CN113921644A - 单片的变质的多结太阳能电池 - Google Patents

单片的变质的多结太阳能电池 Download PDF

Info

Publication number
CN113921644A
CN113921644A CN202110783595.2A CN202110783595A CN113921644A CN 113921644 A CN113921644 A CN 113921644A CN 202110783595 A CN202110783595 A CN 202110783595A CN 113921644 A CN113921644 A CN 113921644A
Authority
CN
China
Prior art keywords
subcell
sub
monolithic
solar cell
multijunction solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110783595.2A
Other languages
English (en)
Other versions
CN113921644B (zh
Inventor
M·莫伊泽尔
A·贝格
P·施罗特
S·施赖埃尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azur Space Solar Power GmbH
Original Assignee
Azur Space Solar Power GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azur Space Solar Power GmbH filed Critical Azur Space Solar Power GmbH
Publication of CN113921644A publication Critical patent/CN113921644A/zh
Application granted granted Critical
Publication of CN113921644B publication Critical patent/CN113921644B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/041Provisions for preventing damage caused by corpuscular radiation, e.g. for space applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种单片的变质的多结太阳能电池,包括:第一III‑V族子电池,第二III‑V族子电池,第三III‑V族子电池,第四Ge子电池,其中,所述子电池以所说明的顺序彼此相继堆叠,所述第一子电池构造最上方的子电池,在所述第三子电池和所述第四子电池之间构造变质缓冲层,所有子电池分别具有n掺杂的发射极层和p掺杂的基极层,在所述第二子电池中,所述发射极层的厚度大于所述基极层的厚度。

Description

单片的变质的多结太阳能电池
技术领域
本发明涉及一种单片的变质的多结太阳能电池。这种多结太阳能电池优选在太空或地面聚光光伏系统(CPV)中使用。在此,至少三个或更多具有不同带隙的子电池借助隧道二极管彼此相继地堆叠。
背景技术
由Dimroth等人的文献《Wafer bonded four-junction GaInP/GaAs/GaInAsP/GaInAs concentrator solar cells with 44.7%efficiency》,光伏会议,研究应用,2014年;22:277-282页中,已知具有由GaInAsP构成的子电池的四结太阳能电池的制造。在所提及的文献中,从InP衬底开始,以晶格匹配的方式沉积具有约1.12eV的能量带隙的GaInAsP太阳能电池。
具有较高带隙的上方子电池在GaAs衬底上以相反的顺序在第二沉积中产生。整个多结太阳能电池的形成通过两个外延晶片的直接半导体键合(Halbleiterbond)实现,随后进行去除GaAs衬底和进一步的工艺步骤。然而,制造过程非常高开销且成本高。
此外,由EP 2 960 950 A1和EP 3 179 521 A1已知具有GaInAsP子电池的另外的多结太阳能电池。此外,由US 2018 0226 528 A1、US 2017 0054 048 A1、DE 10 2018 203509 A1和US 2020 0027 999 A1已知还具有变质缓冲层的正置(aufrecht)生长的多结电池。
此外,由
Figure BDA0003158208450000011
OLIVER等人的《Development of Germanium-Based Wafer-Bonded Four-Junction Solar Cells》IEEE光伏杂志,第9卷,第6期,2019年10月11日,第1625-1630页,由EP 3 179 521 A1,由US 2018/240 922 A1,由GERARD BAUHUIS等人的《Deep junction III-V solar cells with enhanced performance:Deep junction III-V solar cells》PHYSICA STATUS SOLIDI,第213卷,第8期,2016年3月7日,第2216-2222页,由R.H.VAN LEEST等人的《Recent Progress of multi-junction solar celldevelopment for CPV applications at AZUR SPACE》,PROC.OF THE 36TH EU-PVSEC,2019年9月11日,第586-589页,由US 2019/378 948 A1和US 6 660 928 B1已知其他多结太阳能电池。
耐辐射性的优化,尤其还对于非常高的辐射剂量,是航天太阳能电池发展的一个重要目标。除了提高初始或寿命开始(beginning-of-life,BOL)有效系数外,目标还在于提高寿命结束(end-of-life,EOL)有效系数。
此外,制造成本至关重要。当前时刻的行业标准由晶格匹配的三结太阳能电池和变质的GaInP/GaInAs/Ge三结太阳能电池给出。
发明内容
在此背景下,本发明的任务是说明一种扩展现有技术的设备。
该任务通过具有根据本发明的特征的单片的变质的多结太阳能电池解决。本发明的有利构型是优选的实施方式。
在本发明的主题中,提供一种包括第一III-V族子电池、第二III-V族子电池、第三III-V族子电池和第四Ge子电池的单片的多结太阳能电池。
子电池以所说明的顺序彼此相继堆叠。
第一子电池构造最上方的子电池。
在第三子电池与第四子电池之间构造有变质缓冲层。
所有子电池分别具有n掺杂的发射极层和p掺杂的基极层。
还应注意,术语“发射极”和“基极”应理解为相应的子电池中的要么n掺杂的层、要么p掺杂的层,换句话说,即发射极层和基极层。
在一种实施方式中,子电池的最上方的层、即本发明中的发射极层构造成n层。由此,子电池中的光总是首先通过发射层,然后通过基极层。
在第一、第三和第四子电池中,基极层比发射极层厚多倍。相反,在第二子电池中,发射极层的厚度大于基极层的厚度。
在迄今的多结太阳能电池,尤其是在多结太阳能电池领域中,该方案是令人惊讶的。其原因是:n掺杂的发射极层中的少数
Figure BDA0003158208450000021
(即空穴)的迁移率比电子的迁移率低大约一个数量级。另一个原因是:由于入射的太空辐射,在应用期间基极层和发射极层中少数电荷载流子寿命退化。
此外应注意,借助变质缓冲层补偿第四电池和第三电池之间的晶格常数差异。变质缓冲层在此由至少三个III-V族层组成。所描述的多结太阳能电池涉及所谓的正置生长的多结太阳能电池、即所谓的UMM(upright metamorphic multijunction)多结太阳能电池。
一个优点是,所描述的设备令人惊讶的显示出较少的退化。换句话说,在辐射下的有效系数的降低降低得较少,即,EOL(end of life)有效系数相比于先前的值有所增加。
在一种实施方式中,在四个子电池之间不构造半导体键合,尤其包括:在多结太阳能电池的任意两个子电池之间不构造直接的半导体键合。
由于多结太阳能电池堆叠状地由堆叠来构造,因此可以理解,多结太阳能电池的堆叠并非由如下的两个子电池构造:所述两个子电池沉积在不同衬底上,并且随后通过半导体键合接合在一起。太阳能电池堆叠尤其不具有如可能在键合期间产生的、非晶(amorphen)的中间层。
应注意,太阳光总是首先照射通过具有最大带隙的、最上方的子电池。换句话说,太阳能电池堆叠借助最上方的子电池首先吸收光的短波部分。带隙从第一子电池朝第四子电池减小,其中,第四子电池的带隙约为0.67eV。
因此,在本发明中,首先光子首先流动通过
Figure BDA0003158208450000031
第一子电池,然后第二子电池,然后第三子电池,最后第四子电池。优选地,在两个直接彼此相继的子电池之间分别构造一个隧道二极管。
在等效电路图中,多结太阳能电池的各个子电池应理解为p/n二极管与位于其间的隧道二极管作为串联连接。由此,具有最低电流的子电池起限制作用,换句话说,有利的是各个子电池彼此电流匹配。
在一种扩展方案中,在第二子电池中,发射极层的厚度大于600nm。
一些研究令人惊讶的表明,与预期相反,在电子辐射下,在所提及的成分范围中的p-InGaAsP中电荷载流子寿命的退化是高的。更令人吃惊的是,在n掺杂的InGaAsP的情况下几乎没有发现退化。
在一种实施方式中,在第二子电池中,基极层具有小于450nm的厚度和/或大于4·1017/cm3的掺杂。替代地,在第二子电池中,基极层具有小于200nm的厚度和/或大于8·1017/cm3的掺杂。
在一种扩展方案中,第二子电池(SC2)的发射极层包括InGaAsP或由InGaAsP组成。
应注意,在本发明中术语——元素的化学缩写——与完整的术语同义地使用。
在一种实施方式中,第二子电池的发射极层的砷含量关于V主族的元素位于22%和33%之间,其铟含量关于III主族的元素位于52%和65%之间。在一种扩展方案中,基极层的晶格常数在0.572nm和0.577nm之间。
可以理解,尤其是所说明的砷含量是关于V族原子的总含量。相应地,所说明的铟含量是关于III族原子的总含量。这意味着,对于化合物Ga1-xInxAsYP1-Y,铟含量是值X,砷含量是值Y,由此,对于例如25%的砷含量得到Y值为0.25。
研究以令人惊讶的方式得出,InGaAsP在所提及的成分范围中可以借助MOVPE令人惊讶地以好的质量沉积。由此克服以下偏见:在所提及的、位于混溶间隙(Mischungslücke)内的成分范围中的InGaAsP不能够以太阳能电池所需的质量沉积。
这更加令人惊讶,因为一些研究表明,借助MOVPE沉积的InGaAsP在其他成分范围中确实具有在文献中发现的混溶间隙或离析(Entmischung)。换句话说,在所提及的成分范围中似乎存在阻止或减轻离析的特殊效应。
在一种扩展方案中,在第二子电池的层上方以及在第一子电池下方布置有如下的钝化层:该钝化层由至少具有元素GaInP或至少具有元素AlInP的化合物组成。换句话说,钝化层构造在第一子电池与第二子电池之间。
在另一扩展方案中,第一子电池的晶格常数与第三子电池的晶格常数相差小于0.3%或小于0.2%。换句话说,第三子电池与第二子电池以及与第一子电池彼此晶格匹配。
在另一扩展方案中,在第二子电池的层下方和在变质缓冲层上方布置由至少具有元素GaInP或至少具有元素AlInP的化合物组成的钝化层。
在一种实施方式中,第二子电池和/或另外的子电池不具有多量子阱结构(Vielfach-Quantentopf-Struktur)。
在一种实施方式中,第二子电池SC2构造成同质电池(Homozelle)。在此,术语“同质电池”应理解为以下电池:在该电池中发射极层具有与基极层相同化学计量的相同元素。
在一种扩展方案中,第二子电池的发射极层和基极层分别包括InGaAsP或由InGaAsP组成。
在一种实施方式中,第二子电池构造成异质电池(Heterozelle)。第二子电池的发射极层优选包括InGa(As)P或由InGa(As)P组成。基极层包括InGaP或AlInGaP或InAlP或AlInAs,或者由InGaP或AlInGaP或InAlP或AlInAs组成。
在另一扩展方案中,在第二子电池SC2中,在基极层下方朝向第三子电池SC3的方向布置有由AlInAs或AlInGaAs组成的钝化层。
在一种实施方式中,在第二子电池中,发射极掺杂至多是基极掺杂的三分之一,或至多五分之一,或至多八分之一。
在一种扩展方案中,第二太阳能电池的发射极层具有第一区域和第二区域,其中,第一区域具有与第二区域不同的掺杂大小,并且第二区域构造成比第一区域更靠近基极。
优选地,第一区域中的掺杂在第一太阳能电池的方向上增加超过3·1017/cm3
在一种扩展方案中,第二太阳能电池的第二区域具有大于150nm的厚度和小于1·1016/cm3的掺杂。
替代地,第二区域具有大于250nm的厚度和小于5·1015/cm3的掺杂。
在另一实施方式中,在第二子电池中,在第三子电池的方向上的下方区域具有大于150nm的厚度和/或小于1·1016/cm3的掺杂。替代地,在第二子电池中,在第三子电池方向上的、发射层的下方区域具有大于250nm的厚度和小于5·1015/cm3的掺杂。
在一种扩展方案中,第二子电池的基极层至少部分地具有掺杂剂Zn或C或Mg。优选地,发射极层至少部分地具有掺杂剂Si或Te或Se或Ge。
在一种扩展方案中,在第二子电池中,基极层掺杂有碳。替代地,基极层中碳浓度高于锌浓度。
在一种扩展方案中,第一子电池具有比第二子电池更大的带隙(Bandabstand)。第二子电池具有比第三子电池更大的带隙。第三子电池具有比第四子电池更大的带隙。
优选地,第一子电池具有在1.85eV和2.07eV之间的范围内的带隙,第二子电池具有在1.41eV和1.53eV之间的范围内的带隙,第三子电池具有在1.04eV和1.18eV之间的范围内的带隙。
在一种实施方式中,第一子电池具有至少由元素AlInP组成的化合物。关于III主族的元素,铟含量在64%和75%之间,且Al含量在18%和32%之间。
在一种扩展方案中,第三子电池具有至少由元素InGaAs组成的化合物。铟含量关于III主族元素大于17%。
在一种扩展方案中,在第三子电池和第四子电池之间布置有半导体镜。通过安装半导体镜,基极层的厚度——与不具有半导体镜的基极层的厚度相比——在50%和90%之间的范围内减小。
在一种实施方式中,在第二子电池的层上方和第一子电池下方布置有如下钝化层:该钝化层由至少具有元素GaInP、或至少具有元素AlInAs、或至少具有元素AlInP的化合物组成。
在一种实施方式中,在第二子电池的层下方和变质缓冲层上方布置有如下钝化层:该钝化层由至少具有元素GaInP或至少具有元素AlInP的化合物组成。
在一种实施方式中,设置恰好四个子电池或恰好五个子电池,其中,在具有五个子电池的多结太阳能电池的情况下,第五子电池构造在第一子电池和第二子电池之间。
可以理解,第五子电池具有比第二子电池更大的带隙,并且具有比第一子电池更小的带隙。第五子电池与第二子电池晶格匹配。
优选地,在第五子电池中,发射极层的厚度小于基极层的厚度。
在一种扩展方案中,在第二子电池中,发射极层具有小于1%的锑含量。
附图说明
下面参照附图更详细地产生本发明。在此,相同类型的部件标有相同的附图标记。所示出的实施方式是高度示意性的,即距离以及横向和垂直延伸不按比例绘制,并且——除非另有说明——彼此之间也没有可推导的几何关系。在此示出,
图1示出单片的变质的多结太阳能电池的第一实施方式的视图;
图2示出单片的变质的多结太阳能电池的第二实施方式的视图;
图3示出单片的变质的多结太阳能电池的第三实施方式的视图。
具体实施方式
图1的附图示出单片的多结太阳能电池的第一实施方式,所述单片的多结太阳能电池具有在处于下方的第二子电池SC2上的、上方的第一子电池SC1。在照射的情况下,光L首先照射到第一子电池SC1的上侧上。
在第一子电池SC1和第二子电池SC2之间构造有上方的隧道二极管TD1。
在第二子电池SC2下方布置有第三子电池SC3。在第二子电池SC2和第三子电池SC3之间构造有第二隧道二极管TD2。
在第三子电池SC3下方布置有第四子电池SC4。在第三子电池SC3和第四子电池SC4之间构造有第三隧道二极管TD3。
在第四子电池SC4和第三隧道二极管TD3之间布置有变质缓冲层MP。
子电池SC1、SC2、SC3和SC4中的每个都具有一个n掺杂的发射极层,所述n掺杂的发射极层材料锁合地(stoffschlüssig)支承在p掺杂的基极层上。
在第一、第三和第四子电池SC1、SC3、SC4中,发射极层的厚度分别小于相关的基极层的厚度。
在第二子电池SC2中,发射极层的厚度大于基极层的厚度。
图2的附图示出四结太阳能电池的第二实施方式。以下仅阐述与第一实施方式的不同之处。
第二子电池SC2具有由InGaP组成的发射极和由InGaAsP组成的基极,即不同于基极中的四元化合物,发射极具有三元化合物。由此,第二子电池SC2构造成所谓的异质电池。
图3的附图示出四结太阳能电池的第三实施方式。以下仅阐述与先前的实施方式的不同之处。
在第一子电池SC1和第二子电池SC2之间布置有第五子电池SC5。在第五子电池SC5和第二子电池SC2之间布置有第四隧道二极管TD4。第五子电池SC5与第二子电池晶格匹配,而且与第三子电池晶格匹配。

Claims (14)

1.一种单片的变质的多结太阳能电池,所述单片的变质的多结太阳能电池包括:
第一III-V族子电池(SC1),
第二III-V族子电池(SC2),
第三III-V族子电池(SC3),
第四Ge子电池(SC4),所述子电池(SC1,SC2,SC3,SC4)以所说明的顺序彼此相继堆叠,且所述第一子电池(SC1)构造最上方的子电池,
在所述第三子电池(SC3)和所述第四子电池(SC4)之间构造有变质缓冲层(MP1),
所有子电池(SC1,SC2,SC3,SC4)分别具有n掺杂的发射极层和p掺杂的基极层,
在所述第一、第三和第四子电池(SC1,SC3,SC4)中,所述发射极层的厚度分别小于相关的基极层的厚度,
在所述第二子电池(SC2)中,所述发射极层的厚度大于所述基极层的厚度,
在两个彼此相继的子电池之间构造有隧道二极管,其中,在所述第一子电池(SC1)与所述第二子电池(SC2)构造有第一隧道二极管(TD1),且在所述第二子电池(SC2)与所述第三子电池(SC3)之间构造有第二隧道二极管(TD2),且在所述第三子电池(SC3)与所述第四子电池(SC4)之间构造有第三隧道二极管(TD3),
在所述第一子电池(SC1)中,所述发射极层的厚度分别小于相关的基极层的厚度,
在所述第二子电池(SC2)中,所述发射极层包括InGaAsP或由InGaAsP组成,
所述第一子电池(SC1)具有由至少元素AlInP构成的化合物。
2.根据权利要求1所述的单片的变质的多结太阳能电池,其特征在于,所述第二子电池(SC2)的发射极层具有大于600nm的厚度。
3.根据权利要求1或2所述的单片的变质的多结太阳能电池,其特征在于,所述第二子电池(SC2)的基极层具有小于450nm的厚度和/或大于4·1017/cm3的掺杂。
4.根据权利要求1或2所述的单片的变质的多结太阳能电池,其特征在于,在所述第二子电池(SC2)中,所述发射极层的砷含量关于V主族的元素位于22%和33%之间,且所述发射极层的铟含量关于III主族的元素位于52%和65%之间,且所述发射极层的晶格常数在0.572nm和0.577nm之间。
5.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,所述第二子电池(SC2)构造为异质电池。
6.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,在所述第二子电池(SC2)中,所述基极层包括InGaAsP或InGaP或AlInGaP或InAlP或AlInAs,或者所述基极层由InGaAsP或由InGaP或由AlInGaP或由InAlP或由AlInAs组成。
7.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,所述第一子电池(SC1)具有在1.85eV和2.07eV之间的范围内的带隙,且所述第二子电池(SC2)具有在1.41eV和1.53eV之间的范围内的带隙,且所述第三子电池(SC3)具有在1.04eV和1.18eV之间的范围内的带隙。
8.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,在所述第一子电池(SC1)中,铟含量关于III主族的元素位于64%和75%之间,且Al含量位于18%和32%之间。
9.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,在所述第三子电池(SC3)和所述第四子电池(SC4)之间布置有半导体镜(HS)。
10.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,在所述第二子电池(SC2)中,所述发射极层至少部分地具有掺杂剂梯度,且掺杂剂浓度在所述第一子电池(SC1)的方向上增加到超过3·1017/cm3
11.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,所述第二子电池(SC2)的发射极层具有第一区域和第二区域,其中,所述第一区域具有与所述第二区域不同的掺杂大小,并且与所述第一区域相比,所述第二区域构造成更靠近所述基极。
12.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,设置恰好四个子电池或恰好五个子电池,其中,在所述第一子电池(SC1)和所述第二子电池(SC2)之间构造有第五子电池(SC5)。
13.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,在所述第二子电池(SC2)中所述基极层掺杂有碳,和/或在第二太阳能电池的基极层中碳浓度高于锌浓度。
14.根据以上权利要求中任一项所述的单片的变质的多结太阳能电池,其特征在于,在所述第二子电池(SC2)中,发射极掺杂至多是基极掺杂的三分之一。
CN202110783595.2A 2020-07-10 2021-07-12 单片的变质的多结太阳能电池 Active CN113921644B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20000251.7 2020-07-10
EP20000251.7A EP3937259A1 (de) 2020-07-10 2020-07-10 Monolithische metamorphe mehrfachsolarzelle

Publications (2)

Publication Number Publication Date
CN113921644A true CN113921644A (zh) 2022-01-11
CN113921644B CN113921644B (zh) 2023-07-14

Family

ID=71607686

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110783595.2A Active CN113921644B (zh) 2020-07-10 2021-07-12 单片的变质的多结太阳能电池

Country Status (3)

Country Link
US (1) US11374140B2 (zh)
EP (1) EP3937259A1 (zh)
CN (1) CN113921644B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499495A (zh) * 2008-01-31 2009-08-05 昂科公司 倒置变形多结太阳能电池中的异质结子电池
US20100012175A1 (en) * 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20140261611A1 (en) * 2013-03-14 2014-09-18 The Boeing Company Solar cell structures for improved current generation and collection
CN105552157A (zh) * 2014-10-23 2016-05-04 阿聚尔斯佩西太阳能有限责任公司 叠堆状的集成的多结太阳能电池
CN106887481A (zh) * 2015-12-10 2017-06-23 阿聚尔斯佩西太阳能有限责任公司 多结太阳能电池
CN107039557A (zh) * 2015-12-25 2017-08-11 阿聚尔斯佩西太阳能有限责任公司 堆叠状的多结太阳能电池
CN109103293A (zh) * 2017-06-21 2018-12-28 阿聚尔斯佩西太阳能有限责任公司 太阳能电池堆叠
CN111326597A (zh) * 2018-12-14 2020-06-23 阿聚尔斯佩西太阳能有限责任公司 堆叠状的单片的正置变质的多结太阳能电池

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385198A (en) * 1981-07-08 1983-05-24 The United States Of America As Represented By The Secretary Of The Air Force Gallium arsenide-germanium heteroface junction device
US5019177A (en) * 1989-11-03 1991-05-28 The United States Of America As Represented By The United States Department Of Energy Monolithic tandem solar cell
JP3657143B2 (ja) * 1999-04-27 2005-06-08 シャープ株式会社 太陽電池及びその製造方法
US6316715B1 (en) * 2000-03-15 2001-11-13 The Boeing Company Multijunction photovoltaic cell with thin 1st (top) subcell and thick 2nd subcell of same or similar semiconductor material
US7119271B2 (en) * 2001-10-12 2006-10-10 The Boeing Company Wide-bandgap, lattice-mismatched window layer for a solar conversion device
US20030070707A1 (en) * 2001-10-12 2003-04-17 King Richard Roland Wide-bandgap, lattice-mismatched window layer for a solar energy conversion device
AU2002252110A1 (en) * 2002-02-27 2003-09-09 Midwest Research Institute Monolithic photovoltaic energy conversion device
US6660928B1 (en) * 2002-04-02 2003-12-09 Essential Research, Inc. Multi-junction photovoltaic cell
US8067687B2 (en) * 2002-05-21 2011-11-29 Alliance For Sustainable Energy, Llc High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters
US20060162768A1 (en) * 2002-05-21 2006-07-27 Wanlass Mark W Low bandgap, monolithic, multi-bandgap, optoelectronic devices
US8173891B2 (en) * 2002-05-21 2012-05-08 Alliance For Sustainable Energy, Llc Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps
JP4974545B2 (ja) * 2006-02-24 2012-07-11 シャープ株式会社 太陽電池ストリングの製造方法
US20100093127A1 (en) * 2006-12-27 2010-04-15 Emcore Solar Power, Inc. Inverted Metamorphic Multijunction Solar Cell Mounted on Metallized Flexible Film
EP1993143A1 (de) * 2007-05-14 2008-11-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Halbleiterbauelement, Verfahren zu dessen Herstellung und dessen Verwendung
JP5570736B2 (ja) * 2009-02-06 2014-08-13 シャープ株式会社 化合物半導体太陽電池の製造方法
US20110124146A1 (en) * 2009-05-29 2011-05-26 Pitera Arthur J Methods of forming high-efficiency multi-junction solar cell structures
US20120285519A1 (en) * 2011-05-10 2012-11-15 Emcore Solar Power, Inc. Grid design for iii-v compound semiconductor cell
CN102244114A (zh) * 2011-06-22 2011-11-16 厦门市三安光电科技有限公司 一种高倍聚光多结太阳能电池及其制备方法
JP5758257B2 (ja) * 2011-09-30 2015-08-05 シャープ株式会社 化合物半導体太陽電池製造用積層体、化合物半導体太陽電池およびその製造方法
US9099595B2 (en) * 2012-09-14 2015-08-04 The Boeing Company Group-IV solar cell structure using group-IV or III-V heterostructures
EP2960950B1 (de) 2014-06-26 2023-01-25 AZUR SPACE Solar Power GmbH Mehrfach-solarzelle
US20170054048A1 (en) 2015-08-17 2017-02-23 Solaero Technologies Corp. Four junction solar cell for space applications
US20180240922A1 (en) 2015-08-17 2018-08-23 Solaero Technologies Corp. Four junction solar cell and solar cell assemblies for space applications
US10707366B2 (en) 2015-08-17 2020-07-07 Solaero Technologies Corp. Multijunction solar cells on bulk GeSi substrate
US20200027999A1 (en) 2015-08-17 2020-01-23 Solaero Technologies Corp. Multijunction solar cell and solar cell assemblies for space applications
US9985161B2 (en) * 2016-08-26 2018-05-29 Solaero Technologies Corp. Multijunction metamorphic solar cell for space applications
DE102017200700A1 (de) 2017-01-18 2018-07-19 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mehrfachsolarzelle mit rückseitiger Germanium-Teilzelle und deren Verwendung
DE102018203509A1 (de) 2018-01-17 2019-07-18 Solaero Technologies Corp. Vierfach-Solarzelle für Raumanwendungen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101499495A (zh) * 2008-01-31 2009-08-05 昂科公司 倒置变形多结太阳能电池中的异质结子电池
US20100012175A1 (en) * 2008-07-16 2010-01-21 Emcore Solar Power, Inc. Ohmic n-contact formed at low temperature in inverted metamorphic multijunction solar cells
US20100229926A1 (en) * 2009-03-10 2010-09-16 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with a Single Metamorphic Layer
US20140261611A1 (en) * 2013-03-14 2014-09-18 The Boeing Company Solar cell structures for improved current generation and collection
CN105552157A (zh) * 2014-10-23 2016-05-04 阿聚尔斯佩西太阳能有限责任公司 叠堆状的集成的多结太阳能电池
CN106887481A (zh) * 2015-12-10 2017-06-23 阿聚尔斯佩西太阳能有限责任公司 多结太阳能电池
CN107039557A (zh) * 2015-12-25 2017-08-11 阿聚尔斯佩西太阳能有限责任公司 堆叠状的多结太阳能电池
CN109103293A (zh) * 2017-06-21 2018-12-28 阿聚尔斯佩西太阳能有限责任公司 太阳能电池堆叠
CN111326597A (zh) * 2018-12-14 2020-06-23 阿聚尔斯佩西太阳能有限责任公司 堆叠状的单片的正置变质的多结太阳能电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OLIVER H0HN: "Development of Germanium-Based Wafer-Bonded Four-Junction Solar Cells", 《JOURNAL OF PHOTOVOLTAICS》, vol. 9, no. 6, XP011755777, DOI: 10.1109/JPHOTOV.2019.2941770 *

Also Published As

Publication number Publication date
US20220013678A1 (en) 2022-01-13
CN113921644B (zh) 2023-07-14
US11374140B2 (en) 2022-06-28
EP3937259A1 (de) 2022-01-12

Similar Documents

Publication Publication Date Title
US10439091B2 (en) Solar cell structures for improved current generation and collection
US9985152B2 (en) Lattice matchable alloy for solar cells
TWI600173B (zh) 在中間電池中具有低能隙吸收層之多接面太陽能電池及其製造方法
JP5425480B2 (ja) 倒置型メタモルフィック多接合ソーラーセルにおけるヘテロ接合サブセル
EP2689465B1 (en) Metamorphic solar cell having improved current generation
EP2709166B1 (en) Group-IV solar cell structure using group-IV heterostructures
EP1134813A2 (en) Multijunction photovoltaic cell with thin first (top) subcell and thick second subcell of same or similar semiconductor material
EP1109230A2 (en) Multijunction photovoltaic cell using a silicon or silicon-germanium substrate
US20100180936A1 (en) Multijunction solar cell
US20100282307A1 (en) Multijunction Solar Cells with Group IV/III-V Hybrid Alloys for Terrestrial Applications
EP3923349B1 (en) Four junction solar cell and solar cell assemblies for space applications
CN113990975B (zh) 单片的变质的多结太阳能电池
CN111739970B (zh) 堆叠状的单片的正置变质的地面式的聚光太阳能电池
US20170365732A1 (en) Dilute nitride bismide semiconductor alloys
CN113921644B (zh) 单片的变质的多结太阳能电池
CN113921645B (zh) 单片的变质的多结太阳能电池
US20180226532A1 (en) METHOD FOR FABRICATING MULTIJUNCTION SOLAR CELLS ON BULK GeSi SUBSTRATE
CN112582494B (zh) 具有恰好四个子电池的单片的多结太阳能电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant