CN113901388A - 一种变参数条件下沿曲线切削的残余高度预测方法 - Google Patents

一种变参数条件下沿曲线切削的残余高度预测方法 Download PDF

Info

Publication number
CN113901388A
CN113901388A CN202111259751.1A CN202111259751A CN113901388A CN 113901388 A CN113901388 A CN 113901388A CN 202111259751 A CN202111259751 A CN 202111259751A CN 113901388 A CN113901388 A CN 113901388A
Authority
CN
China
Prior art keywords
face
equation
vibration
parameter equation
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111259751.1A
Other languages
English (en)
Other versions
CN113901388B (zh
Inventor
冀世军
田豪霞
赵继
霍浩东
胡志清
代汉达
刘振泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN202111259751.1A priority Critical patent/CN113901388B/zh
Publication of CN113901388A publication Critical patent/CN113901388A/zh
Application granted granted Critical
Publication of CN113901388B publication Critical patent/CN113901388B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Human Resources & Organizations (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Strategic Management (AREA)
  • Computational Mathematics (AREA)
  • Economics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Algebra (AREA)
  • Primary Health Care (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Quality & Reliability (AREA)
  • Numerical Control (AREA)

Abstract

本发明公开了一种变参数条件下沿曲线切削的残余高度预测方法,根据所加工曲面获取曲线方程;建立变参数椭圆振动方程,得到超声椭圆振动加工的椭圆轨迹方程,将椭圆轨迹方程与步骤一获取的曲线方程联立,确定曲线与椭圆轨迹的交点坐标;计算切削过程中第n个刀触点椭圆振动轨迹方程,进而计算相邻两个刀触点椭圆振动轨迹的交点,最终计算出相邻椭圆振动轨迹之间的残余高度。其中,计算相邻两个刀触点椭圆振动轨迹的交点时,需要根据刀具参数及超声椭圆振动切削参数判断零件表面加工情况,将零件表面加工情况可以按照前、后刀面对加工后表面的干涉情况分为四种类型,对应每种情况分别计算相邻两个刀触点椭圆振动轨迹的交点。

Description

一种变参数条件下沿曲线切削的残余高度预测方法
技术领域
本发明属于机械制造技术领域,涉及一种变参数条件下沿曲线切削的残余高度预测方法, 具体为一种在零件加工控制方法中考虑刀尖钝圆半径,并在不同刀具几何参数、超声振动参 数和刀具与工件相互作用等多工艺参数条件下零件加工表面残余高度预测方法。
背景技术
超声椭圆振动切削技术在现有的加工方法中使用较为广泛,比如在加工难加工材料以及 超精密加工中,这种切削技术不仅解决了传统加工难题,而且展现了许多特有的优势:切削 力降低、加工精度提高、表面粗糙度等级提高等,因此被广泛应用与航空航天、军工等领域 各种难加工材料的加工中。目前对超声椭圆振动技术的研究多集中于加工平面,且均为定参 数切削,对于自由曲面的加工以及变参数切削的研究相对较少。因此本发明提出一种变参数 条件下沿曲线切削的残余高度预测方法,在加工曲面时通过实时改变振动幅度及绕椭圆中心 旋转角度,实现对复杂曲面的加工。
发明内容
为解决现有技术存在的上述问题,本发明提供一种变参数条件下沿曲线超声椭圆振动切 削的残余高度预测方法,该方法考虑了当加工表面为复杂曲面时,超声振动参数如振幅、绕 椭圆中心偏转角度发生变化时,零件加工表面残留高度的预测。
本发明的目的是通过以下技术方案实现的:
一种变参数条件下沿曲线切削的残余高度预测方法,包括以下步骤:
步骤一、根据所加工曲面获取曲线方程;
步骤二、建立变参数椭圆振动方程,得到超声椭圆振动加工的椭圆轨迹方程,将椭圆轨 迹方程与步骤一获取的曲线方程联立,确定曲线与椭圆轨迹的交点坐标;
步骤三、计算切削过程中第n个刀触点椭圆振动轨迹方程,进而计算相邻两个刀触点椭 圆振动轨迹的交点,最终计算出相邻椭圆振动轨迹之间的残余高度。
进一步地,所述步骤一获取的曲线方程为:
y=f(x),则曲线斜率为y′=f′(x)。
更进一步地,所述步骤二中,变参数椭圆振动方程表达式如下:
Figure BDA0003325227770000011
则:
Figure BDA0003325227770000021
此时椭圆振动轨迹方程为:
Figure BDA0003325227770000022
将椭圆振动轨迹方程与曲线方程联立,则曲线与椭圆振动轨迹的交点坐标根据下式求出:
Figure BDA0003325227770000023
式中,an、bn分别为加工过程中第n个椭圆振动轨迹在x、y方向上的振幅;ω为振动角 频率;xOn=vc·n·T,为第n个椭圆中心的横坐标值;
Figure BDA0003325227770000024
为第n个椭圆中心的纵 坐标值。
进一步地,所述步骤三中,计算相邻两个刀触点椭圆振动轨迹的交点时,需要根据刀具 参数及超声椭圆振动切削参数判断零件表面加工情况,将零件表面加工情况可以按照前、后 刀面对加工后表面的干涉情况分为以下四类:
情况一、前、后刀面在加工过程中均不对加工后表面产生干涉;
情况二、后刀面在加工过程中对加工后表面产生干涉;
情况三、前刀面在加工过程中对加工后表面产生干涉;
情况四、前、后刀面在加工过程中均对加工后表面产生干涉。
本发明具有以下优点:
本发明考虑了当加工表面为复杂曲面,并采用变参数超声椭圆振动切削且考虑刀具钝圆 半径,探究复合切削工艺参数、超声振动参数以及刀具几何形状参数对超声振动辅助切削技 术中残留高度的影响。
附图说明
图1为用于变参数条件下沿曲线切削加工的二维超声振动机床总体示意图
图2为变参数条件下沿曲线切削加工的刀具超声振动轨迹原理图
图3(a)和图3(b)分别为本发明所述步骤三中加工情况一和情况二中的刀具参数示意 图
图4为本发明所述步骤三中加工情况为情况一中①时轨迹示意图
图5为本发明所述步骤三中加工情况为情况二中①时轨迹示意图
图6为本发明所述步骤三中加工情况为情况二中②时轨迹示意图
图7为本发明所述步骤三中加工情况为情况二中③时轨迹示意图
图8为本发明所述步骤三中加工情况为情况二中④时轨迹示意图
图9为本发明所述步骤三中加工情况为情况二中⑤时轨迹示意图
图10为本发明所述步骤三中加工情况为情况三中①时轨迹示意图
图11为本发明所述步骤三中加工情况为情况三中②时轨迹示意图
图12为本发明所述步骤三中加工情况为情况三中③时轨迹示意图
图13为本发明所述步骤三中加工情况为情况三中④时轨迹示意图
图14为本发明所述步骤三中加工情况为情况三中⑤时轨迹示意图
图15为本发明所述步骤三中加工情况为情况四中①时轨迹示意图
图16为本发明所述步骤三中加工情况为情况四中②时轨迹示意图
图17为本发明所述步骤三中加工情况为情况四中③时轨迹示意图
图18为本发明所述步骤三中加工情况为情况四中④时轨迹示意图
图19为本发明所述步骤三中加工情况为情况四中⑤时轨迹示意图
图中:
1-机架;2-y向导轨;3-z向导轨;4-超声工具系统;5-工件;6-转台;7-x向导轨。
具体实施方式
下面结合附图所示实例进一步说明本发明的实施方案与工作过程。
如图1所示,一种二维超声振动加工机床,包括机架1、y向导轨2、z向导轨3、超声工具系统4、工件5、转台6、x向导轨7。所述x向导轨7横向安装在机架1上,所述y向导 轨2横向固定安装在x向导轨7上侧的中间位置的溜板上,所述z向导轨3纵向固定安装在 机架1的横梁上,所述超声工具系统4固定安装在z向导轨3的溜板上,所述工件5安装在 转台6的安装板上,并通过夹具固定,所述转台6固定安装在y向导轨2的溜板上。
结合图1和图2,一种变参数条件下沿曲线切削的残余高度预测方法,包括以下步骤:
步骤一、根据所加工曲面获取相关曲线参数方程:
设曲线方程为y=f(x),则曲线斜率为y′=f′(x)。
步骤二、在仿真模型中对工具系统的两个超声振子分别施加正弦激励,并输入工件加工 时所选取刀具参数以及超声椭圆振动切削的初始参数,建立变参数椭圆振动方程,得到超声 椭圆振动加工的椭圆轨迹方程,将椭圆轨迹方程与步骤一获取的曲线方程联立,确定曲线与 椭圆轨迹的交点坐标。其中:
变参数椭圆振动方程一般形式可写为:
Figure BDA0003325227770000041
其中,an、bn分别为加工过程中第n个椭圆振动轨迹在x、y方向上的振幅;ω为振动角 频率;xOn=vc·n·T,为第n个椭圆中心的横坐标值;
Figure BDA0003325227770000042
为第n个椭圆中心的纵 坐标值。假定切削速度vc、以及初始椭圆振动参数a0、b0、ω、θ0、ω0均为已知量,并对超声工具系统的两个超声振子以及机床控制系统输入相关初始加工参数。
在沿曲线加工过程中椭圆轨迹会有一定角度的偏转,设其偏转角度为θn,则偏转后的变 参数椭圆振动方程表达式如下:
Figure BDA0003325227770000043
则:
Figure BDA0003325227770000044
此时椭圆振动轨迹方程为:
Figure BDA0003325227770000045
将椭圆振动轨迹方程与曲线方程联立,则曲线与椭圆振动轨迹的交点坐标可根据下式求 出:
Figure BDA0003325227770000046
可根据上式解得曲线与椭圆振动轨迹的交点Cn(xCn,yCn)。
步骤三、计算切削过程中第n个刀触点椭圆振动轨迹方程,进而计算相邻两个刀触点椭 圆振动轨迹的交点,最终计算出相邻椭圆振动轨迹之间的残余高度。
相邻两椭圆振动轨迹与曲线切点的横坐标的关系为:
xC(n+1)-xCn=vc·T-bn+1·cosθn+1+bn·cosθn
其中,T=2π/ω。
刀具切削速度为vc,则刀具相对于工件的运动方程为:
Figure BDA0003325227770000051
则临界切削速度
Figure BDA0003325227770000052
则切削过程中第n个刀触点椭圆振动轨迹方程Ln(后文中此式均用Ln代替)为:
Figure BDA0003325227770000053
则加工过程中,相邻两个刀触点椭圆振动轨迹的交点可根据下式求得:
Figure BDA0003325227770000054
二式联立可求得两轨迹的相交时的t,进而求得交点坐 标Pn(xPn,yPn)
则相邻椭圆振动轨迹之间的残余高度可表示为
Figure BDA0003325227770000055
由于篇幅所限,本发明仅考虑加工下坡面时的情况,当加工上坡面时,推导方法与限制 条件等参数与加工下坡面相似。
进一步地,所述步骤三中,计算相邻两个刀触点椭圆振动轨迹的交点时,需要根据刀具 参数及超声椭圆振动切削参数判断零件表面加工情况,将零件表面加工情况可以按照前、后 刀面对加工后表面的干涉情况分为以下四类:
情况一、前、后刀面在加工过程中均不对加工后表面产生干涉;
情况二、后刀面在加工过程中对加工后表面产生干涉;
情况三、前刀面在加工过程中对加工后表面产生干涉;
情况四、前、后刀面在加工过程中均对加工后表面产生干涉。
实施例1
所述步骤三中,情况一前、后刀面在加工过程中均不对加工后表面产生干涉,根据前角γo、 后角αo及参数方程交点情况可分为以下一种:
①、切削速度与最大临界速度关系为
Figure BDA0003325227770000056
刀具前角γo≥0, 刀具后角满足
Figure BDA0003325227770000057
在切削过程中前、后刀面均不会对切削轨迹产生影响。刀具参 数如图3(a)所示。
第n个刀触点振动轨迹参数方程与第n+1个刀触点振动轨迹参数方程的交点可通过下式 求得:
Figure BDA0003325227770000061
结合图4,其中t1时刻为刀具最低点与工件开始接触的时刻;t2、t3为相邻两次椭圆振动 的交点位置,t4为下一循环的开始。可根据上式求得相邻两次振动轨迹的交点坐标Pn(xPn,yPn)。
则相邻两次椭圆振动之间的残余高度可表示为
Figure BDA0003325227770000062
实施例2
所述步骤三中,情况二根据前角γo、后角αo及参数方程交点情况可细分为以下五种:
①、切削速度与最大临界速度关系为
Figure BDA0003325227770000063
刀具前角满足
Figure BDA0003325227770000064
刀具后角满足
Figure BDA0003325227770000065
刀具参数如图3(b)所示。
首先求解前刀面直线参数方程与第n+1个椭圆振动轨迹相切时的切点坐标(x′0,y′0)
Figure BDA0003325227770000066
则前刀面参数方程可表示为
Figure BDA0003325227770000067
前刀面参数方程与第n个椭圆振动轨迹的交点坐标Pn(xPn,yPn)为
Figure BDA0003325227770000068
结合图5,式(1)为第n个刀触点椭圆振动轨迹方程,t1时刻为刀具最低点与工件开始接 触的时刻,t2为前刀面参数方程与刀触点椭圆振动轨迹参数方程Ln相交的位置;t3为相邻两 次振动轨迹相交时刻;t4为前刀面与刀触点振动轨迹Ln+1相切的位置;t5为下一循环的开始。 式(2)为前刀面参数方程,t′1为前刀面与参数方程Ln相交时刻;t′2为前刀面参数方程与参 数方程Ln+1相切的位置,x′0,y′0为前刀面直线参数方程的零点。
通过上式并代入相关刀具参数和振动参数可以得出各个相关t的值。从而求得前刀面参 数方程与第n个椭圆振动轨迹的交点坐标Pn(xPn,yPn)。则此时的残余高度为
Figure BDA0003325227770000071
②、切削速度与最大临界速度的关系为
Figure BDA0003325227770000072
刀具前角γ0满 足
Figure BDA0003325227770000073
刀具后角α0满足
Figure BDA0003325227770000074
且前刀面与刀触点椭圆振动轨迹参 数方程有交点。刀具参数如图3(b)所示。
前刀面直线参数方程同情况二中①,参数方程如下:
Figure BDA0003325227770000075
结合图6,式(3)为第n个刀触点椭圆振动轨迹方程,t1时刻为刀具最低点与工件开始接 触的时刻,t2为前刀面参数方程与刀触点椭圆振动轨迹参数方程Ln相交的位置;t3为相邻两 次振动轨迹相交时刻;t4为前刀面与刀触点振动轨迹Ln+1相切的位置;t5为下一循环的开始。
式(4)为前刀面参数方程中,t′1为前刀面与刀触点椭圆振动轨迹参数方程Ln相交时刻; t′2为前刀面参数方程与刀触点椭圆振动轨迹Ln+1相切的位置,x′0,y′0为前刀面直线参数方程的 零点。通过上式并代入相关刀具参数和振动参数可以得出各个相关t的值,从而求得前刀面 参数方程与第n个椭圆振动轨迹的交点坐标Pn(xPn,yPn)。根据上式可求得前刀面与椭圆振动 轨迹的交点坐标Pn(xPn,yPn)。
则相邻两次振动之间的残余高度可表示为
Figure BDA0003325227770000076
③、切削速度与最大临界速度的关系为
Figure BDA0003325227770000077
刀具前角
Figure BDA0003325227770000078
刀具后角α0满足
Figure BDA0003325227770000079
时,且前刀面端点P0的振动轨迹参数方 程与刀触点椭圆振动参数方程有交点。刀具参数如图3(b)所示。此时参数方程为
Figure BDA00033252277700000710
结合图7,式(5)为第n个椭圆轨迹的振动参数方程,t1为刀具最低点与工件开始接触 的时刻;t2为前刀面端点参数方程与刀触点椭圆振动轨迹参数方程相交位置,t3为前刀面与 第n+1个振动轨迹相切位置,t4为下一循环的开始。
式(6)为前刀面参数方程,t’1为在前刀面与椭圆振动轨迹参数方程相切时,前刀面端点 的位置,t’2为前刀面参数方程与第n+1个振动轨迹相切的位置;x′0,y′0为前刀面直线参数方程 的零点。
式(7)Qn(xPn,yPn)为前刀面端点的振动轨迹参数方程(后文中均用Qn(xPn,yPn)替代),t″1为前刀面端点的椭圆振动轨迹与第n个刀触点椭圆振动参数方程相交的位置;t″2为前刀面与 第n+1个振动轨迹相切的位置,前刀面端点的位置。
Figure BDA0003325227770000081
其中,H1,V1分别为前刀面端点P0相对于前后刀面延长线交点的距离,表达式如下:
Figure BDA0003325227770000082
前刀面端点的振动轨迹参数方程与第n个刀触点椭圆轨迹振动参数方程的交点为Pn(xPn,yPn),该点坐标可根据上式求出,则最终相邻两次振动之间的残余高度可表示为:
Figure BDA0003325227770000083
④、切削速度与最大临界速度的关系为
Figure BDA0003325227770000084
刀具前角
Figure BDA0003325227770000085
刀具后角α0满足
Figure BDA0003325227770000086
时,且前刀面端点的振动轨迹参数方程 与刀触点椭圆振动参数方程有交点。刀具参数如图3(b)所示。此时参数方程为:
Figure BDA0003325227770000087
结合图8,式(8)为第n个椭圆轨迹的振动参数方程,t1为刀具最低点与工件开始接触 的时刻,t2为前刀面端点振动方程与第n个椭圆振动轨迹参数方程相交位置,t4为前刀面参 数方程与第n+1个振动轨迹相切的位置,t5为下一周期的开始。
式(9)为前刀面参数方程,t’1为在前刀面与第n+1个椭圆振动轨迹方程相切时,前刀面 端点的位置;t′2为前刀面参数方程与第n+1个椭圆振动轨迹方程相切的位置;x′0,y′0为前刀面 直线参数方程的零点。
式(10)Qn(xPn,yPn)为前刀面端点的振动轨迹参数方程,t″1为前刀面退出挤压工件时, 前刀面端点的位置;t″2为前刀面参数方程与第n+1个刀触点振动轨迹相切时,前刀面端点振 动轨迹与第n个椭圆振动参数方程相交时刻。其中,H1,V1为前刀面端点相对于前、后刀面延 长线交点的距离,表达式同情况二中③。
前刀面端点的振动轨迹参数方程与第n个椭圆轨迹振动参数方程的交点为Pn(xPn,yPn), 该点坐标可根据上式求出,则最终相邻两次振动之间的残余高度可表示为:
Figure BDA0003325227770000091
⑤、切削速度与最大临界速度关系为
Figure BDA0003325227770000092
刀具前角
Figure BDA0003325227770000093
后角α0满足
Figure BDA0003325227770000094
时,且前刀面端点的振动轨迹参数方程、后刀面参数方程均与刀触点椭圆振动参数方程有交点,但最终影响相邻两次振动之间残余高度 的为前刀面端点的振动轨迹参数方程。刀具参数如图3(b)所示。
Figure BDA0003325227770000095
结合图9,式(11)为刀触点振动轨迹方程中,t1为刀具最低点与工件开始接触的位置, t2为前刀面端点振动方程与第n个椭圆振动轨迹参数方程相交位置,t3为前刀面参数方程与 第n+1个振动轨迹相切的位置,t4为下一周期的开始。
式(12)为前刀面参数直线方程,t′1为在前刀面与第n+1个刀触点轨迹相切时前刀面端点 的位置,t′2为前刀面参数方程与第n+1个刀触点椭圆振动轨迹参数方程相切位置,x′0,y′0为前 刀面直线参数方程的零点。
式(13)为前刀面端点振动轨迹方程,t″1为与式(11)中t2对应;t″2与式(12)中t′1相对 应;H1,V1为前刀面端点相对于前、后刀面延长线交点的距离,表达式同情况二中③。
前刀面端点的振动轨迹参数方程与第n个刀触点椭圆轨迹振动参数方程的交点为Pn(xPn,yPn),该点坐标可根据式(11)、(12)、(13)联立求出,则最终相邻两次振动之间的 残余高度可表示为:
Figure BDA0003325227770000101
实施例3
所述步骤三中,情况三根据前角γo、后角αo及参数方程交点情况可细分为以下五种:
①、振动速度与最大临界速度满足
Figure BDA0003325227770000102
刀具前角γ0≥0, 刀具后角α0满足
Figure BDA0003325227770000103
刀具参数如图3(b)所示。
前刀面与第n个椭圆振动轨迹相切时交点(x″0,y″0)坐标可由下式求得
Figure BDA0003325227770000104
则后刀面参数方程可表示为
Figure BDA0003325227770000105
则后刀面参数方程与第n+1个椭圆振动轨迹参数方程的交点可由以下方程组求得:
Figure BDA0003325227770000106
结合图10,式(14)为刀触点振动轨迹参数方程,t1时刻为刀具最低点与工件开始接触 的时刻;t2时刻为后刀面挤压工件时,后刀面参数方程与刀触点椭圆振动轨迹相切位置;t3为 相邻两次振动的交点,t4为后刀面与椭圆振动轨迹相交位置,t5为下一循环的开始。
式(15)为后刀面参数方程,t″1为后刀面与刀触点椭圆振动参数方程的相切位置,t″2为后 刀面与第n个椭圆轨迹相切,后刀面与第n+1个椭圆轨迹相交的位置,x″0,y″0为后刀面直线参 数方程的零点。根据上述方程组可求得后刀面与椭圆振动轨迹的交点坐标Pn(xPn,yPn)。
则相邻两次振动之间的残余高度可表示为
Figure BDA0003325227770000107
②、切削速度与最大临界速度关系满足
Figure BDA0003325227770000108
刀具前角
Figure BDA0003325227770000109
刀具后角α0满足
Figure BDA00033252277700001010
时,且后刀面直线参数方程与刀触点椭 圆振动参数方程有交点。刀具参数如图3(b)所示。参数方程为:
Figure BDA00033252277700001011
结合图11,式(16)为第n+1个刀触点椭圆振动轨迹,t1时刻为刀具最低点与工件开始接 触的时刻;t2时刻为后刀面与第n个刀触点椭圆振动轨迹相切时位置;t3为后刀面与刀触点 轨迹相切时,后刀面与第n+1个刀触点椭圆振动轨迹的交点;t4为下一循环的开始。
式(17)为道具后刀面直线参数方程,t″1为在后刀面与刀触点椭圆振动轨迹相切时,后刀 面参数方程与第n+1个振动轨迹参数方程的相交位置;t″2为后刀面与第n个椭圆轨迹相切位 置,x″0,y″0为后刀面直线参数方程的零点。可求得后刀面与第n+1个椭圆振动轨迹的交点坐标 Pn(xPn,yPn)。
则相邻两次振动之间的残余高度可表示为
Figure BDA0003325227770000111
③、切削速度与最大临界速度的关系满足
Figure RE-GDA0003370916120000112
刀具前角 γ0≥0,刀具后角α0满足
Figure RE-GDA0003370916120000113
时,且后刀面端点的振动轨迹参数方程对最终残余高 度有影响。此时参数方程为
Figure BDA0003325227770000114
结合图12,其中,式(18)为刀触点椭圆振动轨迹参数方程,t1为刀具最低点与工件开 始接触的时刻,t2为后刀面参数方程与第n个振动轨迹参数方程相切位置,t3为后刀面端点 振动参数方程与第n+1个振动方程相交时刻,t4为下一循环的开始。
式(19)为后刀面参数方程,t′1为在后刀面与刀触点振动轨迹相切时位置;t′2为后刀面参 数方程与椭圆振动轨迹参数方程相切时。后刀面端点位置,x″0,y″0为后刀面直线参数方程的零 点。
式(20)为后刀面端点的振动轨迹参数方程(后文均用Bn(xPn,yPn)替代此式),t″1与t′2相 对应;t″2与t3相对应。
Figure BDA0003325227770000115
H2,V2分别为后刀面端点相对于前、后刀面延长线交点的距离,表达式如下:
Figure BDA0003325227770000121
根据上式可求得后刀面与第n+1个椭圆振动轨迹的交点坐标Pn(xPn,yPn)。
则相邻两次振动之间的残余高度可表示为
Figure BDA0003325227770000122
④、切削速度与最大临界速度关系满足
Figure BDA0003325227770000123
刀具前角
Figure BDA0003325227770000124
刀具后角α0满足
Figure BDA0003325227770000125
时,且前刀面、后刀面端点的振动轨迹 均会与椭圆振动轨迹有交点,但后刀面端点的振动轨迹对最终残余高度有影响。刀具参数如 图3(b)所示。
此时参数方程为
Figure BDA0003325227770000126
结合图13,式(21)为刀触点椭圆振动轨迹参数方程,t1为刀具最低点与工件开始接触 的时刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t3为后刀面端点振 动方程与第n+1个刀触点振动方程相交时刻,t4为下一循环的开始。
式(22)为后刀面参数方程;t′1为后刀面参数方程与椭圆振动轨迹参数方程相切时的位置, t′2为后刀面参数方程与椭圆振动轨迹参数方程相切时,后刀面端点的位置,x″0,y″0为后刀面直 线参数方程的零点。式(23)为后刀面端点的振动轨迹参数方程,t″1与t2对应;t″2为与t’1相对 应。H2,V2分别为后刀面端点相对于前后刀面延长线交点的距离,表达式同情况三中③相同。
根据上式可求得后刀面端点振动轨迹与第n+1个椭圆振动轨迹的交点坐标Pn(xPn,yPn)。
则相邻两次振动之间的残余高度可表示为:
Figure BDA0003325227770000127
⑤、切削速度与最大临界速度关系满足
Figure BDA0003325227770000128
刀具前角
Figure BDA0003325227770000129
刀具后角α0满足
Figure BDA00033252277700001210
时,且后刀面端点的振动轨迹参数方程 与刀触点椭圆振动参数方程有交点。刀具参数如图3(b)所示。参数方程为:
Figure BDA0003325227770000131
结合图14,式(24)为刀触点椭圆振动轨迹参数方程,t1为刀具最低点与工件开始接触 的时刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t3为后刀面端点振 动方程与第n+1个刀触点振动方程相交时刻,t4为下一循环的开始。
式(25)为后刀面参数方程;t′1为后刀面参数方程与第n个椭圆振动轨迹参数方程相切时 的位置;t′2为后刀面参数方程与椭圆振动轨迹参数方程相切时,后刀面端点的位置;x″0,y″0为 后刀面直线参数方程的零点。
式(26)为后刀面端点的振动轨迹参数方程,t″1与式(25)式中t′2对应;t″2与式(24)中 t3相对应。H2,V2分别为后刀面端点相对于前后刀面延长线交点的距离,表达式同情况三中③ 相同。
根据上式可求得后刀面与第n+1个椭圆振动轨迹的交点坐标Pn(xPn,yPn)。
则相邻两次振动之间的残余高度可表示为:
Figure BDA0003325227770000132
实施例4
所述步骤三中,情况四根据前角γo、后角αo及参数方程交点情况可细分为以下五种:
①、切削速度与最大临界速度关系满足
Figure BDA0003325227770000133
刀具前角
Figure BDA0003325227770000134
刀具后角α0满足
Figure BDA0003325227770000135
刀具参数如图3(b)所示。
前刀面及后刀面的参数方程可根据前述情况二①以及情况三①求得。
则前、后参数方程交点坐标Pn(xPn,yPn)可由下式求得:
Figure BDA0003325227770000136
结合图15,式(27)为刀面直线参数方程中,t″1为后刀面与刀触点振动轨迹相切时,后 刀面与前刀面的交点位置;t″2为后刀面参数方程与第n+1个椭圆振动参数方程相切位置;x″0,y″0为后刀面直线参数方程的零点。
式(28)为前刀面直线参数方程中,t′1为前刀面参数方程与第n个刀触点振动轨迹方程相 切位置;t′2与t″1相同,为前、后刀面参数方程的交点;x′0,y′0为前刀面直线参数方程的零点。
根据上式可求得后刀面与第n+1个椭圆振动轨迹的交点坐标Pn(xPn,yPn)。
则相邻两次振动的残余高度可表示为
Figure BDA0003325227770000141
②、切削速度与最大临界速度的关系满足
Figure BDA0003325227770000142
刀具前角
Figure BDA0003325227770000143
刀具后角α0满足
Figure BDA0003325227770000144
时,且后刀面参数方程与前刀面端点振动 轨迹参数方程有交点,二者共同影响最终残余高度。刀具参数如图3(b)所示。
此时参数方程为
Figure BDA0003325227770000145
结合图16,式(29)为刀触点椭圆振动参数方程,t1为刀具最低点与工件开始接触的时 刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t3为前刀面直线参数方 程与第n+1个刀触点振动方程相切时刻,t4为下一循环的开始。
式(30)为前刀面参数方程;t′1为前刀面与第n+1个椭圆振动轨迹相切时前刀面端点的位 置,t′2为前刀面参数方程与第n+1个振动轨迹参数方程相切位置;x′0,y′0为前刀面直线参数方 程的零点。
式(31)为前刀面端点椭圆振动轨迹参数方程;t″′1为前刀面与椭圆振动轨迹相时,前刀 面端点振动轨迹与后刀面直线参数方程相交位置;t″′2与t′1相对应;H2,V2分别为后刀面端点相 对于前后刀面延长线交点的距离,表达式同情况三中③相同。
式(32)为后刀面参数方程,t″1与t″′2相对应;t″2为后刀面与第n个椭圆振动参数方程相 切位置;x″0,y″0为后刀面直线参数方程的零点。
根据上述方程组可求得后刀面与前刀面端点椭圆振动轨迹的交点坐标Pn(xPn,yPn)。
则相邻两次振动之间的残余高度可表示为:
Figure BDA0003325227770000146
③、切削速度与最大临界速度关系满足
Figure BDA0003325227770000147
刀具前角
Figure BDA0003325227770000151
刀具后角α0满足
Figure BDA0003325227770000152
时,且前刀面端点的振动轨迹参数方程与 后刀面直线参数方程有交点,该交点坐标决定残余高度。刀具参数如图3(b)所示。参数方 程如下:
Figure BDA0003325227770000153
结合图17,式(33)为第n个椭圆轨迹的振动参数方程,t1为刀具最低点与工件开始接 触的时刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t4为前刀面直线 参数方程与第n+1个刀触点振动方程相切时刻,t5为下一循环的开始。
式(34)为前刀面参数方程,t′1为前刀面与第n+1个椭圆振动轨迹相切时前刀面端点的位 置,t′2为前刀面参数方程与第n+1个振动轨迹参数方程相切位置;x′0,y′0为前刀面直线参数方 程的零点。
式(35)为前刀面端点的振动轨迹参数方程;t″′1为后刀面直线参数方程与前刀面端点的 交点;t″′2为在前刀面与第n+1个刀触点振动参数方程相切时,前刀面端点的位置。其中,H1,V1分别为前刀面端点相对于前、后刀面延长线交点的距离,表达式同情况二中③。
式(36)为后刀面参数方程,t″1为后刀面直线参数方程与第n个刀触点振动轨迹相切位置; t″2为后刀面与前刀面端点振动轨迹的交点,x″0,y″0为后刀面直线参数方程的零点。前刀面端点 的振动轨迹参数方程与后刀面参数方程的交点为Pn(xPn,yPn),该点坐标可根据上述方程组求 出,则最终相邻两次振动之间的残余高度可表示为:
Figure BDA0003325227770000154
④、切削速度与最大临界速度满足
Figure BDA0003325227770000155
刀具前角
Figure BDA0003325227770000156
刀具后角α0满足
Figure BDA0003325227770000157
时,且后刀面端点的振动轨迹参数方程与 前刀面直线参数方程有交点,该交点坐标决定最终残余高度大小。刀具参数如图3(b)所示。 参数方程如下:
Figure BDA0003325227770000161
结合图18,式(36)为刀触点椭圆振动轨迹方程,t1为刀具最低点与工件开始接触的时 刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t3为前刀面直线参数方 程与第n+1个刀触点振动方程相切时刻,t4为下一循环的开始。
式(37)为前刀面直线参数方程,t′1为前刀面与第n+1个椭圆振动轨迹相切时前刀面端点 的位置,t′2为前刀面参数方程与第n+1个振动轨迹参数方程相切位置;x′0,y′0为前刀面直线参 数方程的零点。
式(38)为后刀面端点的椭圆振动轨迹方程,t″′1后刀面与第n个椭圆振动轨迹相切时, 后刀面端点的位置;t″′2为在后刀面端点振动参数方程同前刀面参数方程的交点。H2,V2分别 为后刀面端点相对于前、后刀面延长线交点的距离,表达式如同情况三中③相同。
式(39)为后刀面直线参数方程,t″1与t2相对应;t″2与t″′1相对应,x″0,y″0为后刀面直线参 数方程的零点。
根据上述方程组可求得交点Pn(xPn,yPn)坐标,则相邻两次振动残余高度可表示为:
Figure BDA0003325227770000162
⑤、切削速度与椭圆振动最大临界速度关系为
Figure BDA0003325227770000163
刀具前 角
Figure BDA0003325227770000164
刀具后角α0满足
Figure BDA0003325227770000165
时,且前刀面端点的振动轨迹参数方 程与后刀面端点的振动轨迹参数方程有交点,该交点坐标影响最终残余高度。刀具参数如图 3(b)所示。
Figure BDA0003325227770000166
结合图19,式(40)为刀触点振动轨迹参数方程,t1为刀具最低点与工件开始接触的时 刻,t2为前刀面参数方程与椭圆振动轨迹参数方程相切位置,t3为后刀面椭圆振动轨迹参数 方程相切位置;t4为下一循环的开始。
式(41)为前刀面参数方程;t′1为前刀面与椭圆振动轨迹相切时前刀面端点的位置,t′2为 前刀面参数方程与第n+1个椭圆振动轨迹参数方程相切位置;x′0,y′0为前刀面直线参数方程的 零点。
式(42)为前刀面端点椭圆振动参数方程,t″″1为前刀面端点的椭圆振动轨迹与后刀面端 点椭圆振动参数方程相交位置;t″″2为前刀面与第n+1个椭圆轨迹相切时,前刀面端点的初始 位置;其中,H1,V1为前刀面端点相对于前、后刀面延长线交点的距离,表达式同情况二中③。
式(43)为后刀面端点的椭圆振动参数方程,t″′1为在后刀面与第n个椭圆振动参数方程 相切时,后刀面端点的位置;t″′2与式(42)中t″″2对应;H2,V2分别为后刀面端点相对于前后 刀面延长线交点的距离,表达式同情况三中③。
式(44)后刀面直线参数方程,t″1为后刀面与第n个振动轨迹相切的位置;t″2为后刀面 与椭圆振动参数方程相切时,后刀面端点的位置,x″0,y″0为后刀面直线参数方程的零点。
通过上式可求得前刀面端点的椭圆振动轨迹参数方程与后刀面端点的椭圆振动轨迹参数 方程的交点Pn(xPn,yPn)。则残余高度可表示为:
Figure BDA0003325227770000171

Claims (9)

1.一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,包括以下步骤:
步骤一、根据所加工曲面获取曲线方程;
步骤二、建立变参数椭圆振动方程,得到超声椭圆振动加工的椭圆轨迹方程,将椭圆轨迹方程与步骤一获取的曲线方程联立,确定曲线与椭圆轨迹的交点坐标;
步骤三、计算切削过程中第n个刀触点椭圆振动轨迹方程,进而计算相邻两个刀触点椭圆振动轨迹的交点,最终计算出相邻椭圆振动轨迹之间的残余高度。
2.如权利要求1所述的一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,所述步骤一获取的曲线方程为:
y=f(x),则曲线斜率为y′=f′(x)。
3.如权利要求2所述的一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,所述步骤二中,变参数椭圆振动方程表达式如下:
Figure FDA0003325227760000011
则:
Figure FDA0003325227760000012
此时椭圆振动轨迹方程为:
Figure FDA0003325227760000013
将椭圆振动轨迹方程与曲线方程联立,则曲线与椭圆振动轨迹的交点坐标根据下式求出:
Figure FDA0003325227760000014
式中,an、bn分别为加工过程中第n个椭圆振动轨迹在x、y方向上的振幅;ω为振动角频率;xOn=vc·n·T,为第n个椭圆中心的横坐标值;
Figure FDA0003325227760000015
为第n个椭圆中心的纵坐标值。
4.如权利要求3所述的一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,所述步骤三中,相邻两椭圆振动轨迹与曲线切点的横坐标的关系为:
xC(n+1)-xCn=vc·T-bn+1·cosθn+1+bn·cosθn
其中,T=2π/ω;
刀具切削速度为vc,则刀具相对于工件的运动方程为:
Figure FDA0003325227760000021
临界切削速度
Figure FDA0003325227760000022
切削过程中第n个刀触点椭圆振动轨迹方程Ln为:
Figure FDA0003325227760000023
加工过程中,相邻两个刀触点椭圆振动轨迹的交点根据下式求得:
Figure FDA0003325227760000024
进而求得交点坐标Pn(xPn,yPn);
则相邻椭圆振动轨迹之间的残余高度表示为:
Figure FDA0003325227760000025
5.如权利要求4所述的一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,所述步骤三中,计算相邻两个刀触点椭圆振动轨迹的交点时,需要根据刀具参数及超声椭圆振动切削参数判断零件表面加工情况,将零件表面加工情况可以按照前、后刀面对加工后表面的干涉情况分为以下四类:
情况一、前、后刀面在加工过程中均不对加工后表面产生干涉;
情况二、后刀面在加工过程中对加工后表面产生干涉;
情况三、前刀面在加工过程中对加工后表面产生干涉;
情况四、前、后刀面在加工过程中均对加工后表面产生干涉。
6.如权利要求5所述的一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,所述步骤三中,所述情况一前、后刀面在加工过程中均不对加工后表面产生干涉,根据前角γo、后角αo及参数方程交点情况为:
切削速度与最大临界速度关系为
Figure FDA0003325227760000026
刀具前角γo≥0,刀具后角满足
Figure FDA0003325227760000027
在切削过程中前、后刀面均不会对切削轨迹产生影响;
第n个刀触点振动轨迹参数方程与第n+1个刀触点振动轨迹参数方程的交点通过下式求得:
Figure FDA0003325227760000031
其中,t1时刻为刀具最低点与工件开始接触的时刻;t2、t3为相邻两次椭圆振动的交点位置,t4为下一循环的开始;根据上式求得相邻两次椭圆振动轨迹的交点坐标Pn(xPn,yPn)。
7.如权利要求5所述的一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,所述步骤三中,情况二根据前角γo、后角αo及参数方程交点情况细分为以下五种:
①、切削速度与最大临界速度关系为
Figure FDA0003325227760000032
刀具前角满足
Figure FDA0003325227760000033
刀具后角满足
Figure FDA0003325227760000034
首先求解前刀面直线参数方程与第n+1个椭圆振动轨迹相切时的切点坐标(x′0,y′0):
Figure FDA0003325227760000035
则前刀面参数方程表示为:
Figure FDA0003325227760000036
前刀面参数方程与第n个椭圆振动轨迹的交点坐标Pn(xPn,yPn)为:
Figure FDA0003325227760000037
式(1)为第n个刀触点椭圆振动轨迹方程;t1时刻为刀具最低点与工件开始接触的时刻,t2为前刀面参数方程与刀触点椭圆振动轨迹参数方程Ln相交的位置;t3为相邻两次振动轨迹相交时刻;t4为前刀面与刀触点振动轨迹Ln+1相切的位置;t5为下一循环的开始;
式(2)为前刀面参数方程,t′1为前刀面与参数方程Ln相交时刻;t′2为前刀面参数方程与参数方程Ln+1相切的位置,x′0,y′0为前刀面直线参数方程的零点;
②、切削速度与最大临界速度的关系为
Figure FDA0003325227760000038
刀具前角γ0满足
Figure FDA0003325227760000039
刀具后角α0满足
Figure FDA00033252277600000310
且前刀面与刀触点椭圆振动轨迹参数方程有交点;
前刀面直线参数方程如下:
Figure FDA0003325227760000041
式(3)为第n个刀触点椭圆振动轨迹方程;t1时刻为刀具最低点与工件开始接触的时刻,t2为前刀面参数方程与刀触点椭圆振动轨迹参数方程Ln相交的位置;t3为相邻两次振动轨迹相交时刻;t4为前刀面与刀触点振动轨迹Ln+1相切的位置;t5为下一循环的开始;
式(4)为前刀面参数方程;t′1为前刀面与刀触点椭圆振动轨迹参数方程Ln相交时刻;t′2为前刀面参数方程与刀触点椭圆振动轨迹Ln+1相切的位置,x′0,y′0为前刀面直线参数方程的零点;
③、切削速度与最大临界速度的关系为
Figure FDA0003325227760000042
刀具前角
Figure FDA0003325227760000043
刀具后角α0满足
Figure FDA0003325227760000044
时,且前刀面端点P0的振动轨迹参数方程与刀触点椭圆振动参数方程有交点,此时参数方程为:
Figure FDA0003325227760000045
式(5)为第n个椭圆轨迹的振动参数方程;t1为刀具最低点与工件开始接触的时刻;t2为前刀面端点参数方程与刀触点椭圆振动轨迹参数方程相交位置,t3为前刀面与第n+1个振动轨迹相切位置,t4为下一循环的开始;
式(6)为前刀面参数方程;t’1为在前刀面与椭圆振动轨迹参数方程相切时,前刀面端点的位置,t’2为前刀面参数方程与第n+1个振动轨迹相切的位置;x′0,y′0为前刀面直线参数方程的零点;
式(7)为前刀面端点的振动轨迹参数方程;t″1为前刀面端点的椭圆振动轨迹与第n个刀触点椭圆振动参数方程相交的位置;t″2为前刀面与第n+1个振动轨迹相切的位置,前刀面端点的位置;
Figure FDA0003325227760000046
其中,H1,V1分别为前刀面端点P0相对于前后刀面延长线交点的距离,表达式如下:
Figure FDA0003325227760000051
④、切削速度与最大临界速度的关系为
Figure FDA0003325227760000052
刀具前角
Figure FDA0003325227760000053
刀具后角α0满足
Figure FDA0003325227760000054
时,且前刀面端点的振动轨迹参数方程与刀触点椭圆振动参数方程有交点,此时参数方程为:
Figure FDA0003325227760000055
式(8)为第n个椭圆轨迹的振动参数方程;t1为刀具最低点与工件开始接触的时刻,t2为前刀面端点振动方程与第n个椭圆振动轨迹参数方程相交位置,t4为前刀面参数方程与第n+1个振动轨迹相切的位置,t5为下一周期的开始;
式(9)为前刀面参数方程;t’1为在前刀面与第n+1个椭圆振动轨迹方程相切时,前刀面端点的位置;t’2为前刀面参数方程与第n+1个椭圆振动轨迹方程相切的位置;x′0,y′0为前刀面直线参数方程的零点;
式(10)为前刀面端点的振动轨迹参数方程;t″1为前刀面退出挤压工件时,前刀面端点的位置;t″2为前刀面参数方程与第n+1个刀触点振动轨迹相切时,前刀面端点振动轨迹与第n个椭圆振动参数方程相交时刻;
⑤、切削速度与最大临界速度关系为
Figure FDA0003325227760000056
刀具前角
Figure FDA0003325227760000057
后角α0满足
Figure FDA0003325227760000058
时,且前刀面端点的振动轨迹参数方程、后刀面参数方程均与刀触点椭圆振动参数方程有交点,但最终影响相邻两次振动之间残余高度的为前刀面端点的振动轨迹参数方程,参数方程为:
Figure FDA0003325227760000059
式(11)为刀触点振动轨迹方程中;t1为刀具最低点与工件开始接触的位置,t2为前刀面端点振动方程与第n个椭圆振动轨迹参数方程相交位置,t3为前刀面参数方程与第n+1个振动轨迹相切的位置,t4为下一周期的开始;
式(12)为前刀面参数直线方程;t′1为在前刀面与第n+1个刀触点轨迹相切时前刀面端点的位置,t′2为前刀面参数方程与第n+1个刀触点椭圆振动轨迹参数方程相切位置,x′0,y′0为前刀面直线参数方程的零点;
式(13)为前刀面端点振动轨迹方程,t″1为与式(11)中t2对应;t″2与式(12)中t′1相对应;H1,V1为前刀面端点相对于前、后刀面延长线交点的距离;
前刀面端点的振动轨迹参数方程与第n个刀触点椭圆轨迹振动参数方程的交点为Pn(xPn,yPn),该点坐标可根据式(11)、(12)、(13)联立求出。
8.如权利要求5所述的一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,所述步骤三中,情况三根据前角γo、后角αo及参数方程交点情况细分为以下五种:
①、振动速度与最大临界速度满足
Figure FDA0003325227760000061
刀具前角γ0≥0,刀具后角α0满足
Figure FDA0003325227760000062
前刀面与第n个椭圆振动轨迹相切时交点(x″0,y″0)坐标由下式求得:
Figure FDA0003325227760000063
后刀面参数方程表示为:
Figure FDA0003325227760000064
后刀面参数方程与第n+1个椭圆振动轨迹参数方程的交点由以下方程组求得:
Figure FDA0003325227760000065
式(14)为刀触点振动轨迹参数方程;t1时刻为刀具最低点与工件开始接触的时刻;t2时刻为后刀面挤压工件时,后刀面参数方程与刀触点椭圆振动轨迹相切位置;t3为相邻两次振动的交点,t4为后刀面与椭圆振动轨迹相交位置,t5为下一循环的开始;
式(15)为后刀面参数方程;t″1为后刀面与刀触点椭圆振动参数方程的相切位置,t″2为后刀面与第n个椭圆轨迹相切,后刀面与第n+1个椭圆轨迹相交的位置,x″0,y″0为后刀面直线参数方程的零点;
②、切削速度与最大临界速度关系满足
Figure FDA0003325227760000066
刀具前角
Figure FDA0003325227760000067
刀具后角α0满足
Figure FDA0003325227760000068
时,且后刀面直线参数方程与刀触点椭圆振动参数方程有交点,参数方程为:
Figure FDA0003325227760000069
式(16)为第n+1个刀触点椭圆振动轨迹,t1时刻为刀具最低点与工件开始接触的时刻;t2时刻为后刀面与第n个刀触点椭圆振动轨迹相切时位置;t3为后刀面与刀触点轨迹相切时,后刀面与第n+1个刀触点椭圆振动轨迹的交点;t4为下一循环的开始;
式(17)为道具后刀面直线参数方程,t″1为在后刀面与刀触点椭圆振动轨迹相切时,后刀面参数方程与第n+1个振动轨迹参数方程的相交位置;t″2为后刀面与第n个椭圆轨迹相切位置,x″0,y″0为后刀面直线参数方程的零点;
③、切削速度与最大临界速度的关系满足
Figure FDA0003325227760000071
刀具前角γ0≥0,刀具后角α0满足
Figure FDA0003325227760000072
时,且后刀面端点的振动轨迹参数方程对最终残余高度有影响,此时参数方程为:
Figure FDA0003325227760000073
式(18)为刀触点椭圆振动轨迹参数方程,t1为刀具最低点与工件开始接触的时刻,t2为后刀面参数方程与第n个振动轨迹参数方程相切位置,t3为后刀面端点振动参数方程与第n+1个振动方程相交时刻,t4为下一循环的开始;
式(19)为后刀面参数方程,t′1为在后刀面与刀触点振动轨迹相切时位置;t′2为后刀面参数方程与椭圆振动轨迹参数方程相切时。后刀面端点位置,x″0,y″0为后刀面直线参数方程的零点;
式(20)为后刀面端点的振动轨迹参数方程,t″1与t’2相对应;t″2与t3相对应;
Figure FDA0003325227760000074
H2,V2分别为后刀面端点相对于前、后刀面延长线交点的距离,表达式如下:
Figure FDA0003325227760000075
根据上式可求得后刀面与第n+1个椭圆振动轨迹的交点坐标Pn(xPn,yPn);
④、切削速度与最大临界速度关系满足
Figure FDA0003325227760000076
刀具前角
Figure FDA0003325227760000081
刀具后角α0满足
Figure FDA0003325227760000082
对,且前刀面、后刀面端点的振动轨迹均会与椭圆振动轨迹有交点,但后刀面端点的振动轨迹对最终残余高度有影响,此时参数方程为:
Figure FDA0003325227760000083
式(21)为刀触点椭圆振动轨迹参数方程,t1为刀具最低点与工件开始接触的时刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t3为后刀面端点振动方程与第n+1个刀触点振动方程相交时刻,t4为下一循环的开始;
式(22)为后刀面参数方程;t′1为后刀面参数方程与椭圆振动轨迹参数方程相切时的位置,t′2为后刀面参数方程与椭圆振动轨迹参数方程相切时,后刀面端点的位置,x″0,y″0为后刀面直线参数方程的零点;
式(23)为后刀面端点的振动轨迹参数方程,t″1与t2对应;t″2为与t’1相对应;H2,V2分别为后刀面端点相对于前后刀面延长线交点的距离;
⑤、切削速度与最大临界速度关系满足
Figure FDA0003325227760000084
刀具前角
Figure FDA0003325227760000085
刀具后角α0满足
Figure FDA0003325227760000086
时,且后刀面端点的振动轨迹参数方程与刀触点椭圆振动参数方程有交点,参数方程为:
Figure FDA0003325227760000087
式(24)为刀触点椭圆振动轨迹参数方程,t1为刀具最低点与工件开始接触的时刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t3为后刀面端点振动方程与第n+1个刀触点振动方程相交时刻,t4为下一循环的开始;
式(25)为后刀面参数方程;t′1为后刀面参数方程与第n个椭圆振动轨迹参数方程相切时的位置;t′2为后刀面参数方程与椭圆振动轨迹参数方程相切时,后刀面端点的位置;x″0,y″0为后刀面直线参数方程的零点;
式(26)为后刀面端点的振动轨迹参数方程,t″1与式(25)式中t′2对应;t″2与式(24)中t3相对应;H2,V2分别为后刀面端点相对于前后刀面延长线交点的距离。
9.如权利要求5所述的一种变参数条件下沿曲线切削的残余高度预测方法,其特征在于,所述步骤三中,情况四根据前角γo、后角αo及参数方程交点情况细分为以下五种:
①、切削速度与最大临界速度关系满足
Figure FDA0003325227760000091
刀具前角
Figure FDA0003325227760000092
刀具后角α0满足
Figure FDA0003325227760000093
则前、后参数方程交点坐标Pn(xPn,yPn)可由下式求得:
Figure FDA0003325227760000094
式(27)为刀面直线参数方程中,t″1为后刀面与刀触点振动轨迹相切时,后刀面与前刀面的交点位置;t″2为后刀面参数方程与第n+1个椭圆振动参数方程相切位置;x″0,y″0为后刀面直线参数方程的零点;
式(28)为前刀面直线参数方程中,t′1为前刀面参数方程与第n个刀触点振动轨迹方程相切位置;t′2与t″1相同,为前、后刀面参数方程的交点;x′0,y′0为前刀面直线参数方程的零点;
②、切削速度与最大临界速度的关系满足
Figure FDA0003325227760000095
刀具前角
Figure FDA0003325227760000096
刀具后角α0满足
Figure FDA0003325227760000097
时,且后刀面参数方程与前刀面端点振动轨迹参数方程有交点,二者共同影响最终残余高度;此时参数方程为:
Figure FDA0003325227760000098
式(29)为刀触点椭圆振动参数方程,t1为刀具最低点与工件开始接触的时刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t3为前刀面直线参数方程与第n+1个刀触点振动方程相切时刻,t4为下一循环的开始;
式(30)为前刀面参数方程;t′1为前刀面与第n+1个椭圆振动轨迹相切时前刀面端点的位置,t′2为前刀面参数方程与第n+1个振动轨迹参数方程相切位置;x′0,y′0为前刀面直线参数方程的零点;
式(31)为前刀面端点椭圆振动轨迹参数方程;t″′1为前刀面与椭圆振动轨迹相时,前刀面端点振动轨迹与后刀面直线参数方程相交位置;t″′2与t′1相对应;H2,V2分别为后刀面端点相对于前后刀面延长线交点的距离;
式(32)为后刀面参数方程,t″1与t″′2相对应;t″2为后刀面与第n个椭圆振动参数方程相切位置;x″0,y″0为后刀面直线参数方程的零点;
③、切削速度与最大临界速度关系满足
Figure FDA0003325227760000101
刀具前角
Figure FDA0003325227760000102
刀具后角α0满足
Figure FDA0003325227760000103
时,且前刀面端点的振动轨迹参数方程与后刀面直线参数方程有交点,该交点坐标决定残余高度;参数方程如下:
Figure FDA0003325227760000104
式(33)为第n个椭圆轨迹的振动参数方程,t1为刀具最低点与工件开始接触的时刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t4为前刀面直线参数方程与第n+1个刀触点振动方程相切时刻,t5为下一循环的开始;
式(34)为前刀面参数方程,t′1为前刀面与第n+1个椭圆振动轨迹相切时前刀面端点的位置,t′2为前刀面参数方程与第n+1个振动轨迹参数方程相切位置;x′0,y′0为前刀面直线参数方程的零点;
式(35)为前刀面端点的振动轨迹参数方程;t″′1为后刀面直线参数方程与前刀面端点的交点;t″′2为在前刀面与第n+1个刀触点振动参数方程相切时,前刀面端点的位置。其中,H1,V1分别为前刀面端点相对于前、后刀面延长线交点的距离;
式(36)为后刀面参数方程,t″1为后刀面直线参数方程与第n个刀触点振动轨迹相切位置;t″2为后刀面与前刀面端点振动轨迹的交点,x″0,y″0为后刀面直线参数方程的零点;
④、切削速度与最大临界速度满足
Figure FDA0003325227760000105
刀具前角
Figure FDA0003325227760000106
刀具后角α0满足
Figure FDA0003325227760000107
时,且后刀面端点的振动轨迹参数方程与前刀面直线参数方程有交点,该交点坐标决定最终残余高度大小;参数方程如下:
Figure FDA0003325227760000108
式(36)为刀触点椭圆振动轨迹方程,t1为刀具最低点与工件开始接触的时刻,t2为后刀面直线参数方程与椭圆振动轨迹参数方程的相切位置;t3为前刀面直线参数方程与第n+1个刀触点振动方程相切时刻,t4为下一循环的开始;
式(37)为前刀面直线参数方程,t′1为前刀面与第n+1个椭圆振动轨迹相切时前刀面端点的位置,t′2为前刀面参数方程与第n+1个振动轨迹参数方程相切位置;x′0,y′0为前刀面直线参数方程的零点;
式(38)为后刀面端点的椭圆振动轨迹方程,t″′1后刀面与第n个椭圆振动轨迹相切时,后刀面端点的位置;t″′2为在后刀面端点振动参数方程同前刀面参数方程的交点。H2,V2分别为后刀面端点相对于前、后刀面延长线交点的距离;
式(39)为后刀面直线参数方程,t″1与t2相对应;t″2与t″′1相对应,x″0,y″0为后刀面直线参数方程的零点;
⑤、切削速度与椭圆振动最大临界速度关系为
Figure FDA0003325227760000111
刀具前角
Figure FDA0003325227760000112
刀具后角α0满足
Figure FDA0003325227760000113
时,且前刀面端点的振动轨迹参数方程与后刀面端点的振动轨迹参数方程有交点,该交点坐标影响最终残余高度;参数方程为:
Figure FDA0003325227760000114
式(40)为刀触点振动轨迹参数方程,t1为刀具最低点与工件开始接触的时刻,t2为前刀面参数方程与椭圆振动轨迹参数方程相切位置,t3为后刀面椭圆振动轨迹参数方程相切位置;t4为下一循环的开始;
式(41)为前刀面参数方程;t′1为前刀面与椭圆振动轨迹相切时前刀面端点的位置,t′2为前刀面参数方程与第n+1个椭圆振动轨迹参数方程相切位置;x′0,y′0为前刀面直线参数方程的零点;
式(42)为前刀面端点椭圆振动参数方程,t″″1为前刀面端点的椭圆振动轨迹与后刀面端点椭圆振动参数方程相交位置;t″″2为前刀面与第n+1个椭圆轨迹相切时,前刀面端点的初始位置;其中,H1,V1为前刀面端点相对于前、后刀面延长线交点的距离;
式(43)为后刀面端点的椭圆振动参数方程,t″′1为在后刀面与第n个椭圆振动参数方程相切时,后刀面端点的位置;t″′2与式(42)中t″″2对应;H2,V2分别为后刀面端点相对于前后刀面延长线交点的距离;
式(44)后刀面直线参数方程,t″1为后刀面与第n个振动轨迹相切的位置;t″2为后刀面与椭圆振动参数方程相切时,后刀面端点的位置,x″0,y″0为后刀面直线参数方程的零点。
CN202111259751.1A 2021-10-28 2021-10-28 一种变参数条件下沿曲线切削的残余高度预测方法 Active CN113901388B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111259751.1A CN113901388B (zh) 2021-10-28 2021-10-28 一种变参数条件下沿曲线切削的残余高度预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111259751.1A CN113901388B (zh) 2021-10-28 2021-10-28 一种变参数条件下沿曲线切削的残余高度预测方法

Publications (2)

Publication Number Publication Date
CN113901388A true CN113901388A (zh) 2022-01-07
CN113901388B CN113901388B (zh) 2024-05-14

Family

ID=79026713

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111259751.1A Active CN113901388B (zh) 2021-10-28 2021-10-28 一种变参数条件下沿曲线切削的残余高度预测方法

Country Status (1)

Country Link
CN (1) CN113901388B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324432A1 (de) * 2003-05-28 2004-12-30 Klingelnberg Ag Profilgeschärftes Stabmesser zur Herstellung von Kegel- und Hypoidrädern und Verfahren zum Profilschärfen eines solchen Stabmessers
JP2008044025A (ja) * 2006-08-11 2008-02-28 Nagasaki Prefecture フライス加工における切削加工面の凹凸形状の算出方法及び凹凸形状の加工制御方法
CN106502202A (zh) * 2017-01-06 2017-03-15 大连理工大学 一种球头铣刀与导向叶片接触区域的半解析建模方法
CN107239603A (zh) * 2017-05-23 2017-10-10 大连理工大学 五轴数控机床加工中基于精细积分的球头铣刀颤振稳定域叶瓣图建模方法
CN113042823A (zh) * 2021-03-22 2021-06-29 吉林大学 一种多工艺参数条件下沿直线切削的残余高度预测方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10324432A1 (de) * 2003-05-28 2004-12-30 Klingelnberg Ag Profilgeschärftes Stabmesser zur Herstellung von Kegel- und Hypoidrädern und Verfahren zum Profilschärfen eines solchen Stabmessers
JP2008044025A (ja) * 2006-08-11 2008-02-28 Nagasaki Prefecture フライス加工における切削加工面の凹凸形状の算出方法及び凹凸形状の加工制御方法
CN106502202A (zh) * 2017-01-06 2017-03-15 大连理工大学 一种球头铣刀与导向叶片接触区域的半解析建模方法
CN107239603A (zh) * 2017-05-23 2017-10-10 大连理工大学 五轴数控机床加工中基于精细积分的球头铣刀颤振稳定域叶瓣图建模方法
CN113042823A (zh) * 2021-03-22 2021-06-29 吉林大学 一种多工艺参数条件下沿直线切削的残余高度预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李东明;田野: "二维振动铣削切削厚度及刀尖轨迹数值仿真", 中国机械工程, vol. 26, no. 18, 31 December 2015 (2015-12-31) *
李迎春: "光学自由曲面三维椭圆振动切削:刀具路径生成及对加工表面质量影响", 万方中国学位论文数据库, 31 December 2014 (2014-12-31) *

Also Published As

Publication number Publication date
CN113901388B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
CN110653826B (zh) 一种面向传送带目标跟随的机器人实时轨迹规划方法
CN103558808A (zh) 复杂曲面五轴数控加工刀矢的运动学控制方法
CN103744349A (zh) 一种平头立铣刀加工过渡曲面的无干涉刀具路径生成方法
CN108381306B (zh) 一种三组超声振子成锥体结构的超声加工机床及控制方法
US11904423B2 (en) Machining path coordination method for bilateral ultrasonic rolling of blade surfaces
CN102528554B (zh) 一种五轴加工奇异区域的轨迹优化方法
IL126283A (en) A system for generating information about the path of machine tool movement for three-dimensional areas
CN111496428B (zh) 基于直焊缝轮廓识别的多层多道焊道规划方法及焊接工作站
CN105081524A (zh) 焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法
CN103801982B (zh) 一种基于误差控制的五轴nc系统平滑插补方法
CN113042823B (zh) 一种多工艺参数条件下沿直线切削的残余高度预测方法
CN106807828A (zh) 一种均匀板厚的制品渐进成形方法及该方法获得的制品
CN1699020A (zh) 复杂曲线磨削过程中的砂轮法向跟踪方法
CN113901388A (zh) 一种变参数条件下沿曲线切削的残余高度预测方法
CN113334137B (zh) 一种三维超声振动加工机床及其控制方法
CN111745306B (zh) 一种激光切割五轴联动运行控制方法
CN104699925B (zh) 一种超长、超大型高精度立柱的加工方法
Li et al. Surface profile and milling force prediction for milling thin-walled workpiece based on equivalent 3D undeformed chip thickness model
CN112974874B (zh) 一种二维超声椭圆振动机床的零件加工控制方法
CN108229046A (zh) 一种机械加工车端面工艺中已加工表面的三维建模方法
Ma et al. A new cutting force modeling method in high-speed milling of curved surface with difficult-to-machine material
JPS594252B2 (ja) テ−パ加工方法
CN109828529B (zh) 数控系统中实现锯片椭圆切割控制的方法及相应的系统
RU2456130C2 (ru) Способ обработки фасонной волнистой поверхности изделия строганием
CN1287943C (zh) 电子束加工能量控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant