SiO2/AuNCs for alternative visual recognition of copper ions and glutathione

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant