CN113916257A - 三轴mems加计组合惯性测量单元标定方法 - Google Patents

三轴mems加计组合惯性测量单元标定方法 Download PDF

Info

Publication number
CN113916257A
CN113916257A CN202111031291.7A CN202111031291A CN113916257A CN 113916257 A CN113916257 A CN 113916257A CN 202111031291 A CN202111031291 A CN 202111031291A CN 113916257 A CN113916257 A CN 113916257A
Authority
CN
China
Prior art keywords
meter
adding meter
zero offset
accelerometer
measurement unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111031291.7A
Other languages
English (en)
Other versions
CN113916257B (zh
Inventor
袁书博
陈安升
徐超
林梦娜
侯凤霞
刘垒
王康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Automation Control Equipment Institute BACEI
Original Assignee
Beijing Automation Control Equipment Institute BACEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Automation Control Equipment Institute BACEI filed Critical Beijing Automation Control Equipment Institute BACEI
Priority to CN202111031291.7A priority Critical patent/CN113916257B/zh
Publication of CN113916257A publication Critical patent/CN113916257A/zh
Application granted granted Critical
Publication of CN113916257B publication Critical patent/CN113916257B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Gyroscopes (AREA)

Abstract

本发明提供了一种三轴MEMS加计组合惯性测量单元标定方法,该方法包括:获取在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出;分别获取每个温度下的x加计、y加计和z加计的标度因数、零偏和安装误差;分别获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差;根据x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿计算获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。应用本发明的技术方案,能够解决现有技术中无法针对仅含加计的惯性测量单元进行标定的技术问题。

Description

三轴MEMS加计组合惯性测量单元标定方法
技术领域
本发明涉及惯性导航技术领域,尤其涉及一种三轴MEMS加计组合惯性测量单元标定方法。
背景技术
MEMS惯性器件具有体积小、重量轻和功耗小等特点,是未来惯性器件发展的一个方向,利用MEMS惯性器件组成的MEMS惯导系统应用也越来越广泛。但很多应用场景由于成本、体积和应用方向的限制,只需要测量载体的加速度,并不关心角速率,此时可以使用仅含三轴加计的惯性测量单元。而现有技术中,常用的19位置或6位置标定方案均为含有陀螺的加计惯性测量单元,无法针对仅含加计的惯性测量单元进行标定。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
本发明提供了一种三轴MEMS加计组合惯性测量单元标定方法,该三轴MEMS加计组合惯性测量单元标定方法包括:获取在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出;根据在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出分别获取每个温度下的x加计、y加计和z加计的标度因数、零偏和安装误差;根据在多个不同温度下的x加计、y加计和z加计的标度因数、零偏和安装误差分别获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差;根据x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿计算获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。
进一步地,六个不同位置依次为:加计组合惯性测量单元的XYZ轴依次指向东地北向、北天东向、南东天向、西北地向、天西南向和地南西向。
进一步地,对于多个温度中的任一温度,根据
Figure BDA0003245352440000021
获取x加计的标度因数、零偏和安装误差,根据
Figure BDA0003245352440000022
获取y加计的标度因数、零偏和安装误差,根据
Figure BDA0003245352440000023
获取z加计的标度因数、零偏和安装误差,其中,Nax1至Nax6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的x加计脉冲数输出平均值,单位为脉冲数;Kax0为x加计的零偏,单位为脉冲数/s;kayx=Kax1×Sax,kazx=Kax2×Sax,Kax1和Kax2分别为x加计相对于y方向和z方向的安装误差,单位为rad;Sax为x加计的标度因数,单位为(脉冲数/s)/g,g为当地重力加速度;Nay1至Nay6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的y加计脉冲数输出平均值;Kay0为y加计的零偏;kaxy=Kay1×Say,kazy=Kay2×Say,Kay1和Kay2分别为y加计相对于x方向和z方向的安装误差;Say为y加计的标度因数;Naz1至Naz6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的z加计脉冲数输出平均值;Kaz0为z加计的零偏;kaxz=Kaz1×Saz,kayz=Kaz2×Saz,Kaz1和Kaz2分别为z加计相对于x方向和y方向的安装误差;Saz为z加计的标度因数。
进一步地,根据每个温度下的x加计、y加计和z加计的标度因数、零偏和安装误差获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差包括:3.1)根据每个温度下的x加计、y加计和z加计的标度因数、零偏和安装误差获取x加计、y加计和z加计的标度因数、零偏和安装误差的温度补偿模型的拟合系数;3.2)根据x加计、y加计和z加计的标度因数、零偏和安装误差的温度补偿模型的拟合系数获取x加计、y加计和z加计的经温度补偿后的标度因数、零偏和安装误差。
进一步地,步骤3.1)包括:根据
Figure BDA0003245352440000031
Figure BDA0003245352440000032
Figure BDA0003245352440000033
获取x加计、y加计和z加计的温度补偿模型的拟合系数,其中,i=1,2,3,j=1,2,3,4,i=1表示x加计,i=2表示y加计,i=3表示z加计,j=1表示标度因数,j=2表示零偏;在i=1时,j=3表示x加计相对于y方向的安装误差,j=4表示x加计相对于z方向的安装误差;在i=2时,j=3表示y加计相对于x方向的安装误差,j=4表示y加计相对于z方向的安装误差;在i=3时,j=3表示z加计相对于x方向的安装误差,j=4表示z加计相对于y方向的安装误差;a0 ij、a1 ij、a2 ij、a3 ij、a4 ij分别表示第i个加计第j个标定参数的温度补偿模型的第一至第四拟合系数;
T1、T2、T3、T4、T5、T6、T7、T8分别表示第一至第八温度;
yij_1、yij_2、yij_3、yij_4、yij_5、yij_6、yij_7、yij_8分别表示第一至第八温度下第i个加计的第j个标定参数。
进一步地,步骤3.2)包括:根据yij(T)=a0 ij+a1 ijTi+a2 ijTi 2+a3 ijTi 3+a4 ijTi 4获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差,其中,yij分别表示第i个加计的经温度补偿后的第j个标定参数;
Figure BDA0003245352440000041
Ti_1、Ti_2、Ti_3、Ti_4、Ti_5、Ti_6、Ti_7、Ti_8分别表示在第一至第八温度下第i个加计的有效温度平均值。
进一步地,根据x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿计算获取采样周期内的速度增量包括:4.1)根据x加计、y加计和z加计经温度补偿后的标度因数和零偏对加计系统脉冲数输出进行补偿;4.2)根据x加计、y加计和z加计经温度补偿后的安装误差通过迭代算法对加计系统脉冲数输出进行补偿以获取最终补偿后的x加速度、y加速度和z加速度;4.3)根据最终补偿后的x加速度、y加速度和z加速度获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。
进一步地,步骤4.1)包括:根据
Figure BDA0003245352440000051
对加计系统脉冲数输出补偿加计零偏,并进行标度因数转换,其中,aax、aay和aaz分别表示经补偿加计零偏并转换标度因数后的x加速度、y加速度和z加速度,单位为g;Nax为x加计的系统脉冲数输出,Nay为y加计的系统脉冲数输出,Nazz加计的系统脉冲数输出,Tcy为加计系统脉冲数输出的采样频率,S′ax表示y11;S′ay表示y21;S′az表示y31;K′ax0表示y12;K′ay0表示y22;K′az0表示y32
进一步地,步骤4.2)包括:根据
Figure BDA0003245352440000052
对加计系统脉冲数输出进行补偿,其中,K′ax1表示y13;K′ax2表示y14;K′ay1表示y23;K′ay2表示y24;K′az1表示y33;K′az2表示y34;ax、ay和az分别表示最终补偿后的x加速度、y加速度和z加速度,单位为g。
进一步地,步骤4.3)包括:根据
Figure BDA0003245352440000053
获取采样周期内的速度增量,其中,dV为采样周期内的速度增量,单位为m/s。
应用本发明的技术方案,提供了一种三轴MEMS加计组合惯性测量单元标定方法,该三轴MEMS加计组合惯性测量单元标定方法通过获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿,能够实现对三轴MEMS加计组合测量单元的精确标定。与现有技术相比,本发明的技术方案能够解决现有技术中无法针对仅含加计的惯性测量单元进行标定的技术问题。
附图说明
所包括的附图用来提供对本发明实施例的进一步的理解,其构成了说明书的一部分,用于例示本发明的实施例,并与文字描述一起来阐释本发明的原理。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本发明的具体实施例提供的三轴MEMS加计组合惯性测量单元标定方法的流程示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
如图1所示,根据本发明的具体实施例提供了一种三轴MEMS加计组合惯性测量单元标定方法,该三轴MEMS加计组合惯性测量单元标定方法包括:获取在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出;根据在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出分别获取每个温度下的x加计、y加计和z加计的标度因数、零偏和安装误差;根据在多个不同温度下的x加计、y加计和z加计的标度因数、零偏和安装误差分别获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差;根据x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿计算获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。
应用此种配置方式,提供了一种三轴MEMS加计组合惯性测量单元标定方法,该三轴MEMS加计组合惯性测量单元标定方法通过获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿,能够实现对三轴MEMS加计组合测量单元的精确标定。与现有技术相比,本发明的技术方案能够解决现有技术中无法针对仅含加计的惯性测量单元进行标定的技术问题。
在本发明中,为了实现三轴MEMS加计组合惯性测量单元的标定,首先获取在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出。
作为本发明的一个具体实施例,获取在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出具体包括:
1.1)将加计组合惯性测量单元安装在带恒温箱的转台上,设置恒温箱处于第一温度。在该实施例中,可通过标定工装将加计组合惯性测量单元安装在带恒温箱的转台上,以此实现对加计组合的温度控制。在该实施例中,对加计组合惯性测量单元的安装还包括将加计组合惯性测量单元连接至测试电缆,并检查加计组合惯性测量单元设置是否正确,调整转台为水平状态。通过上述安装处理可以保证后续测试数据的正确性。
1.2)调整转台使得加计组合惯性测量单元的X、Y和Z轴分别指向东向、地向和北向,加计组合惯性测量单元上电。在该实施例中,通过调整转台使得加计组合测量单元处于第一位置以对加计组合测量单元进行校准,便于后续数据的准确测量。
1.3)待加计组合惯性测量单元输出稳定后,按预设采样周期和采样时长采集加速度计的脉冲数输出和加计有效温度。在该实施例中,可通过启动计算机采样程序对加速度计的脉冲数输出和加计有效温度进行采集。采样周期和采样时长可根据实际标定需要进行调整,例如采样周期可设置为5ms,采样时长可设置为60s。在具体实施例中,采样周期可以设置为5、8、10或15ms等,采样时长可以设置为50、60、65或70s等。在该实施例中,加计有效温度以试验时实际测试为准。在后续计算中通过求取在采样时长中多次采集的加速度计的脉冲数输出的平均值和加计有效温度的平均值进行计算。
1.4)依次调整转台使得加计组合惯性测量单元的X、Y和Z轴依次指向北天东向、南东天向、西北地向、天西南向和地南西向,在每次调整加计组合惯性测量单元的位置后等待加计组合惯性测量单元输出稳定,按预设采样周期和采样时长采集加速度计的脉冲数输出和加计有效温度。
在该实施例中,通过对加计组合惯性测量单元位置的调整可获取加计组合惯性测量单元在不同位置处的脉冲数输出,以此为基础进行三轴MEMS加计组合惯性测量单元的标定。在该实施例中,加计组合惯性测量单元的六个位置依次设置为东地北向、北天东向、南东天向、西北地向、天西南向和地南西向,如表1所示。
表1 同一温度下加计组合惯性测量单元的六个位置试验表
Figure BDA0003245352440000091
1.5)加计组合惯性测量单元断电。
1.6)依次调整恒温箱处于第二温度至第n温度,在每次调整恒温箱的温度后重复步骤1.2)至步骤1.5),直至完成全部温度下的加计脉冲数输出和加计有效温度的采集,n为整数。在该实施例中,为了提高三轴MEMS加计组合惯性测量单元标定精度,恒温箱的温度调整可设置为八组,从第一温度至第八温度可依次设置为75℃、60℃、40℃、25℃、10℃、-5℃、-20℃和-40℃。
进一步地,在本发明中,在获取在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出后,根据在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出分别获取每个温度下的x加计、y加计和z加计的标度因数、零偏和安装误差。
作为本发明的一个具体实施例,对步骤一中设置的多个温度中的任一温度,均通过标定参数分离获取该温度下的x加计、y加计和z加计的标度因数、零偏和安装误差。
其中,对于x加计,根据模型方程
Figure BDA0003245352440000101
获取x加计的标度因数、零偏和安装误差,其中,Nax1至Nax6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的x加计脉冲数输出平均值,单位为脉冲数;Kax0为x加计的零偏,单位为脉冲数/s;kayx=Kax1×Sax,kazx=Kax2×Sax,Kax1和Kax2分别为x加计相对于y方向和z方向的安装误差,单位为rad;Sax为x加计的标度因数,单位为(脉冲数/s)/g,g为当地重力加速度。
在该实施例的计算过程中,可将上述公式写成矩阵形式为
Figure BDA0003245352440000102
其中,
Figure BDA0003245352440000111
Figure BDA0003245352440000112
则参数向量
Figure BDA0003245352440000113
的最佳估值为
Figure BDA0003245352440000114
同样的,对y加计,根据模型方程
Figure BDA0003245352440000115
获取y加计的标度因数、零偏和安装误差,其中,Nay1至Nay6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的y加计脉冲数输出平均值,单位为脉冲数;Kay0为y加计的零偏,单位为脉冲数/s;kaxy=Kay1×Say,kazy=Kay2×Say,Kay1和Kay2分别为y加计相对于x方向和z方向的安装误差,单位为rad;Say为y加计的标度因数,单位为(脉冲数/s)/g。
在该实施例的计算过程中,可将上述公式写成矩阵形式为
Figure BDA0003245352440000116
其中,
Figure BDA0003245352440000117
Figure BDA0003245352440000118
则参数向量
Figure BDA0003245352440000119
的最佳估值为
Figure BDA00032453524400001110
同样的,对z加计,根据模型方程
Figure BDA0003245352440000121
获取z加计的标度因数、零偏和安装误差,其中,Naz1至Naz6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的z加计脉冲数输出平均值,单位为脉冲数;Kaz0为z加计的零偏,单位为脉冲数/s;kaxz=Kaz1×Saz,kayz=Kaz2×Saz,Kaz1和Kaz2分别为z加计相对于x方向和y方向的安装误差,单位为rad;Saz为z加计的标度因数,单位为(脉冲数/s)/g。
在该实施例的计算过程中,可将上述公式写成矩阵形式为
Figure BDA0003245352440000122
其中,
Figure BDA0003245352440000123
Figure BDA0003245352440000124
则参数向量
Figure BDA0003245352440000125
的最佳估值为
Figure BDA0003245352440000126
此外,在本发明中,在获取每个温度下的x加计、y加计和z加计的标度因数、零偏和安装误差后,根据在多个不同温度下的x加计、y加计和z加计的标度因数、零偏和安装误差获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差。
进一步地,在本发明中,根据在多个不同温度下的x加计、y加计和z加计的标度因数、零偏和安装误差获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差包括:
3.1)根据在多个不同温度下的x加计、y加计和z加计的标度因数、零偏和安装误差获取x加计、y加计和z加计的标度因数、零偏和安装误差的温度补偿模型的拟合系数。
作为本发明的一个具体实施例,步骤3.1)具体包括:根据
Figure BDA0003245352440000131
Figure BDA0003245352440000132
Figure BDA0003245352440000133
获取x加计、y加计和z加计的温度补偿模型的拟合系数,其中,i=1,2,3,j=1,2,3,4,i=1表示x加计,i=2表示y加计,i=3表示z加计,j=1表示标度因数,j=2表示零偏;在i=1时,j=3表示x加计相对于y方向的安装误差,j=4表示x加计相对于z方向的安装误差;在i=2时,j=3表示y加计相对于x方向的安装误差,j=4表示y加计相对于z方向的安装误差;在i=3时,j=3表示z加计相对于x方向的安装误差,j=4表示z加计相对于y方向的安装误差;a0 ij、a1 ij、a2 ij、a3 ij、a4 ij分别表示第i个加计第j个标定参数的温度补偿模型的第一至第四拟合系数;
T1、T2、T3、T4、T5、T6、T7、T8分别表示第一至第八温度;
yij_1、yij_2、yij_3、yij_4、yij_5、yij_6、yij_7、yij_8分别第一至第八温度下第i个加计的第j个标定参数。在该实施例中,第一至第八温度分别为75℃、60℃、40℃、25℃、10℃、-5℃、-20℃和-40℃。
具体可举例,a0 11、a1 11、a2 11、a3 11、a4 11分别表示x加计标度因数的温度补偿模型的第一至第四拟合系数;y11_1、y11_2、y11_3、y11_4、y11_5、y11_6、y11_7、y11_8分别表示步骤二中获取的75℃、60℃、40℃、25℃、10℃、-5℃、-20℃、-40℃下x加计的标度因数。
3.2)根据x加计、y加计和z加计的标度因数、零偏和安装误差的温度补偿模型的拟合系数获取x加计、y加计和z加计的经温度补偿后的标度因数、零偏和安装误差。
作为本发明的一个具体实施例,步骤3.2)具体包括:根据yij(T)=a0 ij+a1 ijTi+a2 ijTi 2+a3 ijTi 3+a4 ijTi 4获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差,其中,yij分别表示第i个加计的经温度补偿后的第j个标定参数;
Figure BDA0003245352440000141
Ti_1、Ti_2、Ti_3、Ti_4、Ti_5、Ti_6、Ti_7、Ti_8分别表示在第一至第八温度下第i个加计的有效温度平均值。具体可举例,y11分别表示x加计的经温度补偿后的标度因数,T1_1表示在75℃下x加计的有效温度平均值。
此外,在本发明中,在获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差后,根据x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的脉冲数输出进行补偿计算获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。
进一步地,在本发明中,根据x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿计算获取采样周期内的速度增量具体包括:
4.1)根据x加计、y加计和z加计经温度补偿后的标度因数和零偏对加计脉冲数输出进行补偿。
作为本发明的一个具体实施例,根据
Figure BDA0003245352440000151
对加计脉冲数输出补偿加计零偏,并进行标度因数转换,其中,aax、aay和aaz分别表示经补偿加计零偏并转换标度因数后的x加速度、y加速度和z加速度,单位为g;Nax为x加计的系统脉冲数输出,Nay为y加计的系统脉冲数输出,Nazz加计的系统脉冲数输出,Tcy为加计系统脉冲数输出的采样频率,S′ax表示y11,即x加计的经温度补偿后的标度因数;S′ay表示y21,即y加计的经温度补偿后的标度因数;S′az表示y31,即z加计的经温度补偿后的标度因数;K′ax0表示y12,即x加计的经温度补偿后的零偏;K′ay0表示y22,即y加计的经温度补偿后的零偏;K′az0表示y32,即z加计的经温度补偿后的零偏。在本发明中,x加计、y加计和z加计的系统脉冲数输出可以是标定时的脉冲数输出,也可以是用户使用过程中的脉冲数输出。通过上述公式可根据经温度补偿后的标度因数和零偏对任意情况下输出的脉冲数进行补偿,以得到角速率加速度。
4.2)根据x加计、y加计和z加计经温度补偿后的安装误差通过迭代算法对加计系统脉冲数输出进行补偿以获取最终补偿后的x加速度、y加速度和z加速度。在本发明中,迭代次数可根据需要进行调整。
作为本发明的一个具体实施例,迭代次数可设置为三次,迭代初值设置为零,三次迭代能够保证在尽量少的运算量的同时保证补偿精度。具体地,可根据
Figure BDA0003245352440000161
对加计系统脉冲数输出进行补偿,其中,K′ax1表示y13,即x加计相对于y方向的安装误差;K′ax2表示y14,即x加计相对于z方向的安装误差;K′ay1表示y23,即y加计相对于x方向的安装误差;K′ay2表示y24,即y加计相对于z方向的安装误差;K′az1表示y33,即z加计相对于x方向的安装误差;K′az2表示y34,即z加计相对于y方向的安装误差;ax、ay和az分别表示最终补偿后的x加速度、y加速度和z加速度,单位为g。
4.3)根据最终补偿后的x加速度、y加速度和z加速度获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。
作为本发明的一个具体实施例,可根据
Figure BDA0003245352440000162
获取采样周期内的速度增量,其中,dV为采样周期内的速度增量,单位为m/s。
本发明的三轴MEMS加计组合惯性测量单元标定方法,针对仅包含三轴MEMS加计组合的惯性测量单元进行标定补偿,标定方法中不涉及角速率,能够减少标定补偿的计算量,同时保证了三轴加速度计组合的精确标定以及使用过程中的测量精度。
为了对本发明有进一步地了解,下面结合图1对本发明的三轴MEMS加计组合惯性测量单元标定方法进行详细说明。
如图1所示,根据本发明的具体实施例提供了一种三轴MEMS加计组合惯性测量单元标定方法,该三轴MEMS加计组合惯性测量单元标定方法具体包括以下步骤。
步骤一,获取在八组不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出。
步骤二,对八组不同温度中的任一温度,均通过标定参数分离获取x加计、y加计和z加计的标度因数、零偏和安装误差。其中,对八组不同温度中的任一温度,
根据
Figure BDA0003245352440000171
获取x加计的标度因数、零偏和安装误差;根据
Figure BDA0003245352440000172
获取y加计的标度因数、零偏和安装误差;根据
Figure BDA0003245352440000173
获取z加计的标度因数、零偏和安装误差。、
步骤3.1),根据
Figure BDA0003245352440000174
Figure BDA0003245352440000175
获取x加计、y加计和z加计的温度补偿模型的拟合系数。
步骤3.2),根据yij(T)=a0 ij+a1 ijTi+a2 ijTi 2+a3 ijTi 3+a4 ijTi 4获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差。
步骤4.1),根据
Figure BDA0003245352440000181
对加计系统脉冲数输出补偿加计零偏,并进行标度因数转换。
步骤4.2),根据
Figure BDA0003245352440000182
对加计系统脉冲数输出进行补偿。
步骤4.3),根据
Figure BDA0003245352440000183
获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。
综上所述,本发明提供了一种三轴MEMS加计组合惯性测量单元标定方法,该三轴MEMS加计组合惯性测量单元标定方法通过获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿,能够实现对三轴MEMS加计组合测量单元的精确标定。与现有技术相比,本发明的技术方案能够解决现有技术中无法针对仅含加计的惯性测量单元进行标定的技术问题。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种三轴MEMS加计组合惯性测量单元标定方法,其特征在于,所述三轴MEMS加计组合惯性测量单元标定方法包括:
获取在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出;
根据所述在多个不同温度下三轴MEMS加计组合惯性测量单元在六个不同位置处的加计脉冲数输出分别获取每个温度下的x加计、y加计和z加计的标度因数、零偏和安装误差;
根据所述在多个不同温度下的x加计、y加计和z加计的标度因数、零偏和安装误差分别获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差;
根据所述x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿计算获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。
2.根据权利要求1所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,所述六个不同位置依次为:加计组合惯性测量单元的XYZ轴依次指向东地北向、北天东向、南东天向、西北地向、天西南向和地南西向。
3.根据权利要求1或2所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,对于多个温度中的任一温度,根据
Figure FDA0003245352430000011
获取x加计的标度因数、零偏和安装误差,根据
Figure FDA0003245352430000021
获取y加计的标度因数、零偏和安装误差,根据
Figure FDA0003245352430000022
获取z加计的标度因数、零偏和安装误差,其中,Nax1至Nax6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的x加计脉冲数输出平均值,单位为脉冲数;Kax0为x加计的零偏,单位为脉冲数/s;kayx=Kax1×Sax,kazx=Kax2×Sax,Kax1和Kax2分别为x加计相对于y方向和z方向的安装误差,单位为rad;Sax为x加计的标度因数,单位为(脉冲数/s)/g,g为当地重力加速度;Nay1至Nay6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的y加计脉冲数输出平均值;Kay0为y加计的零偏;kaxy=Kay1×Say,kazy=Kay2×Say,Kay1和Kay2分别为y加计相对于x方向和z方向的安装误差;Say为y加计的标度因数;Naz1至Naz6依次为在东地北向、北天东向、南东天向、西北地向、天西南向和地南西向的z加计脉冲数输出平均值;Kaz0为z加计的零偏;kaxz=Kaz1×Saz,kayz=Kaz2×Saz,Kaz1和Kaz2分别为z加计相对于x方向和y方向的安装误差;Saz为z加计的标度因数。
4.根据权利要求3所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,根据所述在多个不同温度下的x加计、y加计和z加计的标度因数、零偏和安装误差获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差包括:
3.1)根据所述在多个不同温度下的x加计、y加计和z加计的标度因数、零偏和安装误差分别获取x加计、y加计和z加计的标度因数、零偏和安装误差的温度补偿模型的拟合系数;
3.2)根据x加计、y加计和z加计的标度因数、零偏和安装误差的温度补偿模型的拟合系数获取x加计、y加计和z加计的经温度补偿后的标度因数、零偏和安装误差。
5.根据权利要求4所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,所述步骤3.1)包括:根据
Figure FDA0003245352430000031
Figure FDA0003245352430000032
获取x加计、y加计和z加计的标度因数、零偏和安装误差的温度补偿模型的拟合系数,其中,i=1,2,3,j=1,2,3,4,i=1表示x加计,i=2表示y加计,i=3表示z加计,j=1表示标度因数,j=2表示零偏;在i=1时,j=3表示x加计相对于y方向的安装误差,j=4表示x加计相对于z方向的安装误差;在i=2时,j=3表示y加计相对于x方向的安装误差,j=4表示y加计相对于z方向的安装误差;在i=3时,j=3表示z加计相对于x方向的安装误差,j=4表示z加计相对于y方向的安装误差;a0 ij、a1 ij、a2 ij、a3 ij、a4 ij分别表示第i个加计第j个标定参数的温度补偿模型的第一至第四拟合系数;T1、T2、T3、T4、T5、T6、T7、T8分别表示第一至第八温度;yij_1、yij_2、yij_3、yij_4、yij_5、yij_6、yij_7、yij_8分别表示第一至第八温度下第i个加计的第j个标定参数。
6.根据权利要求5所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,所述步骤3.2)包括:根据yij(T)=a0 ij+a1 ijTi+a2 ijTi 2+a3 ijTi 3+a4 ijTi 4获取x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差,其中,yij分别表示第i个加计的经温度补偿后的第j个标定参数;
Figure FDA0003245352430000041
Ti_1、Ti_2、Ti_3、Ti_4、Ti_5、Ti_6、Ti_7、Ti_8分别表示在第一至第八温度下第i个加计的有效温度平均值。
7.根据权利要求1至6中任一项所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,根据所述x加计、y加计和z加计经温度补偿后的标度因数、零偏和安装误差对x加计、y加计和z加计的系统脉冲数输出进行补偿计算获取采样周期内的速度增量包括:
4.1)根据x加计、y加计和z加计经温度补偿后的标度因数和零偏对加计系统脉冲数输出进行补偿;
4.2)根据x加计、y加计和z加计经温度补偿后的安装误差通过迭代算法对加计系统脉冲数输出进行补偿以获取最终补偿后的x加速度、y加速度和z加速度;
4.3)根据所述最终补偿后的x加速度、y加速度和z加速度获取采样周期内的速度增量以完成三轴MEMS加计组合惯性测量单元的标定。
8.根据权利要求7所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,所述步骤4.1)包括:根据
Figure FDA0003245352430000051
对加计系统脉冲数输出补偿加计零偏并进行标度因数转换,其中,aax、aay和aaz分别表示经补偿加计零偏并转换标度因数后的x加速度、y加速度和z加速度,单位为g;Nax为x加计的系统脉冲数输出,Nay为y加计的系统脉冲数输出,Nazz加计的系统脉冲数输出,Tcy为加计系统脉冲数输出的采样频率,S′ax表示y11;S′ay表示y21;S′az表示y31;K′ax0表示y12;K′ay0表示y22;K′az0表示y32
9.根据权利要求8所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,所述步骤4.2)包括:根据
Figure FDA0003245352430000052
对加计系统脉冲数输出进行补偿,其中,K′ax1表示y13;K′ax2表示y14;K′ay1表示y23;K′ay2表示y24;K′az1表示y33;K′az2表示y34;ax、ay和az分别表示最终补偿后的x加速度、y加速度和z加速度,单位为g。
10.根据权利要求9所述的三轴MEMS加计组合惯性测量单元标定方法,其特征在于,所述步骤4.3)包括:根据
Figure FDA0003245352430000053
获取采样周期内的速度增量,其中,dV为采样周期内的速度增量,单位为m/s。
CN202111031291.7A 2021-09-03 2021-09-03 三轴mems加计组合惯性测量单元标定方法 Active CN113916257B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111031291.7A CN113916257B (zh) 2021-09-03 2021-09-03 三轴mems加计组合惯性测量单元标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111031291.7A CN113916257B (zh) 2021-09-03 2021-09-03 三轴mems加计组合惯性测量单元标定方法

Publications (2)

Publication Number Publication Date
CN113916257A true CN113916257A (zh) 2022-01-11
CN113916257B CN113916257B (zh) 2023-09-12

Family

ID=79233982

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111031291.7A Active CN113916257B (zh) 2021-09-03 2021-09-03 三轴mems加计组合惯性测量单元标定方法

Country Status (1)

Country Link
CN (1) CN113916257B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115752508A (zh) * 2022-11-14 2023-03-07 北京自动化控制设备研究所 微机电惯性系统高阶耦合误差补偿模型及方法
CN117705106A (zh) * 2024-02-05 2024-03-15 西安军捷新创电子科技有限公司 一种mems imu全自动全温度补偿标定方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589573A (zh) * 2012-02-09 2012-07-18 黑龙江省博凯科技开发有限公司 微型组合导航系统中的传感器野外标定方法
RU2566427C1 (ru) * 2014-08-06 2015-10-27 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ определения температурных зависимостей масштабных коэффициентов, смещений нуля и матриц ориентации осей чувствительности лазерных гироскопов и маятниковых акселерометров в составе инерциального измерительного блока при стендовых испытаниях
CN108168574A (zh) * 2017-11-23 2018-06-15 东南大学 一种基于速度观测的8位置捷联惯导系统级标定方法
CN108168575A (zh) * 2017-11-30 2018-06-15 上海航天控制技术研究所 一种五轴冗余配置十表光纤惯组的标定方法和系统
CN108645427A (zh) * 2018-04-20 2018-10-12 北京航天时代激光导航技术有限责任公司 基于样条插值迭代修正的激光惯组系统级温度补偿方法
CN109188026A (zh) * 2018-10-25 2019-01-11 北京航空航天大学 适用于mems加速度计的自动标定的深度学习方法
CN112595350A (zh) * 2020-12-31 2021-04-02 福建星海通信科技有限公司 一种惯导系统自动标定方法及终端
CN113029199A (zh) * 2021-03-15 2021-06-25 中国人民解放军国防科技大学 一种激光陀螺惯导系统的系统级温度误差补偿方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589573A (zh) * 2012-02-09 2012-07-18 黑龙江省博凯科技开发有限公司 微型组合导航系统中的传感器野外标定方法
RU2566427C1 (ru) * 2014-08-06 2015-10-27 Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" Способ определения температурных зависимостей масштабных коэффициентов, смещений нуля и матриц ориентации осей чувствительности лазерных гироскопов и маятниковых акселерометров в составе инерциального измерительного блока при стендовых испытаниях
CN108168574A (zh) * 2017-11-23 2018-06-15 东南大学 一种基于速度观测的8位置捷联惯导系统级标定方法
CN108168575A (zh) * 2017-11-30 2018-06-15 上海航天控制技术研究所 一种五轴冗余配置十表光纤惯组的标定方法和系统
CN108645427A (zh) * 2018-04-20 2018-10-12 北京航天时代激光导航技术有限责任公司 基于样条插值迭代修正的激光惯组系统级温度补偿方法
CN109188026A (zh) * 2018-10-25 2019-01-11 北京航空航天大学 适用于mems加速度计的自动标定的深度学习方法
CN112595350A (zh) * 2020-12-31 2021-04-02 福建星海通信科技有限公司 一种惯导系统自动标定方法及终端
CN113029199A (zh) * 2021-03-15 2021-06-25 中国人民解放军国防科技大学 一种激光陀螺惯导系统的系统级温度误差补偿方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王佳;丁鑫;高文超;卢道华;: "基于双轴速率转台的IMU440惯性测量单元快速标定方法与实验", 船舶工程, no. 12, pages 56 - 59 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115752508A (zh) * 2022-11-14 2023-03-07 北京自动化控制设备研究所 微机电惯性系统高阶耦合误差补偿模型及方法
CN115752508B (zh) * 2022-11-14 2024-02-06 北京自动化控制设备研究所 微机电惯性系统高阶耦合误差补偿模型及方法
CN117705106A (zh) * 2024-02-05 2024-03-15 西安军捷新创电子科技有限公司 一种mems imu全自动全温度补偿标定方法
CN117705106B (zh) * 2024-02-05 2024-05-03 西安军捷新创电子科技有限公司 一种mems imu全自动全温度补偿标定方法

Also Published As

Publication number Publication date
CN113916257B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN108827299B (zh) 一种基于改进四元数二阶互补滤波的飞行器姿态解算方法
CN111678538B (zh) 一种基于速度匹配的动态水平仪误差补偿方法
CN108592952B (zh) 基于杆臂补偿与正反倍速率同时标定多mimu误差的方法
CN113916256B (zh) 三轴mems陀螺组合惯性测量单元标定方法
CN110160554B (zh) 一种基于寻优法的单轴旋转捷联惯导系统标定方法
CN113916257A (zh) 三轴mems加计组合惯性测量单元标定方法
CN109709628B (zh) 一种旋转加速度计重力梯度仪标定方法
CN102692239B (zh) 一种基于旋转机构的光纤陀螺八位置标定方法
CN109086250B (zh) 适用于带斜置光纤陀螺的mems惯组的数据融合方法
CN112945225A (zh) 基于扩展卡尔曼滤波的姿态解算系统及解算方法
CN101131311A (zh) 一种智能化机载导弹动基座对准及标定方法
CN111121820B (zh) 基于卡尔曼滤波的mems惯性传感器阵列融合方法
CN111024119A (zh) 一种三轴mems陀螺仪快速标定方法
CN114280332A (zh) 一种三轴加速度传感器校正方法
Dichev et al. A gyro-free system for measuring the parameters of moving objects
Xing et al. Offline calibration for MEMS gyroscope g-sensitivity error coefficients based on the Newton iteration and least square methods
CN115267256B (zh) 一种加速度计组件的模观测标定方法
CN115655272B (zh) Mems加速度计零偏和标度因数的温度补偿方法及系统
CN113156167B (zh) 一种三轴加速度计的标定方法及装置
Wang et al. Thermal calibration of MEMS inertial sensors for an FPGA-based navigation system
CN115560778A (zh) 基于谐振式惯性器件的惯性测量系统误差实时补偿方法
Wang et al. A calibration procedure and testing of MEMS inertial sensors for an FPGA-based GPS/INS system
CN114459478A (zh) 一种基于姿态运动学模型的惯性测量单元数据融合方法
Kalikhman et al. Development of digital regulators for control systems of gyroscopic devices and associated metrological installations using modern methods of synthesis to improve accuracy and dynamic characteristics
Sabir et al. Simplification of calibration of low-cost MARG sensors without high-precision laboratory equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant