CN113884708A - 一种扫描电化学显微镜探针及其制备方法 - Google Patents

一种扫描电化学显微镜探针及其制备方法 Download PDF

Info

Publication number
CN113884708A
CN113884708A CN202111217665.4A CN202111217665A CN113884708A CN 113884708 A CN113884708 A CN 113884708A CN 202111217665 A CN202111217665 A CN 202111217665A CN 113884708 A CN113884708 A CN 113884708A
Authority
CN
China
Prior art keywords
layer
insulating layer
probe
preparing
microscope probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111217665.4A
Other languages
English (en)
Inventor
潘晓霞
屈泽华
高瑞华
胡晓月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202111217665.4A priority Critical patent/CN113884708A/zh
Publication of CN113884708A publication Critical patent/CN113884708A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/16Probe manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/60SECM [Scanning Electro-Chemical Microscopy] or apparatus therefor, e.g. SECM probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明属于电化学技术领域,具体为一种扫描电化学显微镜探针及其制备方法。本发明制备方法包括:以纳米薄膜的形式制备探针的牺牲层;以纳米薄膜的形式在牺牲层上制备探针的绝缘层,绝缘层厚度控制在5‑50 nm;以纳米薄膜的形式在绝缘层上制备金属电极层,金属电极层的厚度控制在5‑50 nm;利用有机溶剂去除牺牲层释放绝缘层和金属层双层薄膜;双层薄膜的内应变梯度促使绝缘层和金属电极层卷曲,形成由绝缘层包裹金属电极层的微管结构。该结构可用作扫描电化学显微镜探针;通过材料和结构调节,实现更高的探测性能和显微成像分辨率。

Description

一种扫描电化学显微镜探针及其制备方法
技术领域
本发明属于电化学技术领域,具体涉及一种扫描电化学显微镜探针及其制备方法。
背景技术
细胞是生物体的基本的结构和功能单元。探究细胞的结构、成分对于探索生物体的生理机制和生命活动规律有重要意义。传统的细胞研究以大数量的细胞群体作为研究对象,然而在研究的过程中,研究人员发现个体细胞之间仍然存在一定的差异,细胞群体分析数据的平均值并不可以说明单个细胞的生理特征。在单细胞层面开展研究,可以全面、精确地掌握细胞的生理状态和生理活动,有利于进行疾病的早期诊断。相关研究成为当前生物领域的前言和热点之一。
在多种单细胞监测分析方法中,扫描电化学显微镜(Scanning ElectrochemicalMicroscopy, SECM)是一种基于电化学反应获得目标区域电化学信号的探测方法。该方法通过微电极对细胞的目标区域进行扫描,获得电极尖端与细胞间电化学反应产生的信号,完成对特定成分的监测。
扫描电化学显微镜的分辨率主要取决于探针的尺寸、形状和探针-基底间距。同时,薄的绝缘层亦会减少探针周围的归一化屏蔽层尺寸,获得更大的探针电流响应。
有鉴于此,本发明提出一种新型电化学微探针的制备方法。本发明利用绝缘层和金属层的内应变梯度实现绝缘层/金属层双层薄膜的卷曲,形成绝缘层在外、金属层在内的微管结构,并将其用作扫描电化学显微镜探针。通过材料和结构调节,实现更高的探测性能和显微成像分辨率。
发明内容
本发明的目的在于提供一种新的扫描电化学显微镜探针及其制备方法,用以实现更高的探测性能和显微成像分辨率。
本发明提供的扫描电化学显微镜探针的制备方法,利用双层薄膜内应变梯度驱动纳米薄膜卷曲构成微管结构(外表面为绝缘层、内表面为金属),并将其用作扫描电化学显微镜探针,从而实现更高的探测性能和显微成像分辨率。具体步骤为:
(1)在衬底上制备有机物牺牲层,如图1(a)所示;
(2)以纳米薄膜的形式在牺牲层上制备氧化物绝缘层,如图1(b)所示;
(3)以纳米薄膜的形式在绝缘层上制备金属电极层,如图1(c)所示;
(4)利用有机溶剂去除掉有机牺牲层,绝缘层和金属层构成的双层薄膜在内应变梯度作用下卷曲,形成绝缘层包裹金属的微管状探针,如图1(d)所示。
本发明步骤(1)中,所述衬底选自硅片、石英片、玻璃片、蓝宝石片。
本发明步骤(1)中,所制备的牺牲层由有机聚合物材料构成,厚度控制在100-10000 nm。
其中,所述有机聚合物材料,可以是光刻胶或聚甲基丙烯酸甲酯等。
本发明步骤(2)中,所制备的绝缘层为氧化物,包括但不限于SiO2、Al2O3、HfO2、TiO2,厚度控制在5-50 nm。
本发明步骤(3)中,所制备的金属层包括但不限于Pt、Ag、Au,厚度控制在5-50 nm。
本发明中,利用有机溶剂去掉牺牲层后,绝缘层和金属层构成的双层薄膜在内应变梯度作用下卷曲形成的探针是微管结构,外表面为绝缘层,内表面为金属层。
本发明中,微管状探针的直径控制在50 nm-20 μm。
本发明制备得到的扫描电化学显微镜探针可用于细胞电化学探测。
具体是将扫描电化学显微镜探针,其直接用做电极,接触或者插入细胞,进行电化学探测,以便给对单细胞开展研究。也可将微管探针进行酶修饰,或者在微管中注入电解液,进行细胞电化学探测,进而实现更多探测功能。
本发明方法可以实现微纳米尺度的电化学探针的制备,且其成分与结构可调控,从而实现更高的探测性能和显微成像分辨率。
附图说明
图1为本发明的扫描电化学显微镜探针的制备步骤图示(截面图)。其中,(a)为在衬底1 上制备有机牺牲层2 ;(b)表示制备绝缘层3;(c)表示制备金属层4;(d)去掉有机牺牲层1后,双层薄膜在内应力梯度作用下卷曲形成微管探针。微管的外表面为绝缘层3,内表面为金属层4。
图中标号:1为衬底,2为牺牲层,3为绝缘层,4为金属层。
具体实施方式
为了使本发明实现的技术手段与功效易于明白了解,以下结合实施例及附图对本发明作具体阐述。
实施例1:Al2O3/Pt微管探针的制备及胆固醇探测
将光刻胶(ARP3510)用旋涂法在硅片衬底上制备均匀的一层作为有机牺牲层。然后利用电子束蒸发在其上沉积30 nm Al2O3绝缘层。在其上再利用磁控溅射制备30 nm Pt金属层。最后用丙酮去掉光刻胶牺牲层,释放Al2O3/Pt双层薄膜。受Al2O3/Pt双层薄膜中内应变梯度的影响,双层薄膜卷曲构成微管状探针。探针直径为1 μm,其外表面为Al2O3绝缘层,内表面为Pt金属层。利用胆固醇氧化酶修饰Pt层,并用铜线连接Pt金属层扫描电化学显微镜。将微管探针前端接触单细胞细胞膜不同部位,探测单细胞上不同位置的胆固醇分布。由于微管探针直径为1 μm,利用该探针可实现细胞上空间分辨率微米量级的胆固醇分布图。
实施例2:HfO2/Au微管探针的制备及溶解氧探测
将聚甲基丙烯酸甲酯(PMMA)颗粒放入丙酮中,加热至80 oC等待直至PMMA 完全溶解,制备成PMMA 的丙酮溶液(浓度:~10 %)。采用这一溶液用旋涂法在玻璃片衬底上制备一层PMMA 薄膜作为有机牺牲层。然后利用原子层沉积在其上沉积40 nm HfO2绝缘层。在其上再利用电子束蒸发制备30 nm Au金属层。最后用丙酮去掉PMMA胶牺牲层,释放HfO2/Au双层薄膜。受HfO2/Au双层薄膜中内应变梯度的影响,双层薄膜卷曲构成微管状探针。探针直径为200 nm,其外表面为HfO2绝缘层,内表面为Au金属层。用铜线连接Au金属层扫描电化学显微镜。将微管探针前端插入单细胞内,通过电化学特性测试(如循环伏安等测试),可以研究单细胞内不同位置的溶解氧含量变化情况。由于微管探针尺寸很小,测试可以获得很高的空间分辨率。
实施例3: SiO2/Pt微管探针的制备并研究紫外光对细胞生理活动的影响
将光刻胶(AZ5214)用旋涂法在硅片衬底上制备均匀的一层作为有机牺牲层。然后利用磁控溅射其上沉积20 nm SiO2绝缘层。在其上再利用电子束蒸发制备20 nm Pt金属层。最后用丙酮去掉光刻胶牺牲层,释放SiO2/Pt双层薄膜。受SiO2/Pt双层薄膜中内应变梯度的影响,双层薄膜卷曲构成微管状探针。探针直径为1 μm,其外表面为SiO2绝缘层,内表面为Pt金属层。用铜线连接Pt金属层扫描电化学显微镜。在微管中注入PBS缓冲液并将微管探针前端接触细胞(如HepG2细胞)表面,利用差分伏安法检测电化学电流。同时利用紫外光照射细胞,通过电流变化分析细胞在紫外光照射下生理活动变化情况。

Claims (5)

1.一种扫描电化学显微镜探针制备方法,其特征在于,利用双层薄膜内应变梯度驱动纳米薄膜卷曲构成外表面为绝缘层、内表面为金属的微管结构;具体步骤为:
(1)在衬底上制备有机物牺牲层;该牺牲层由有机聚合物材料构成,厚度控制在100-10000 nm;
(2)以纳米薄膜的形式在牺牲层上制备氧化物绝缘层;所述氧化物选自SiO2、Al2O3、HfO2、TiO2,厚度控制在5-50 nm;
(3)以纳米薄膜的形式在绝缘层上制备金属电极层;所述金属选自Pt、Ag、Au,厚度控制在5-50 nm;
(4)利用有机溶剂去除掉有机牺牲层,绝缘层和金属层构成的双层薄膜在内应变梯度作用下卷曲,形成绝缘层包裹金属的微管结构,作为扫描电化学显微镜探针;该微管的直径控制在50 nm-20 μm。
2.根据权利要求1所述的扫描电化学显微镜探针制备方法,其特征在于,所用的衬底选自硅片、石英片、玻璃片、蓝宝石片。
3.一种由权利要求1所述制备方法得到的扫描电化学显微镜探针。
4.如权利要求3所述的扫描电化学显微镜探针在细胞电化学探测中的应用。
5.根据权利要求4所述的应用,将扫描电化学显微镜探针直接用做电极,接触或者插入细胞进行电化学探测;或者将微管探针进行酶修饰,或者在微管中注入电解液,进行细胞电化学探测。
CN202111217665.4A 2021-10-19 2021-10-19 一种扫描电化学显微镜探针及其制备方法 Pending CN113884708A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111217665.4A CN113884708A (zh) 2021-10-19 2021-10-19 一种扫描电化学显微镜探针及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111217665.4A CN113884708A (zh) 2021-10-19 2021-10-19 一种扫描电化学显微镜探针及其制备方法

Publications (1)

Publication Number Publication Date
CN113884708A true CN113884708A (zh) 2022-01-04

Family

ID=79003706

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111217665.4A Pending CN113884708A (zh) 2021-10-19 2021-10-19 一种扫描电化学显微镜探针及其制备方法

Country Status (1)

Country Link
CN (1) CN113884708A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080061798A1 (en) * 2006-09-11 2008-03-13 Blick Robert H Microcoaxial probes made from strained semiconductor bilayers
JP2010261923A (ja) * 2009-04-30 2010-11-18 Tohoku Univ 走査型電気化学イオンコンダクタンス顕微鏡測定法、走査型電気化学イオンコンダクタンス顕微鏡、その探針および探針の製造方法
RU2425387C1 (ru) * 2009-11-25 2011-07-27 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ изготовления трубчатой микро-, наноиглы в интегральном исполнении
CN103267876A (zh) * 2013-05-02 2013-08-28 西南石油大学 一种制备扫描电化学显微镜工作电极的方法
CN103774088A (zh) * 2014-02-13 2014-05-07 复旦大学 一种sers探针分子自收集微管及其制备方法和应用
JP2014126480A (ja) * 2012-12-27 2014-07-07 National Institute Of Advanced Industrial & Technology マイクロ電極及びマイクロ電極の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080061798A1 (en) * 2006-09-11 2008-03-13 Blick Robert H Microcoaxial probes made from strained semiconductor bilayers
JP2010261923A (ja) * 2009-04-30 2010-11-18 Tohoku Univ 走査型電気化学イオンコンダクタンス顕微鏡測定法、走査型電気化学イオンコンダクタンス顕微鏡、その探針および探針の製造方法
RU2425387C1 (ru) * 2009-11-25 2011-07-27 Российская Федерация, От Имени Которой Выступает Министерство Образования И Науки Российской Федерации Способ изготовления трубчатой микро-, наноиглы в интегральном исполнении
JP2014126480A (ja) * 2012-12-27 2014-07-07 National Institute Of Advanced Industrial & Technology マイクロ電極及びマイクロ電極の製造方法
CN103267876A (zh) * 2013-05-02 2013-08-28 西南石油大学 一种制备扫描电化学显微镜工作电极的方法
CN103774088A (zh) * 2014-02-13 2014-05-07 复旦大学 一种sers探针分子自收集微管及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李焰, 赵澎, 王佳: "扫描隧道显微镜在电化学研究中的改进及应用", 分析仪器, no. 04 *
梅永丰等: "卷曲型氧化物微纳米管的发展和应用", 科学通报, vol. 60, no. 35, pages 3465 - 3477 *
蒋驰;门传玲;吴捷;张培;: "双层纳米薄膜微管与弹簧的制备与研究", 化工新型材料, no. 04 *

Similar Documents

Publication Publication Date Title
Kalmykov et al. Organ-on-e-chip: Three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids
EP2621584B1 (en) Nanowires for electrophysiological applications
Amemiya et al. Scanning electrochemical microscopy
US6982519B2 (en) Individually electrically addressable vertically aligned carbon nanofibers on insulating substrates
Dipalo et al. Intracellular action potential recordings from cardiomyocytes by ultrafast pulsed laser irradiation of fuzzy graphene microelectrodes
CN103901089B (zh) 检测神经细胞电生理信号的传感器及制作方法和检测方法
CN104760922B (zh) 一种超微平面电极阵列传感器及其制备方法
JP2008514927A (ja) 電気化学的、電気的又は地形学的分析用センサー
Chen et al. Microelectrode arrays based on carbon nanomaterials: emerging electrochemical sensors for biological and environmental applications
CN111920404A (zh) 一种柔性微电极阵列及其制备方法和应用
McKnight et al. Microarrays of vertically-aligned carbon nanofiber electrodes in an open fluidic channel
EP3169234A1 (en) Multi-probe microstructured arrays
US20180338712A1 (en) Mutli-probe microstructured arrays
McKnight et al. Effects of microfabrication processing on the electrochemistry of carbon nanofiber electrodes
CN113884708A (zh) 一种扫描电化学显微镜探针及其制备方法
US20170254795A1 (en) Cardiac platform for electrical recording of electrophysiology and contractility of cardiac tissues
EP2823302B1 (en) Process and device for the determination of alterations in neuronal connectivity and/or morphology
US20160139177A1 (en) Nanoscale probe structure and application thereof
Chen et al. Flexible Disk Ultramicroelectrode for High-Resolution and Substrate-Tolerable Scanning Electrochemical Microscopy Imaging
Bai et al. Nanoscale probe system for cell-organelle analysis
Dawson et al. Nanofabrication of robust nanoelectrodes for electrochemical applications
CN114624310B (zh) 一种用于检测单细胞内活性氧的探针型有机电化学晶体管传感器及其制备方法、检测方法
Weiz et al. Single‐Cell Impedance Tomography Using Rolled‐Up Microtubular Sensors
Woodhams Graphene Microelectrode Arrays to Combine Electrophysiology with Fluorescence Imaging of Amyloid Proteins
Gong et al. Applications of scanning ion conductance microscope in biomedical fields

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination