CN113896834A - 一种复合水凝胶光热转换材料的制备方法及其应用 - Google Patents

一种复合水凝胶光热转换材料的制备方法及其应用 Download PDF

Info

Publication number
CN113896834A
CN113896834A CN202111294933.2A CN202111294933A CN113896834A CN 113896834 A CN113896834 A CN 113896834A CN 202111294933 A CN202111294933 A CN 202111294933A CN 113896834 A CN113896834 A CN 113896834A
Authority
CN
China
Prior art keywords
photothermal conversion
conversion material
composite hydrogel
water container
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111294933.2A
Other languages
English (en)
Inventor
苗蕾
杨婷婷
穆晓江
周建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN202111294933.2A priority Critical patent/CN113896834A/zh
Publication of CN113896834A publication Critical patent/CN113896834A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/02Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to polysaccharides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种复合水凝胶光热转换材料的制备方法及其应用,将天然高分子多糖琼脂和丙烯酰胺单体通过交联剂N,N'‑亚甲基双丙烯酰胺和引发剂过硫酸铵的共同作用形成复合水凝胶,制备工艺简单,该复合水凝胶的生物相容性良好,可以很好的与各类吸光材料例如多壁碳纳米管分散液、氧化铜、氮化钛等进行成功的复合,且得到的材料无毒、可降解,具有高效的太阳能蒸汽效率,可用于海水淡化和污水处理,具有广泛应用前景。

Description

一种复合水凝胶光热转换材料的制备方法及其应用
技术领域:
本发明涉及太阳能光热转换技术领域,具体涉及一种复合水凝胶光热转换材料的制备方法及其应用。
背景技术:
太阳辐射能作为一种自然能源,以其储量丰富,无污染且可再生显示了其独特的优势,已被国际公认为未来最具竞争性的能源之一。利用太阳能进行水蒸发的光热转换技术在近年来应运而生,该技术可以可直接将光能转换为热能,再将转化的热用来产生水蒸气,水蒸气冷凝回收即为干净无污染的淡水,这为解决现实的淡水短缺问题提供了有效可行的方法。
常用的光热转换材料主要包括等离激元材料、半导体材料、有机聚合物和碳基材料四大类。然而部分金属材料如金,银等价格昂贵,部分用于太阳能蒸发过程的基底材料合成工艺复杂或者对环境有害而大大限制了其在实际生活中的应用。水凝胶作为一种广泛应用于食品、工业、医学等领域的极为亲水的材料,具有三维网络结构,在水中可以迅速溶胀并可以保持大量体积的水,有望成为光热转换的理想材料。
发明内容:
本发明的目的是提供一种复合水凝胶光热转换材料的制备方法及其应用,将天然高分子多糖琼脂(Agar)和丙烯酰胺单体(AM)通过交联剂N,N'-亚甲基双丙烯酰胺(MBA)和引发剂过硫酸铵(APS)的共同作用形成复合水凝胶,制备工艺简单,该复合水凝胶的生物相容性良好,可以很好的与各类吸光材料例如多壁碳纳米管分散液、氧化铜、氮化钛进行成功的复合,且得到的材料无毒、可降解,具有高效的太阳能蒸汽效率,可用于海水淡化和污水处理,具有广泛应用前景。
本发明是通过以下技术方案予以实现的:
一种复合水凝胶凝胶光热转换材料的制备方法,该方法包括以下步骤:
1)将天然高分子多糖琼脂与丙烯酰胺粉体按照质量比1:6-1:18溶于去离子水中,并将它们置于88-92℃的水浴锅中水浴3-6min,得到Agar-AM前驱溶液;
2)然后向圆柱形离心管模具中加入交联剂N,N'-亚甲基双丙烯酰胺(MBA)和引发剂过硫酸铵(APS),并将其溶于去离子水中,得到混合溶液;丙烯酰胺、N,N'-亚甲基双丙烯酰胺与过硫酸铵的质量比为300:1-100:3;
3)向步骤1)获得的Agar-AM前驱溶液中加入CNT或氧化铜或氮化钛分散液,搅拌均匀,然后倒入模具,并与模具中的混合溶液混合均匀;
4)步骤3)得到的混合均匀的溶液经过鼓风干燥箱85-90℃水热反应1.5-2.5h,待其自然冷却后取出并用去离子水清洗干净后得到复合水凝胶光热转换材料。
本发明还保护所述的复合水凝胶光热转换材料的应用,用于太阳能光热蒸汽转换或海水淡化,包括以下步骤:所述复合水凝胶光热转换材料放置于基于表面局域光热转换的蒸汽发生装置中进行太阳能光热蒸汽转换,该装置自下而上包括盛水容器和固定在盛水容器上方的泡沫隔热层,泡沫隔热层的中央设有上下贯通的孔洞,贯通的孔洞中为复合水凝胶凝胶光热转换材料,光热转换材料贯穿泡沫隔热层,下端浸没在盛水容器液面以下,在进行光热转化的同时吸收盛水容器中的水为蒸发过程输送水分而无需额外输水通道;盛水容器中盛有蒸馏水或模拟海水。
本发明还保护所述的复合水凝胶光热转换材料的应用,用于污水处理,包括以下步骤:所述复合水凝胶光热转换材料,放置于基于表面局域光热转换的蒸发-冷凝装置系统中进行污水处理,该基于表面局域光热转换的蒸发-冷凝装置系统由内而外包括盛水容器、倒扣在盛水容器上方的冷凝罩和承载着盛水容器与冷凝罩的收集容器,所述盛水容器中盛有污水,放有光热转化材料层;所述光热转化材料层的光热转化材料为本发明复合水凝胶光热转化材料。
本发明的的有益效果如下:
1.本发明原材料广泛,制备工艺简单,可大规模生产。
2.本发明获得的CNT-Agar-PAM复合水凝胶光热转换材料内部有大量的给亲水基团,具有良好的亲水性,碳纳米管作为目前已知最黑的物质之一可以进行高效的光热转换实现局部集热效果,凝胶内部无序多孔结构利于水蒸气的逃逸,多级结构增加光的多重散射,利于光的吸收从而实现高效的水蒸发。
3.本发明获得的复合水凝胶光热转换材料具有良好的吸光性能,对250~2500nm范围内太阳光吸收率达到90%以上。
4.本发明获得的Agar与AM比例为1:9时的复合水凝胶光热转换材料在1kWm-2太阳光强下,二维蒸发速率可达到1.75kgm-2h-1,三维蒸发速率可达到3.00kgm-2h-1
5.本发明获得的复合水凝胶光热转换材料可用于污水处理和模拟海水淡化等。
总之,本发明材料广泛,制备工艺简单,可大规模生产,制备的复合水凝胶内部有大量的亲水官能团,能够为水蒸发过程运输充足的水;其无序多孔的结构不仅有利于蒸汽的逸出,而且可以增强光的散射,有效的进行光的吸收;本发明获得的复合水凝胶对250~2500nm范围内太阳光吸收率达到94%以上;在1kWm-2的光照强度下,1:9时的复合水凝胶光热转换材料二维平面蒸汽速率可达到1.75kgm-2h-1,本发明的复合水凝胶光热转换材料可循环使用,满足可持续发展的要求,可用于污水处理和海水淡化,具有广泛应用前景。
附图说明:
图1是实施例1得到的复合CNT-Agar-PAM水凝胶光热转换材料的微观结构扫描电镜图;
图2是实施例1得到的复合CNT-Agar-PAM水凝胶光热转换材料的紫外/可见/近红外吸收光谱图;
图3是实施例2得到的复合CNT-Agar-PAM水凝胶光热转换材料的微观结构扫描电镜图;
图4是实施例2得到的复合CNT-Agar-PAM水凝胶光热转换材料的紫外/可见/近红外吸收光谱图;
图5是实施例3得到的复合CNT-Agar-PAM水凝胶光热转换材料的微观结构扫描电镜图;
图6是实施例3得到的复合CNT-Agar-PAM水凝胶光热转换材料的紫外/可见/近红外吸收光谱图;
图7是实施例4得到的复合CNT-Agar-PAM水凝胶光热转换材料的微观结构扫描电镜图;
图8是实施例4得到的复合CNT-Agar-PAM水凝胶光热转换材料的紫外/可见/近红外吸收光谱图;
图9是实施例6基于表面局域光热转换的蒸汽发生装置的结构示意图;
其中1、盛水容器,2、泡沫隔热层,3、光热转换材料,4、待蒸发的液体;
图10是实施例7对于实施例3得到的CNT-Agar-PAM复合水凝胶光热转换材料在1kWm-2光强下,用10wt%NaCl溶液模拟海水淡化蒸发速率图。
图11是实施例8的污水处理实验装置正视图;
其中,1、光热转换材料,2、泡沫隔热层,3、盛水容器,4、待蒸发的液体,5、冷凝罩,6、塑料薄膜,7、原木底座;
图12实施例8对于实施例3得到的CNT-Agar-PAM复合水凝胶光热转换材料对有机污染液及其冷凝液的紫外可见吸收光谱。
具体实施方式:
以下是对本发明的进一步说明,而不是对本发明的限制。
实施例1:
一种复合CNT-Agar-PAM水凝胶光热转化材料的制备方法,该方法包括以下步骤:
1)称取50mg天然高分子多糖琼脂Agar与900mg丙烯酰胺单体AM溶于4mL去离子水中,放入带有磁力搅拌的90℃水浴锅中水浴加热,直至溶液变得透明,停止加热,得到Agar-PAM前驱溶液,然后称取3mg交联剂MBA,9mg引发剂APS于模具中,将其与1mL去离子水混合均匀得到混合溶液;
2)向步骤1)获得的质量比为1:18的4mLAgar-AM前驱溶液中加入100μLCNT分散液作为吸光材料,并用磁力搅拌器将其与前驱溶液搅拌均匀,然后将搅匀后的溶液倒入模具,并与模具中的混合溶液混合均匀;
3)将装有混合均匀溶液的模具放入聚四氟乙烯反应釜中经过鼓风干燥箱90℃水热反应2h,待其自然冷却后取出用去离子水清洗干净后得到质量比为1:18的CNT-Agar-PAM复合水凝胶光热转换材料。
制备的Agar与AM质量比为1:18的复合水凝胶光热转换材料可以看到开孔与闭孔并存的三维蜂窝状多孔结构的现象(如图1),复合水凝胶光热转换材料在200~2500nm范围内太阳光吸收率为95.23%(如图2所示)。
实施例2:
参照实施例1,不同之处为在于:步骤1)为称取的Agar的质量为75mg。
制备的Agar与AM质量比为1:12的复合水凝胶光热转换材料可以看到开孔与闭孔并存的三维蜂窝状有序多孔结构的现象(如图3),Agar与AM质量比为1:12复合水凝胶光热转换材料在200~2500nm范围内太阳光吸收率为94.9%(如图4所示)。
实施例3:
参照实施例1,不同之处为在于:步骤1)为称取的Agar的质量为100mg。
制备的Agar与AM质量比为1:9的复合水凝胶光热转换材料可以看到开孔与闭孔并存的三维蜂窝状有序多孔结构的现象,凝胶骨架得到显著增强,且孔的结构更加致密(如图5),Agar与AM质量比为1:9复合水凝胶光热转换材料在200~2500nm范围内太阳光吸收率为94.81%(如图6所示)。
实施例4:
参照实施例1,不同之处为在于:步骤1)为称取的Agar的质量为150mg。
制备的Agar与AM质量比为1:6的复合水凝胶光热转换材料可以看到开孔与闭孔并且闭孔居多的三维蜂窝状有序多孔结构的现象,(如图7),Agar与AM质量比为1:6复合水凝胶光热转换材料在200~2500nm范围内太阳光吸收率为94.66%(如图8所示)。
实施例5:
参照实施例3,不同之处为在于:步骤2)选用的光热转换材料为氮化钛或者氧化铜,且氮化钛或氧化铜的用量均为30mg,。
实施例6:蒸汽产生实验
本发明实施例1-5得到的复合水凝胶光热转化材料,在下列所述的实验条件下,光照一定时间后,可以产生一定的蒸汽。
如图9所示,该基于表面局域光热转换的蒸汽发生装置由下而上包括盛水容器1和固定在盛水容器上方的泡沫隔热层2,泡沫隔热层2中央挖有一上下贯通的孔洞,孔洞的大小与样品尺寸匹配,光热转换材料3贯穿在泡沫的孔洞中且底部与容器中的水直接接触,在进行光热转换的同时从容器中吸收水分以保证蒸发过程中水分运输,而无需额外的输水通道,盛水容器1中盛有去离子水;所述光热转化材料光热转化材料为CNT-Agar-PAM复合水凝胶光热转化材料。所述的泡沫隔热层2的材料为聚苯乙烯泡沫。
具体实验条件如下:
模拟太阳光的光照强度为1kWm-2,待蒸发液体为50mL去离子水,由模拟太阳光光源经过AM1.5滤光片滤光后光强为1kWm-2,湿度为58±2%温度为25±2℃实验室环境下光照1h。同时,使用电子天平实时记录液体损失量与时间的关系。置于自制的光热转化实验装置上(如图9所示)。
蒸汽速率见表1。
表1蒸汽产生实验数据
Figure BDA0003336189950000071
Figure BDA0003336189950000081
实施例7:模拟海水淡化实验
本发明实施例3得到的复合水凝胶光热转换材料,置于自制的实验装置(如图9)中进行光热蒸汽测试,产生一定的蒸汽。
具体实验条件如下:
待蒸汽液体为50mL10wt%NaCl溶液,由模拟太阳光光源经过AM1.5滤光片滤光后光强为1kWm-2,湿度为58±2%温度为25±2℃实验室环境下光照1h。同时,使用电子天平实时记录液体损失量与时间的关系。如图10所示,测得的蒸发速率为2.36kgm-2h-1
实施例8:有机污水处理实验
本发明实施例3得到的复合水凝胶光热转换材料,置于自制的实验装置(如图11)中进行光热蒸汽测试,产生一定的蒸汽,并收集冷凝的蒸汽。
具体实验条件如下:
待蒸汽液体为50mL50mg/L的甲基橙(MO)溶液,由模拟太阳光光源经过AM1.5滤光片滤光后光强为6kWm-2,湿度为58±2%温度为25±2℃实验室环境下光照8h。置于自制的蒸发-冷凝实验装置(如图11)内。利用紫外-可见光分光光度计对冷凝液进行分析,结果如图12所示。

Claims (3)

1.一种复合水凝胶凝胶光热转换材料的制备方法,其特征在于,该方法包括以下步骤:
1)将天然高分子多糖琼脂与丙烯酰胺粉体按照质量比1:6-1:18溶于去离子水中,并将它们置于88-92℃的水浴锅中水浴3-6min,得到Agar-AM前驱溶液;
2)然后向圆柱形离心管模具中加入交联剂N,N'-亚甲基双丙烯酰胺和引发剂过硫酸铵,并将其溶于去离子水中,得到混合溶液;丙烯酰胺与N,N'-亚甲基双丙烯酰胺与过硫酸铵的质量比为300:1-100:3;
3)向步骤1)获得的Agar-AM前驱溶液中加入CNT或氧化铜或氮化钛分散液,搅拌均匀,然后倒入模具,并与模具中的混合溶液混合均匀;
4)步骤3)得到的混合均匀的溶液经过鼓风干燥箱85-90℃水热反应1.5-2.5h,待其自然冷却后取出并用去离子水清洗干净后得到复合水凝胶光热转换材料。
2.权利要求1所述复合水凝胶凝胶光热转换材料的制备方法得到的复合水凝胶光热转换材料的应用,其特征在于,用于太阳能光热蒸汽转换或海水淡化,包括以下步骤:所述复合水凝胶光热转换材料放置于基于表面局域光热转换的蒸汽发生装置中进行太阳能光热蒸汽转换,该装置自下而上包括盛水容器和固定在盛水容器上方的泡沫隔热层,泡沫隔热层的中央设有上下贯通的孔洞,贯通的孔洞中为复合水凝胶凝胶光热转换材料,光热转换材料贯穿泡沫隔热层,下端浸没在盛水容器液面以下,盛水容器中盛有蒸馏水或模拟海水。
3.权利要求1所述复合水凝胶凝胶光热转换材料的制备方法得到的复合水凝胶光热转换材料的应用,其特征在于,用于污水处理,包括以下步骤:所述复合水凝胶光热转换材料,放置于基于表面局域光热转换的蒸发-冷凝装置系统中进行污水处理,该基于表面局域光热转换的蒸发-冷凝装置系统由内而外包括盛水容器、倒扣在盛水容器上方的冷凝罩和承载着盛水容器与冷凝罩的收集容器,所述盛水容器中盛有污水,放有光热转化材料层;
所述光热转化材料层的光热转化材料为本发明复合水凝胶光热转化材料。
CN202111294933.2A 2021-11-03 2021-11-03 一种复合水凝胶光热转换材料的制备方法及其应用 Pending CN113896834A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111294933.2A CN113896834A (zh) 2021-11-03 2021-11-03 一种复合水凝胶光热转换材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111294933.2A CN113896834A (zh) 2021-11-03 2021-11-03 一种复合水凝胶光热转换材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN113896834A true CN113896834A (zh) 2022-01-07

Family

ID=79028291

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111294933.2A Pending CN113896834A (zh) 2021-11-03 2021-11-03 一种复合水凝胶光热转换材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113896834A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314719A (zh) * 2022-01-28 2022-04-12 中国科学院重庆绿色智能技术研究院 基于界面蒸发的复合蒸发棒及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606593A (zh) * 2017-08-11 2018-01-19 桂林电子科技大学 一种基于表面局域光热转换的蒸汽发生装置
CN109024085A (zh) * 2017-08-11 2018-12-18 桂林电子科技大学 一种实现高效光热转化的纸基复合吸光材料及其制备方法
CN109206553A (zh) * 2018-08-28 2019-01-15 深圳大学 一种太阳能光热转换材料及其制备方法
CN109232968A (zh) * 2018-07-23 2019-01-18 桂林电子科技大学 一种三维海绵基光热转化材料的制备方法及其应用
CN110028680A (zh) * 2019-04-12 2019-07-19 燕山大学 碳纳米管复合水凝胶的制备方法
CN110498464A (zh) * 2019-08-07 2019-11-26 桂林电子科技大学 一种碳纳米管气凝胶木片双层结构光热转化材料
CN112093790A (zh) * 2020-07-30 2020-12-18 桂林电子科技大学 一种实现高效光热转换的多孔碳化甘蔗的制备方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606593A (zh) * 2017-08-11 2018-01-19 桂林电子科技大学 一种基于表面局域光热转换的蒸汽发生装置
CN109024085A (zh) * 2017-08-11 2018-12-18 桂林电子科技大学 一种实现高效光热转化的纸基复合吸光材料及其制备方法
CN109232968A (zh) * 2018-07-23 2019-01-18 桂林电子科技大学 一种三维海绵基光热转化材料的制备方法及其应用
CN109206553A (zh) * 2018-08-28 2019-01-15 深圳大学 一种太阳能光热转换材料及其制备方法
CN110028680A (zh) * 2019-04-12 2019-07-19 燕山大学 碳纳米管复合水凝胶的制备方法
CN110498464A (zh) * 2019-08-07 2019-11-26 桂林电子科技大学 一种碳纳米管气凝胶木片双层结构光热转化材料
CN112093790A (zh) * 2020-07-30 2020-12-18 桂林电子科技大学 一种实现高效光热转换的多孔碳化甘蔗的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KAIQI PAN ET AL.: "Highly sensitive, stretchable and durable strain sensors based on conductive double-network polymer hydrogels", J POLYM SCI, vol. 58, no. 21, pages 3069 - 3081 *
卞岳: "界面太阳能蒸发:材料与结构", 中国优秀硕士学位论文全文数据库 基础科学辑, no. 06, pages 010 - 67 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314719A (zh) * 2022-01-28 2022-04-12 中国科学院重庆绿色智能技术研究院 基于界面蒸发的复合蒸发棒及其应用

Similar Documents

Publication Publication Date Title
CN107235591B (zh) 一种光热转换硫化铜复合薄膜在水处理中的应用
Zhang et al. Direct solar steam generation system for clean water production
CN107606593B (zh) 一种基于表面局域光热转换的蒸汽发生装置
CN107487801B (zh) 一种实现高效光热蒸汽转换的多孔木炭片的制备方法
CN113023809B (zh) 一种用于太阳能界面蒸发海水淡化的膜材料的制备方法
Guo et al. Vertical porous MoS2/hectorite double-layered aerogel as superior salt resistant and highly efficient solar steam generators
CN110358143A (zh) 一种碳基吸收材料、制备方法及其应用
CN113527828B (zh) 一种两性聚电解质光热水凝胶、其制备和应用
Liang et al. Direction-limited water transport and inhibited heat convection loss of gradient-structured hydrogels for highly efficient interfacial evaporation
CN109232968A (zh) 一种三维海绵基光热转化材料的制备方法及其应用
CN113582273B (zh) 用于海水淡化及污水净化的蒸发器和水净化方法以及太阳能蒸发净化水装置
CN111892742A (zh) 一种光热转化高分子太阳能吸收材料及其制备方法和应用
CN113042077A (zh) 一种光热-光化学协同转换的水凝胶材料及其制备方法和应用
CN110844959A (zh) 一种基于丝瓜络生物质的光热水蒸发器件
CN108530675A (zh) 一种高强度循环利用的复合光热薄膜的制备方法
Fujiwara et al. Improvement of condensation step of water vapor in solar desalination of seawater and the development of three-ply membrane system
CN113896834A (zh) 一种复合水凝胶光热转换材料的制备方法及其应用
Nabeela et al. Hydrophilic 3D interconnected network of bacterial nanocellulose/black titania photothermal foams as an efficient interfacial solar evaporator
Li et al. Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation
Zhang et al. A water supply tunable bilayer evaporator for high-quality solar vapor generation
CN114560701B (zh) 铋基光热转换纳米纤维材料及其制备方法
CN108002366A (zh) 石墨烯太阳能水清洁泡沫及其制备方法和用途
CN113877492A (zh) 一种多孔MoS2水凝胶、制备方法及其应用
CN112250126A (zh) 一种光热薄膜及其制备方法与应用
Zhou et al. 3D inverted cone hydrogels derived by MXene-TiOX nanocomposite for sequential regulation of enhanced solar-driven steam generation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20220107