CN113897075A - 一种高分散性石墨烯的制备方法 - Google Patents

一种高分散性石墨烯的制备方法 Download PDF

Info

Publication number
CN113897075A
CN113897075A CN202111329561.2A CN202111329561A CN113897075A CN 113897075 A CN113897075 A CN 113897075A CN 202111329561 A CN202111329561 A CN 202111329561A CN 113897075 A CN113897075 A CN 113897075A
Authority
CN
China
Prior art keywords
graphene
dispersity
aminopyridine
steps
following
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111329561.2A
Other languages
English (en)
Inventor
夏中均
刘学涌
郑代芳
彭勇
邱兴旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Sidu Technology Co ltd
Original Assignee
Sichuan Sidu Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Sidu Technology Co ltd filed Critical Sichuan Sidu Technology Co ltd
Priority to CN202111329561.2A priority Critical patent/CN113897075A/zh
Publication of CN113897075A publication Critical patent/CN113897075A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/006Combinations of treatments provided for in groups C09C3/04 - C09C3/12
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种高分散性石墨烯的制备方法,该方案通过小分子共价修饰的方法来提高石墨烯的分散性,将有机小分子4‑胺基吡啶通过共价连接的方式与石墨烯结合制备具有高分散性的石墨烯,此石墨烯在水溶液中具有分散性高、不易团聚等特点。本发明制得的高分散性石墨烯在催化、电化学、生物医药和太阳能电池等多个领域都有极大的应用潜力。本发明的原料廉价易得,制备方法简单、经济,适合大规模工业化生产。

Description

一种高分散性石墨烯的制备方法
技术领域
本发明涉及的是石墨烯材料制备领域,尤其是一种高分散性石墨烯的制备方法。
背景技术
石墨烯由一层独立的sp2杂化碳原子组成。它是一种具有六角形蜂窝晶体结构的二维碳质材料。石墨烯是目前最薄、最强的纳米材料,纳米薄片厚度为0.34 nm,石墨烯中的每个碳原子通过s键与三个相邻的碳原子相连,剩余的p个电子由于无法成键,很可能与周围原子形成p键,且成键方向与石墨烯平面垂直。石墨烯的结构非常稳定,其C-C键长仅为0.142 nm,石墨烯的每个碳原子之间的连接是非常强的,当外力作用于石墨烯时,其内部的原子表面会变形并进一步弯曲以抵消外力。因此,碳原子之间没有重排和错位,保持了一个稳定的结构 (RSC adv., 2020, 10, 15328)。石墨烯由于其特殊的结构,具有许多独特而突出的物理化学性能,例如,石墨烯具有大的比表面积,极好的力学性能,突出的导热性能,良好的导电性,也是目前发现的硬度最大的物质。因此,在太阳能电池、医学、能源、水裂解、生物传感、生物成像、环境研究、催化、光催化等领域具有广泛的应用潜力。
由于石墨烯独特的结构,在水溶液中难以分散,这被称为石墨烯的团聚现象,且这种团聚是不可逆的,除非施加外力,如超声处理和磁力搅拌,才可能使其均匀分散。团聚现象不仅降低了石墨烯自身的吸附能力而且也影响石墨烯自身优异性能的发挥,这一问题限制了石墨烯的广泛应用。因此,对石墨烯进行功能化处理对拓展其应用具有重要意义。
发明内容
本发明的目的,就是针对现有技术所存在的不足,而提供一种高分散性石墨烯的制备方法,该方案通过通过加入不同量的试剂超声处理将有机小分子4-胺基吡啶修饰在石墨烯上,制备出具有高度均匀分散的石墨烯粉末材料,在水溶液中表现出优异的分散性,以满足有关领域应用和发展的要求。
本方案是通过如下技术措施来实现的:
一种高分散性石墨烯的制备方法,包括有一下步骤:
a、将石墨烯、4-胺基吡啶加入盐酸中,采用超声分散均匀后在0~5℃的环境下加入亚硝酸钠水溶液超声分散均匀后,再加入氢氧化钠,使用超声分散;
b、加入过量稀盐酸中和步骤a中的溶液中残留的氢氧化钠后过滤得到沉淀物,对沉淀物进行清洗、干燥后得到高分散性石墨烯。
作为本方案的优选:步骤a中,4-胺基吡啶与亚硝酸钠的摩尔比为1:1~1.2,石墨烯与4-胺基吡啶的质量比为1:1.5~32。
作为本方案的优选:步骤a中,在石墨烯、4-胺基吡啶加入盐酸中后的超声分散时间为30min。
作为本方案的优选:步骤a中,在加入亚硝酸钠水溶液后的超声分散时间为30min。
作为本方案的优选:步骤a中,在加入氢氧化钠后的超声分散时间为1~1.5h。
作为本方案的优选:步骤b中,清洗、干燥的方式为依次用水、乙醇、丙酮对沉淀物进行清洗直至滤液无色,再采用室温干燥。
本方案的有益效果可根据对上述方案的叙述得知,本方案利用有机小分子4-胺基吡啶,采用共价修饰法实现石墨烯改性。本发明的制备过程明确、可靠,制备方法简单易行,与未进行修饰的石墨烯相比,得到的高分散性石墨烯在水溶液中表现出优异的分散性。并且本发明在合成上具有原料简单易得、反应条件温和、操作简单等特点。
由此可见,本发明与现有技术相比,具有实质性特点和进步,其实施的有益效果也是显而易见的。
附图说明
图1是根据本发明方法制备的高分散性石墨烯的SEM图谱。
图2是根据本发明方法制备的高分散性石墨烯的TEM图谱。
图3是根据本发明方法制备的高分散性石墨烯中N元素的XPS图谱。
图4是根据本发明方法制备的高分散性石墨烯 (b) 与未修饰的石墨烯 (a) 在水相中不同时间的分散性对比图。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
实施例1
一种高分散性石墨烯的制备方法,包括以下步骤:
(1) 取70 mL 0.5 M盐酸溶液,30 mg石墨烯和47 mg(0.5 mmol)4-胺基吡啶于200mL圆底烧瓶中,超声30 min。
(2) 在0 ℃下加入15 mL(0.5 mmol)亚硝酸钠水溶液超声30 min,之后加入若干氢氧化钠,超声1 h。
(3) 用过量的稀盐酸中和去除多余的氢氧化钠,并依次用水、乙醇、丙酮清洗,直至滤液无色,最后室温干燥,即得所述的高分散性石墨烯。
实施例2
一种高分散性石墨烯的制备方法,包括以下步骤:
(1) 取70 mL 0.5 M盐酸溶液,30 mg石墨烯和188 mg(2 mmol)4-胺基吡啶于200mL圆底烧瓶中,超声30 min。
(2) 在0 ℃下加入15 mL(2 mmol)亚硝酸钠水溶液超声30 min,之后加入若干氢氧化钠,超声1 h。
(3) 用过量的稀盐酸中和去除多余的氢氧化钠,并依次用水、乙醇、丙酮清洗,直至滤液无色,最后室温干燥,即得所述的高分散性石墨烯。
实施例3
一种高分散性石墨烯的制备方法,包括以下步骤:
(1) 取70 mL 0.5 M盐酸溶液,30 mg石墨烯和376 mg(4 mmol)4-胺基吡啶于200mL圆底烧瓶中,超声30 min。
(2) 在5 ℃下加入15 mL(4 mmol)亚硝酸钠水溶液超声30 min,之后加入若干氢氧化钠,超声1.5 h。
(3) 用过量的稀盐酸中和去除多余的氢氧化钠,并依次用水、乙醇、丙酮清洗,直至滤液无色,最后室温干燥,即得所述的高分散性石墨烯。
实施例4
一种高分散性石墨烯的制备方法,包括以下步骤:
(1) 取70 mL 0.5 M盐酸溶液,30 mg石墨烯和564 mg(6 mmol)4-胺基吡啶于200mL圆底烧瓶中,超声30 min。
(2) 在5 ℃下加入15 mL(6 mmol)亚硝酸钠水溶液超声30 min,之后加入若干氢氧化钠,超声1 h。
(3) 用过量的稀盐酸中和去除多余的氢氧化钠,并依次用水、乙醇、丙酮清洗,直至滤液无色,最后室温干燥,即得所述的高分散性石墨烯。
实施例5
一种高分散性石墨烯的制备方法,包括以下步骤:
(1) 取70 mL 0.5 M盐酸溶液,30 mg石墨烯和753 mg(8 mmol)4-胺基吡啶于200mL圆底烧瓶中,超声30 min。
(2) 在3 ℃下加入15 mL(8 mmol)亚硝酸钠水溶液超声30 min,之后加入若干氢氧化钠,超声1.2 h。
(3) 用过量的稀盐酸中和去除多余的氢氧化钠,并依次用水、乙醇、丙酮清洗,直至滤液无色,最后室温干燥,即得所述的高分散性石墨烯。
实施例6
一种高分散性石墨烯的制备方法,包括以下步骤:
(1) 取70 mL 0.5 M盐酸溶液,30 mg石墨烯和941 mg(10 mmol)4-胺基吡啶于200mL圆底烧瓶中,超声30 min。
(2) 在2℃下加入15 mL(10 mmol)亚硝酸钠水溶液超声30 min,之后加入若干氢氧化钠,超声1.5h。
(3) 用过量的稀盐酸中和去除多余的氢氧化钠,并依次用水、乙醇、丙酮清洗,直至滤液无色,最后室温干燥,即得所述的高分散性石墨烯。
为了证明本发明的有益效果,采用实施例1制备的高分散石墨烯进行了测试以及分散性对比。对高分散石墨烯进行XPS测试,从N 1s 谱图中观察到有有机小分子的N元素,可说明有机分子成功修饰在石墨烯上(见图3)。将修饰后的石墨烯在水相中分散不同时间,对比其分散性,修饰后的石墨烯表现出很好的分散性(见图4)。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (6)

1.一种高分散性石墨烯的制备方法,其特征是:包括有一下步骤:
a、将石墨烯、4-胺基吡啶加入盐酸中,采用超声分散均匀后在0~5℃的环境下加入亚硝酸钠水溶液超声分散均匀后,再加入氢氧化钠,使用超声分散;
b、加入过量稀盐酸中和步骤a中的溶液中残留的氢氧化钠后过滤得到沉淀物,对沉淀物进行清洗、干燥后得到高分散性石墨烯。
2.根据权利要求1所述的一种高分散性石墨烯的制备方法,其特征是:所述步骤a中,4-胺基吡啶与亚硝酸钠的摩尔比为1:1~1.2,石墨烯与4-胺基吡啶的质量比为1:1.5~32。
3.根据权利要求1所述的一种高分散性石墨烯的制备方法,其特征是:所述步骤a中,在石墨烯、4-胺基吡啶加入盐酸中后的超声分散时间为30min。
4.根据权利要求1所述的一种高分散性石墨烯的制备方法,其特征是:所述步骤a中,在加入亚硝酸钠水溶液后的超声分散时间为30min。
5.根据权利要求1所述的一种高分散性石墨烯的制备方法,其特征是:所述步骤a中,在加入氢氧化钠后的超声分散时间为1~1.5h。
6.根据权利要求1所述的一种高分散性石墨烯的制备方法,其特征是:所述步骤b中,清洗、干燥的方式为依次用水、乙醇、丙酮对沉淀物进行清洗直至滤液无色,再采用室温干燥。
CN202111329561.2A 2021-11-11 2021-11-11 一种高分散性石墨烯的制备方法 Pending CN113897075A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111329561.2A CN113897075A (zh) 2021-11-11 2021-11-11 一种高分散性石墨烯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111329561.2A CN113897075A (zh) 2021-11-11 2021-11-11 一种高分散性石墨烯的制备方法

Publications (1)

Publication Number Publication Date
CN113897075A true CN113897075A (zh) 2022-01-07

Family

ID=79193834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111329561.2A Pending CN113897075A (zh) 2021-11-11 2021-11-11 一种高分散性石墨烯的制备方法

Country Status (1)

Country Link
CN (1) CN113897075A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070141A (zh) * 2011-03-10 2011-05-25 武汉大学 一种石墨烯的制备方法
KR20130022565A (ko) * 2011-08-25 2013-03-07 한국과학기술원 질소 도핑된 그라핀, 이를 포함하는 울트라캐패시터 및 이의 제조방법
CN103319892A (zh) * 2013-07-12 2013-09-25 中国科学院长春应用化学研究所 一种聚酰亚胺泡沫复合材料及其制备方法
KR20170126292A (ko) * 2016-05-09 2017-11-17 울산과학기술원 그래핀 제조방법, 그래핀 분산 조성물, 및 그 제조방법
CN110064363A (zh) * 2019-03-26 2019-07-30 河南师范大学 一种氨基吡啶功能化氧化石墨烯磁性重金属吸附剂的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102070141A (zh) * 2011-03-10 2011-05-25 武汉大学 一种石墨烯的制备方法
KR20130022565A (ko) * 2011-08-25 2013-03-07 한국과학기술원 질소 도핑된 그라핀, 이를 포함하는 울트라캐패시터 및 이의 제조방법
CN103319892A (zh) * 2013-07-12 2013-09-25 中国科学院长春应用化学研究所 一种聚酰亚胺泡沫复合材料及其制备方法
KR20170126292A (ko) * 2016-05-09 2017-11-17 울산과학기술원 그래핀 제조방법, 그래핀 분산 조성물, 및 그 제조방법
CN110064363A (zh) * 2019-03-26 2019-07-30 河南师范大学 一种氨基吡啶功能化氧化石墨烯磁性重金属吸附剂的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张植娟: "氮掺杂碳材料的制备及其化学活性位点研究", 《云南化工》 *

Similar Documents

Publication Publication Date Title
Kukkar et al. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications
Yuan et al. Achieving highly efficient catalysts for hydrogen evolution reaction by electronic state modification of platinum on versatile Ti3C2T x (MXene)
KR101640545B1 (ko) 촉매-그래파이트형 탄소질화물-환원된 그래핀 옥사이드 복합체의 제조방법, 이에 의하여 제조된 복합체, 및 이를 이용한 전극
Chaudhary et al. Rationally designed multifunctional Ti3C2 MXene@ Graphene composite aerogel integrated with bimetallic selenides for enhanced supercapacitor performance and overall water splitting
Guo et al. Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications
Shen et al. Ionic liquid-assisted one-step hydrothermal synthesis of TiO 2-reduced graphene oxide composites
Zhang et al. Interactions of graphene and graphene oxide with proteins and peptides
Ayán-Varela et al. Investigating the dispersion behavior in solvents, biocompatibility, and use as support for highly efficient metal catalysts of exfoliated graphitic carbon nitride
Mondal et al. Graphene-nanoparticle composites and their applications in energy, environmental and biomedical science
CN102674327A (zh) 常温下水溶性石墨烯绿色制备方法
KR101576896B1 (ko) 산화철(β-FeOOH)-그래핀 복합체의 제조방법 및 이에 의해 제조되는 산화철(β-FeOOH)-그래핀 복합체
Nabid et al. Boron and nitrogen co-doped carbon dots as a metal-free catalyst for hydrogen generation from sodium borohydride
Li et al. Highly selective photocatalytic CO2 reduction to CH4 by ball-milled cubic silicon carbide nanoparticles under visible-light irradiation
CN110498412B (zh) 一种有机功能化氧化石墨烯的制备方法
Chen et al. Palygorskite@ Co3O4 nanocomposites as efficient peroxidase mimics for colorimetric detection of H2O2 and ascorbic acid
Mao et al. Supercritical CH3OH-Triggered Isotype Heterojunction and Groups in g-C3N4 for Enhanced Photocatalytic H2 Evolution
Zhao et al. Carbon nitride encapsulated nanodiamond hybrid with improved catalytic performance for clean and energy-saving styrene production via direct dehydrogenation of ethylbenzene
CN101844762B (zh) 一种亲水性石墨烯的制备方法
Abbood et al. Square CdS micro/nanosheets as efficient photo/piezo-bi-catalyst for hydrogen production
Khalaf et al. Synthesis and characterization of lanthanum oxide La2O3 net-like nanoparticles by new combustion method
Masimukku et al. Low-frequency vibration induced piezoelectric boost to photocatalytic hydrogen evolution through 2D-2D-stacked MoS2-carbon nitride
Sai-Dan et al. Application of inorganic layered materials in electrochemical sensors
CN113897075A (zh) 一种高分散性石墨烯的制备方法
Jayaramulu et al. Hybrid Two-Dimensional Porous Materials
Long et al. Disruptive Strategy To Fabricate Three-Dimensional Ultrawide Interlayer Porous Carbon Framework-Supported Prussian Blue Nanocubes: A Carrier for NiFe-Layered Double-Hydroxide toward Oxygen Evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220107