CN113881284A - 纳米石墨打印液及其制备方法、有机发光二极管 - Google Patents

纳米石墨打印液及其制备方法、有机发光二极管 Download PDF

Info

Publication number
CN113881284A
CN113881284A CN202111145219.7A CN202111145219A CN113881284A CN 113881284 A CN113881284 A CN 113881284A CN 202111145219 A CN202111145219 A CN 202111145219A CN 113881284 A CN113881284 A CN 113881284A
Authority
CN
China
Prior art keywords
nano
graphite
layer
organic light
printing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111145219.7A
Other languages
English (en)
Other versions
CN113881284B (zh
Inventor
王博
张梅
袁海江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HKC Co Ltd
Original Assignee
HKC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HKC Co Ltd filed Critical HKC Co Ltd
Priority to CN202111145219.7A priority Critical patent/CN113881284B/zh
Publication of CN113881284A publication Critical patent/CN113881284A/zh
Application granted granted Critical
Publication of CN113881284B publication Critical patent/CN113881284B/zh
Priority to PCT/CN2022/111789 priority patent/WO2023051054A1/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/324Inkjet printing inks characterised by colouring agents containing carbon black
    • C09D11/326Inkjet printing inks characterised by colouring agents containing carbon black characterised by the pigment dispersant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass

Abstract

本发明涉及打印材料技术领域,提供了一种纳米石墨打印液及其制备方法、有机发光二极管及其制备方法。所述纳米石墨打印液,以所述纳米石墨打印液的总质量为100%计,所述纳米石墨打印液包括如下质量百分含量的下列组分:纳米石墨粒子0.1~0.7%,高分子分散剂0.2~0.8%,粘度调节剂2.5~4%,基材润湿剂余量。本申请提供的纳米石墨打印液,不易发生团聚和沉淀,具有很好的体系稳定性。

Description

纳米石墨打印液及其制备方法、有机发光二极管
技术领域
本发明属于打印材料技术领域,尤其涉及一种纳米石墨打印液及其制备方法,以及一种有机发光二极管。
背景技术
OLED显示器件通常包括基板、阳极、发光层和阴极,为了提高载离子注入水平,还会在电极和发光层之间设置空穴注入层、空穴传输层、电子注入层、电子传输层等。典型的OLED显示器件包括基板、阳极、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层和阴极。为了提高OLED的发光性能,可用喷墨打印技术在阳极上喷涂自组层,利用纳米粒子的光学和电学效应提升OLED器件的综合性能。将金属纳米粒子制成喷涂液,有望实现纳米粒子的上述性能。但是,喷涂液中的金属纳米粒子易发生团聚、沉淀,这样不仅不能提升OLED的综合性能,还会影响OLED的空穴传输性能。
发明内容
本发明的目的在于提供一种纳米石墨打印液及其制备方法,以及一种有机发光二极管,旨在解决现有的喷涂液中的纳米粒子容易团聚、沉淀,影响OLED的空穴传输性能的问题。
为实现上述发明目的,本申请采用的技术方案如下:
本申请一方面提供一种纳米石墨打印液,以所述纳米石墨打印液的总质量为100%计,所述纳米石墨打印液包括如下质量百分含量的下列组分:
Figure BDA0003285213590000011
Figure BDA0003285213590000021
可选的,所述纳米石墨粒子的粒径小于或等于50nm。
可选的,所述纳米石墨粒子的粒径为10~30nm。
可选的,所述所述高分子分散剂选自失水山梨醇油酸酯、硬脂酸单甘油酯、乙撑基双硬脂酰胺中的至少一种。
可选的,所述基材润湿剂选自非离子型表面活性剂。
可选的,所述基材润湿剂选自烷基酚醚表面活性剂、聚氧乙烯脂肪醇醚表面活性剂、聚氧乙烯聚氧丙烯嵌段共聚物表面活性剂、硅醇类表面活性剂中的至少一种。
本申请第二方面提供一种纳米石墨打印液的制备方法,包括以下步骤:
取纳米石墨粒子、高分子分散剂、粘度调节剂和基材润湿剂,将纳米石墨粒子和基材润湿剂混合处理,得到纳米石墨溶液;
在所述纳米石墨溶液中加入所述高分子分散剂和所述粘度调节剂后,对得到的混合物料进行机械搅拌,得到第一混合体系;
将所述第一混合体系进行超声震荡处理,得到纳米石墨打印液。
可选的,所述机械搅拌时间为30~60min。
可选的,所述超声震荡处理的波长为微米级波长,超声频率大于或等于20KHz,超声震荡处理的时间30~120min。
可选的,所述机械搅拌时间为30~60min;所述超声震荡处理的波长为微米级波长,超声频率大于或等于20KHz,超声震荡处理的时间30~120min。
本申请第三方面提供一种有机发光二极管,包括相对设置的阳极和阴极,在所述阳极和所述阴极之间层叠设置的有机发光层,在有机发光层和所述阳极之间层叠设置的纳米石墨层,所述纳米石墨层由本申请第一方面提供的所述纳米石墨打印液打印形成。
可选的,所述有机发光二极管还包括层叠设置在所述阴极和所述有机发光层之间的电子注入层和电子传输层之间的至少一层。
可选的,所述有机发光二极管还包括层叠设置在所述纳米石墨层和所述有机发光层之间的空穴注入层和空穴传输层之间的至少一层;所述有机发光二极管还包括层叠设置在所述阴极和所述有机发光层之间的电子注入层和电子传输层之间的至少一层。
本申请提供的纳米石墨打印液,高分子分散剂吸附在纳米石墨粒子表面形成高分子吸附层,保持纳米石墨粒子的稳定分散,并提高纳米石墨粒子的分散性;同时,高分子分散剂的吸附促使纳米石墨粒子表面形成电荷,从而提高纳米石墨粒子之间的反作用力,最终得到性能稳定的纳米石墨打印液。相较于金属纳米粒子形成的纳米粒子喷涂液,本申请提供的纳米石墨打印液纳米石墨离子分布均匀,不易发生团聚和沉淀,具有很好的体系稳定性。
本申请提供的纳米石墨打印液的制备方法,通过机械搅拌和超声震荡提高混合物料的分散均匀性,同时,高分子分散剂在纳米石墨粒子表面形成高分子吸附层,进一步提高纳米石墨粒子的分散性。经过物理分散和化学分散的双层作用,形成的纳米石墨喷打印液体系稳定性好,纳米石墨分布均匀,不易发生团聚和沉淀现象。
本申请提供的有机发光二极管,在阳极表面打印第一方面提供的纳米石墨打印液,由于纳米石墨打印液的分散均匀性和稳定性增强,纳米石墨分布均匀,不易发生团聚和沉淀,可以降低甚至消除对OLED空穴传输性能的影响,不仅如此,纳米石墨的具有体积效应、量子隧道效应以及表面效应,纳米石墨表面的等离子基元可以在几纳米的尺度内上产生局部强烈电场,可加强电子的通过速率,进而加强激子的产生速率,可以大大提高OLED的发光效率。纳米石墨打印液中的基材润湿剂赋予打印液超级铺展性,可以降低水性体系表面张力,提高对基材的润湿能力,进而提高纳米石墨打印液与玻璃基板的附着能力。此外,纳米石墨打印液中不含金属纳米粒子,可以避免OLED内的激子碰撞金属纳米粒子产生的解离现象,进一步提高器件发光效率。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的高分子分散剂吸附在纳米石墨粒子表面的示意图;
图2是本发明实施例提供的纳米石墨打印液的制备工艺流程示意图;
图3是本发明实施例提供的有机发光二极管器件的结构示意图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本申请中,术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,“a,b,或c中的至少一项(个)”,或,“a,b,和c中的至少一项(个)”,均可以表示:a,b,c,a-b(即a和b),a-c,b-c,或a-b-c,其中a,b,c分别可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,部分或全部步骤可以并行执行或先后执行,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
术语“第一”、“第二”仅用于描述目的,用来将目的如物质彼此区分开,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。例如,在不脱离本申请实施例范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
术语“OLED”为“Organic Electroluminescence Display”的缩写,表示有机发光二极管,又称有机电激光显示、有机发光半导体。
以纳米金、纳米银、纳米铜、纳米铝等金属纳米粒子制作的喷涂液,金属纳米粒子易发生团聚、沉淀,这样不仅不能提升OLED的综合性能,还会影响OLED的空穴传输。此外,金属纳米粒子还会使OLED产生的激子解离,从而影响OLED的光耦合效率。有鉴于此,本申请实施例开发一种全新的纳米石墨打印液,以改善喷涂液的分散稳定性,使其能够满足喷墨打印的需求,并能够用作OLED的阳极表面,提高OLED器件的综合性能。具体的,
第一方面,本申请实施例提供一种纳米石墨打印液,包括纳米石墨粒子、高分子分散剂、粘度调节剂和基材润湿剂。
本申请实施例提供的纳米石墨打印液,高分子分散剂吸附在纳米石墨粒子表面形成高分子吸附层,保持纳米石墨粒子的稳定分散,并提高纳米石墨粒子的分散性;同时,高分子分散剂的吸附促使纳米石墨粒子表面形成电荷,从而提高纳米石墨粒子之间的反作用力,最终得到性能稳定的纳米石墨打印液。相较于金属纳米粒子形成的纳米粒子喷涂液,本申请提供的纳米石墨打印液纳米石墨离子分布均匀,不易发生团聚和沉淀,具有很好的体系稳定性。
本申请实施例中,纳米石墨粒子作为纳米石墨打印液的功能性粒子,具有体积效应、量子隧道效应以及表面效应。本申请实施例将纳米石墨粒子分散在高分子分散剂、粘度调节剂和基材润湿剂中,形成稳定分散的纳米石墨打印液,用于形成在OLED阳极朝向发光层的一侧表面,形成纳米石墨自组装层,用于提高OLED的发光效率。
在一些实施例中,以纳米石墨打印液的总质量为100%计,纳米石墨粒子的质量百分含量为0.1~0.7%。在这种情况下,纳米石墨打印液形成稳定的悬浊液。若纳米石墨打印液中纳米石墨粒子的含量过低,则不能显著发挥纳米石墨粒子的性能。示例性的,当将纳米石墨打印液用于形成在OLED阳极朝向发光层的一侧表面,形成纳米石墨自组装层时,若纳米石墨打印液中纳米石墨粒子的含量过低,低于0.1%,则不能有效提高OLED的发光效率。若纳米石墨打印液中纳米石墨粒子的含量过高,纳米石墨粒子容易沉降,不容易形成稳定的悬浊液体系,且容易造成打印喷头的堵塞。示例性的,以纳米石墨打印液的总质量为100%计,纳米石墨粒子的质量百分含量为0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%等具体含量。
在一些实施例中,纳米石墨粒子的粒径小于或等于50nm。粒径小于或等于50nm的纳米石墨粒子,具有较好的体积效应、量子隧道效应以及表面效应,从而使得纳米石墨打印液用于OLED时,能够提高OLED的发光效率。石墨粒子的粒径越小,越容易形成稳定的分散体系。若纳米石墨粒子的粒径过大,由于重力效应纳米石墨打印液中的纳米石墨粒子容易发生团聚而沉淀,导致纳米石墨打印液不稳定。特别的,当将纳米石墨打印液用于形成在OLED阳极朝向发光层的一侧表面,形成纳米石墨自组装层时,纳米石墨粒子的粒径过大,还会影响空穴传输效果。在一些实施例中,纳米石墨粒子的粒径为10~30nm。此时,得到的纳米石墨打印液在高分子分散剂、粘度调节剂和基材润湿剂的分散体系中具有优异的分散稳定性。
本申请实施例中,高分子分散剂用于保持纳米石墨粒子在纳米石墨打印液中的分散均匀性。具体的,参考图1,一方面,高分子分散剂吸附在纳米石墨粒子(2)表面,形成高分子吸附层(3),保持纳米石墨粒子的稳定分散;另一方面,高分子分散剂的吸附促使纳米石墨粒子表面电荷(1)增加,纳米石墨粒子(2)之间的反作用力提高,进一步提高纳米石墨打印液的分散稳定性。
可选的,高分子分散剂选自失水山梨醇油酸酯、硬脂酸单甘油酯、乙撑基双硬脂酰胺中的至少一种。这些高分子分散剂能够吸附在纳米石墨粒子表面,防止纳米石墨粒子的团聚,提高纳米石墨打印液的分散稳定性。
在一些实施例中,以纳米石墨打印液的总质量为100%计,高分子分散剂的质量百分含量为0.2~0.8%。示例性的,以纳米石墨打印液的总质量为100%计,高分子分散剂的质量百分含量为0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%等具体含量。
本申请实施例中,添加粘度调节剂来调节纳米石墨打印液的粘度,使得纳米石墨打印液能够满足打印要求。示例性的,粘度调节剂可以选择氧化聚乙烯蜡、亚乙基双硬脂酸酰胺等,但不限于此。
在一些实施例中,以纳米石墨打印液的总质量为100%计,粘度调节剂的质量百分含量为2.5~4%。示例性的,以纳米石墨打印液的总质量为100%计,粘度调节剂的质量百分含量为2.5%、2.8%、3.0%、3.2%、3.4%、3.5%、3.8%、4.0%等具体含量。
本申请实施例中,基材润湿剂作为纳米石墨打印液的主要分散溶剂,用于分散纳米石墨粒子,并提高纳米石墨打印液的铺展性,降低纳米石墨打印液的表面张力,提高纳米石墨打印液对基材的润湿能力,进而提高纳米石墨打印液与玻璃基板的附着能力。
在一些实施例中,基材润湿剂选自非离子型表面活性剂。通过非离子型表面活性剂可以有效提高纳米石墨打印液与玻璃基板的附着能力,使得纳米石墨打印液形成在OLED阳极表面如阳极玻璃基板上时,纳米石墨打印液在阳极表面具有较好的铺展性,纳米石墨离子自组装形成自组装层。
本申请实施例中,基材润湿剂作为纳米石墨打印液的基体成分。即纳米石墨打印液,除去纳米石墨粒子、高分子分散剂、粘度调节剂和其他可能存在的助剂,剩余的成分为基材润湿剂。在一些实施例中,基材润湿剂选自烷基酚醚表面活性剂、聚氧乙烯脂肪醇醚表面活性剂、聚氧乙烯聚氧丙烯嵌段共聚物表面活性剂、硅醇类表面活性剂中的至少一种。上述基材润湿剂对纳米石墨粒子具有一定的分散性,更重要的是,有利于纳米石墨粒子在基板上的铺展。
在一些实施例中,纳米石墨打印液由纳米石墨粒子、高分子分散剂、粘度调节剂和基材润湿剂组成。在一些实施例中,纳米石墨打印液包括纳米石墨粒子、高分子分散剂、粘度调节剂和基材润湿剂,此外,还可以根据实际需要添加其他助剂。
本申请实施例中,以纳米石墨打印液的总质量为100%计,基材润湿剂的含量为纳米石墨打印液除基材润湿剂以外的其他组分含量之和的余量。示例性的,当纳米石墨打印液由纳米石墨粒子、高分子分散剂、粘度调节剂和基材润湿剂组成时,以纳米石墨打印液的总质量为100%计,基材润湿剂的含量为纳米石墨粒子、高分子分散剂、粘度调节剂质量百分含量之和的余量;当纳米石墨打印液包括纳米石墨粒子、高分子分散剂、粘度调节剂、基材润湿剂和其他助剂时,以纳米石墨打印液的总质量为100%计,基材润湿剂的含量为纳米石墨粒子、高分子分散剂、粘度调节剂和其他助剂质量百分含量之和的余量。
将本申请实施例含有纳米石墨粒子的纳米石墨打印液形成在OLED阳极朝向发明层的一侧表面时,纳米石墨粒子发生自组装形成自组装层,可以改善OLED的发光效率。
本申请实施例提供的纳米石墨打印液,可以通过下述方法制备得到。
第二方面,如图2所示,本申请实施例提供一种纳米石墨打印液的制备方法,包括以下步骤:
S01.取纳米石墨粒子、高分子分散剂、粘度调节剂和基材润湿剂,将纳米石墨粒子和基材润湿剂混合处理,得到纳米石墨溶液。
该步骤中,纳米石墨粒子、高分子分散剂、粘度调节剂和基材润湿剂的选择如上文所述,为了节约篇幅,此处不再赘述。
本申请实施例中,将纳米石墨粒子和基材润湿剂混合,使纳米石墨粒子初步分散在基材润湿剂中。在一些实施例中,将纳米石墨粒子和基材润湿剂混合,进行搅拌处理,促进纳米石墨粒子在基材润湿剂中的分散。
S02.在纳米石墨溶液中加入高分子分散剂和粘度调节剂后,对得到的混合物料进行机械搅拌,得到第一混合体系。
该步骤中,在纳米石墨溶液中加入高分子分散剂和粘度调节剂,高分子分散剂用于提高纳米石墨粒子在液相体系中的分散性,粘度调节剂用于调节液相体系的粘度。
本申请实施例中,在纳米石墨溶液中加入高分子分散剂和粘度调节剂后,进行机械搅拌处理。通过机械搅拌对混合物料进行物理分散,促使纳米石墨粒子与高分子分散剂均匀分散,并一定程度促进高分子分散剂在纳米石墨粒子表面的吸附。在一些实施例中,机械搅拌时间为30~60min。该搅拌条件下,能够较好的实现纳米石墨粒子与高分子分散剂的物理分散。
S03.将第一混合体系进行超声震荡处理,得到纳米石墨打印液。
该步骤中,在通过机械搅拌对混合物料进行物理分散的基础上,进一步进行超声震荡处理,进一步促进纳米石墨粒子与高分子分散剂均匀分散,并提高高分子分散剂在纳米石墨粒子表面的吸附效果,在纳米石墨粒子表面形成高分子吸附层。在此条件下,纳米石墨打印液中的纳米石墨粒子在物理分散(机械搅拌和超声震荡处理)和化学分散(高分子分散剂)的双层作用下,纳米石墨粒子的表面能被削弱,并且在纳米石墨粒子表面形成高分子吸附层,纳米粒子表面的电荷增加,提高纳米粒子间的反作用力,从而制备出性能稳定的纳米石墨打印液。
在一些实施例中,超声震荡处理的波长为微米级波长,超声频率大于或等于20KHz,超声震荡处理的时间30~120min。该条件下,有利于高分子分散剂在纳米石墨粒子表面充分结合并形成高分子吸附层,进而提高纳米石墨打印液的分散稳定性能。
在一些实施例中,机械搅拌时间为30~60min;超声震荡处理的波长为微米级波长,超声频率大于或等于20KHz,超声震荡处理的时间30~120min。
本申请实施例提供的纳米石墨打印液的制备方法,通过机械搅拌和超声震荡提高混合物料的分散均匀性,同时,高分子分散剂在纳米石墨粒子表面形成高分子吸附层,进一步提高纳米石墨粒子的分散性。经过物理分散和化学分散的双层作用,形成的纳米石墨喷打印液体系稳定性好,纳米石墨分布均匀,不易发生团聚和沉淀现象。
本申请实施例第三方面提供一种有机发光二极管,包括相对设置的阳极和阴极,在阳极和阴极之间层叠设置的有机发光层,在有机发光层和阳极之间层叠设置的纳米石墨层,纳米石墨层由本申请第一方面提供的纳米石墨打印液打印形成。
本申请实施例提供的有机发光二极管,在阳极表面打印第一方面提供的纳米石墨打印液,由于纳米石墨打印液的分散均匀性和稳定性增强,纳米石墨分布均匀,不易发生团聚和沉淀,可以降低甚至消除对OLED空穴传输性能的影响,不仅如此,纳米石墨的具有体积效应、量子隧道效应以及表面效应,纳米石墨表面的等离子基元可以在几纳米的尺度内上产生局部强烈电场,可加强电子的通过速率,进而加强激子的产生速率,可以大大提高OLED的发光效率。纳米石墨打印液中的基材润湿剂赋予打印液超级铺展性,可以降低水性体系表面张力,提高对基材的润湿能力,进而提高纳米石墨打印液与玻璃基板的附着能力。此外,纳米石墨打印液中不含金属纳米粒子,可以避免OLED内的激子碰撞金属纳米粒子产生的解离现象,进一步提高器件发光效率。
在一些实施例中,有机发光二极管还包括层叠设置在阴极和有机发光层之间的电子注入层和电子传输层之间的至少一层。示例性的,有机发光二极管还包括层叠设置在阴极和有机发光层之间的电子传输层;或,有机发光二极管还包括层叠设置在阴极和有机发光层之间的电子注入层和电子传输层。当然,阴极和有机发光层之间也可以设置一层同时具有电子注入和电子传输功能的材料层。
在一些实施例中,有机发光二极管还包括层叠设置在纳米石墨层和有机发光层之间的空穴注入层和空穴传输层之间的至少一层。示例性的,有机发光二极管还包括层叠设置在纳米石墨层和有机发光层之间的空穴传输层;或,有机发光二极管还包括层叠设置在纳米石墨层和有机发光层之间的空穴注入层和空穴传输层。当然,纳米石墨层和有机发光层之间也可以设置一层同时具有空穴注入和空穴传输功能的材料层。
在一些实施例中,有机发光二极管还包括层叠设置在纳米石墨层和有机发光层之间的空穴注入层和空穴传输层,以及层叠设置在阴极和有机发光层之间的电子注入层和电子传输层。
本申请实施例中,有机发光二极管还可以包括衬底,阳极或阴极设置在衬底上。
本申请实施例提供的有机发光二极管根据分为正置结构有机发光二极管和倒置结构有机发光二极管。
在一种实施方式中,正置结构有机发光二极管包括包括相对设置的阳极和阴极,设置在阳极和阴极之间的有机发光层,以及设置在阳极和有机发光层之间的纳米石墨层,且阳极设置在衬底上。进一步的,阴极和有机发光层之间可以设置电子注入层、电子传输层中的至少一层;在纳米石墨层和有机发光层之间可以设置空穴传输层、空穴注入层和电子阻挡层等空穴功能层。在一些正置结构有机发光二极管的实施例中,有机发光二极管包括衬底,设置在衬底表面的阳极,设置在阳极表面的纳米石墨层,设置在纳米石墨层表面的空穴注入层,设置在空穴注入层表面的空穴传输层,设置在空穴传输层表面的有机发光层,设置在有机发光层表面的电子传输层,设置在电子传输层表面的电子注入层,以及设置在电子注入层表面的阴极。
在一种实施方式中,倒置结构有机发光二极管包括包括相对设置的阳极和阴极,设置在阳极和阴极之间的有机发光层,以及设置在阳极和有机发光层之间的纳米石墨层,且阴极设置在衬底上。进一步的,阴极和有机发光层之间可以设置电子注入层、电子传输层中的至少一层;在纳米石墨层和有机发光层之间可以设置空穴传输层、空穴注入层和电子阻挡层等空穴功能层。在一些倒置结构有机发光二极管的实施例中,发光二极管包括衬底,设置在衬底表面的阴极,设置在阴极表面的电子注入层,设置在电子注入层表面的电子传输层,设置在电子传输层表面的有机发光层,设置在有机发光层表面的空穴传输层,设置在空穴传输层表面的空穴注入层,设置在空穴注入层表面的阳极。
在一些实施例中,若干个本申请实施例提供的有机发光二极管,可以组成有机发光器件。示例性的,如图3所示,有机发光器件包括阳极ITO玻璃1,设置在阳极ITO玻璃1上的若干有机发光二极管,有机发光二极管之间通过隔离柱2隔离,有机发光二极管1通过封装层3进行封装处理。有机发光二极管包括设置在ITO玻璃1上的纳米石墨自组装层4,设置在纳米石墨自组装层上的OLED器件层5,以及设置在OLED器件层5背离纳米石墨自组装层4自装置一侧的阴极层6。
上述实施例中,衬底主要起到支撑有机发光二极管的作用,可选择刚性衬底如玻璃,或柔性衬底。
阳极可以采用常见的阳极材料和厚度,本申请实施例不作限定。例如,阳极材料可以为氧化铟锡(ITO)、掺氟氧化锡(FTO)、锑掺杂氧化锡(ATO)、铝掺杂氧化锌(AZO)中的一种或多种。在正置结构的有机发光二极管的一些实施例中,阳极设置在基本上作为一个整体,形成阳极基板,示例性的,如ITO基板。
纳米石墨层由本申请第一方面提供的纳米石墨打印液打印形成。纳米石墨打印液的情形如上文所述,为了节约篇幅,此处不再赘述。
空穴注入层的材料可采用本领域常规的空穴注入材料,包括但不限于导电聚合物-聚(3,4-乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT:PSS)。
空穴传输层的材料可采用具有空穴传输能力的有机材料,包括但不限于咔唑类、有机胺类和丁二烯类化合物,示例性的空穴传输层的材料可采用,N,N’-二苯基-N,N’-(1-萘基)-1,1’-联苯-4,4’-二胺(NPB)、聚乙烯咔唑(PVK)、聚噻吩(TPH)和4,4'-环己基二[N,N-二(4-甲基苯基)苯胺](TAPC)。
有机发光层中的发光材料可以采用常见的有机发光材料。
电子传输层的材料包括具有电子传输能力的带隙大于发光材料带隙的氧化物半导体纳米颗粒材料,包括但不限于1,2.4—三唑衍生物(TAZ)、1,3.4—噁二唑类化合物(OXD)、2-(4-联苯基)-5-苯基恶二唑(PBD)中的一种或多种。在一些实施例中,金属氧化物纳米材料采用醇类溶剂分散后采用溶液法沉积。
电子注入层的材料可以选择常规的电子注入材料,包括但不限于MgP、MgF2。电子注入层可以通过
本申请实施例中,阴极可以采用常见的阴极材料和厚度,本申请实施例不作限定。在一些实施例中,阴极的材料金属阴极材料,如金属合金。示例性的,阴极为锂铝合金,其中锂占合金重量的0.6%。金属氧化物可以是掺杂或非掺杂金属氧化物,示例性的,如ITO。在倒置结构的有机发光二极管的一些实施例中,阴极设置在基本上作为一个整体,形成阴极基板,示例性的,如ITO基板。
在一些实施例中,有机发光二极管还可以包括封装结构,封装结构的封装材料包树脂。示例性的,环氧树脂。用于封装的树脂原料包括其单体、预聚物、聚合物、引发剂及其他添加剂。
本申请实施例中,有机发光二极管可以通过逐层制备各功能层实现。
示例性的,一种有机发光二极管器件的制备,包括:
(1)在ITO玻璃表面制备隔离柱。
在一些实施例中,在制备隔离柱之前,对ITO玻璃进行清洗,彻底清除基片表面的污染物。清洗可采用化学清洗法,超声波清洗法或紫外线清洗法等。在一些实施例中,在对ITO玻璃进行清洗后,对ITO玻璃表面薄膜进行预处理,提高ITO玻璃的表面功能函数。预处理可采用酸碱处理法或等离子体处理方法等。
在一些实施例中,隔离柱的材质可采用有机绝缘材料(PI、聚四氟乙烯等)和光刻胶(KPR、KTFR、KOP、KMER)等。
在一些实施例中,在ITO玻璃表面制备隔离柱可采用旋涂方法。示例性的,在ITO玻璃表面旋涂第一层光敏型有机绝缘材料,前烘后曝光形成曝光图案,进行后烘;在有机绝缘材料上旋涂第二层光敏型有机绝缘材料,前烘后进行曝光。在一些实施例中,隔离柱采用倒立梯形结构,倒立梯形结构的隔离柱,可以避免相邻像素之间的短路问题,且具有可较好的遮蔽效果,有利于批量生产。当然,隔离柱并不限于倒立梯形结构,也可以为其他结构,如长方体,正梯形等。
(2)在隔离柱之间的ITO玻璃上制备纳米石墨层
在一些实施例中,在隔离柱间利用喷涂打印的方法将纳米石墨打印液喷涂在ITO玻璃上,纳米石墨离子自组装,形成纳米石墨层。一方面,纳米石墨表面的等离子基元可以在几纳米的尺度内上产生局部强烈电场,可加强电子的通过速率,进而加强激子的产生速率;另一方面,纳米石墨的独特的结构表面,不会对激子产生解离。上述两方面可以有效提高激子对有机物刺激强度,从而增加发光效率。
(3)在纳米石墨层表面制作OLED的其他功能层。
OLED的其他功能层至少包括有机发光层和阴极。在一些实施例中,OLED的其他功能层包括电子注入层、电子传输层、空穴传输层和空穴注入层中的至少一层。
在一些实施例中,利用喷墨打印制作成空穴注入层;利用旋涂法在空穴注入层表面制备空穴传输层,以形成均匀膜,减小了针孔等缺陷的影响。
在一些实施例中,利用喷墨打印制成有机发光层。
在一些实施例中,采用蒸镀法制成电子传输层、电子注入层和阴极。
(4)对制得的有机发光器件进行封装。
下面结合具体实施例进行说明。
实施例1
一种纳米石墨打印液,包括如下重量百分含量的下列组分:纳米石墨粒子0.4%,失水山梨醇油酸酯0.5%,粘度调节剂氧化聚乙烯蜡4%,基材润湿剂烷基酚醚表面活性剂余量,其中,纳米石墨粒子的平均粒径为10~30nm。
纳米石墨打印液的制备方法为:
取纳米石墨粒子、失水山梨醇油酸酯、粘度调节剂和基材润湿剂,将纳米石墨粒子和基材润湿剂搅拌混合,得到纳米石墨溶液。
在纳米石墨溶液中加入高分子分散剂和粘度调节剂后,对得到的混合物料进行机械搅拌,搅拌30min,得到第一混合体系。
在微米级波长、超声频率大于或等于20KHz的条件下,将第一混合体系进行超声震荡处理,得到纳米石墨打印液。
实施例2
一种纳米石墨打印液,与实施例1的不同之处在于:纳米石墨粒子0.5%。
实施例3
一种纳米石墨打印液,与实施例1的不同之处在于:纳米石墨粒子0.3%。
实施例4
一种纳米石墨打印液,与实施例1的不同之处在于:高分子分散剂为硬脂酸单甘油酯。
实施例5
一种纳米石墨打印液,与实施例1的不同之处在于:基材润湿剂为聚氧乙烯脂肪醇醚。
将实施例1-6得到的纳米石墨打印液和对比例1提供的纳米铜打印液,分别用作OLED器件阳极表面的纳米功能层。OLED器件的制备方法包括如下步骤:
提供六组ITO玻璃,分别命名为D1-D6,对ITO玻璃进行清洗后进行等离子体处理,采用旋涂方法,在基片上旋涂第一层光敏型有机绝缘材料,前烘后曝光形成曝光图案后,进行后烘;在有机绝缘材料上旋涂第二层光敏型有机绝缘材料,前烘后进行曝光;
在隔离柱间利用喷涂打印的方法将实施例1-6得到的纳米石墨打印液和对比例1提供的纳米铜打印液分别喷涂在D1-D6号ITO玻璃上,待纳米石墨打印液和纳米铜打印液自组装成膜后,在其表面喷墨打印制作成空穴注入层,在空穴注入层表面旋涂制作空穴传输层;利用喷墨打印在空穴传输层表面制成发光层;采用蒸镀法在发光层表面依次制作电子传输层、电子注入层和阴极;
进行封装,得到六组OLED器件。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种纳米石墨打印液,其特征在于,以所述纳米石墨打印液的总质量为100%计,所述纳米石墨打印液包括如下质量百分含量的下列组分:
Figure FDA0003285213580000011
2.如权利要求1所述的纳米石墨打印液,其特征在于,所述纳米石墨粒子的粒径小于或等于50nm。
3.如权利要求2所述的纳米石墨打印液,其特征在于,所述纳米石墨粒子的粒径为10~30nm。
4.如权利要求1至3任一项所述的纳米石墨打印液,其特征在于,所述高分子分散剂选自失水山梨醇油酸酯、硬脂酸单甘油酯、乙撑基双硬脂酰胺中的至少一种。
5.如权利要求1至3任一项所述的纳米石墨打印液,其特征在于,所述基材润湿剂选自非离子型表面活性剂。
6.如权利要求5所述的纳米石墨打印液,其特征在于,所述基材润湿剂选自烷基酚醚表面活性剂、聚氧乙烯脂肪醇醚表面活性剂、聚氧乙烯聚氧丙烯嵌段共聚物表面活性剂、硅醇类表面活性剂中的至少一种。
7.一种纳米石墨打印液的制备方法,其特征在于,包括以下步骤:
取纳米石墨粒子、高分子分散剂、粘度调节剂和基材润湿剂,将纳米石墨粒子和基材润湿剂混合处理,得到纳米石墨溶液;
在所述纳米石墨溶液中加入所述高分子分散剂和所述粘度调节剂后,对得到的混合物料进行机械搅拌,得到第一混合体系;
将所述第一混合体系进行超声震荡处理,得到纳米石墨打印液。
8.如权利要求7所述的纳米石墨打印液的制备方法,其特征在于,所述机械搅拌时间为30~60min;和/或
所述超声震荡处理的波长为微米级波长,超声频率大于或等于20KHz,超声震荡处理的时间30~120min。
9.一种有机发光二极管,其特征在于,包括相对设置的阳极和阴极,在所述阳极和所述阴极之间层叠设置的有机发光层,在有机发光层和所述阳极之间层叠设置的纳米石墨层,所述纳米石墨层由权利要求1至6任一项所述的纳米石墨打印液打印形成。
10.如权利要求9所述的有机发光二极管,其特征在于,所述有机发光二极管还包括层叠设置在所述纳米石墨层和所述有机发光层之间的空穴注入层和空穴传输层之间的至少一层;和/或
所述有机发光二极管还包括层叠设置在所述阴极和所述有机发光层之间的电子注入层和电子传输层之间的至少一层。
CN202111145219.7A 2021-09-28 2021-09-28 纳米石墨打印液及其制备方法、有机发光二极管 Active CN113881284B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111145219.7A CN113881284B (zh) 2021-09-28 2021-09-28 纳米石墨打印液及其制备方法、有机发光二极管
PCT/CN2022/111789 WO2023051054A1 (zh) 2021-09-28 2022-08-11 纳米石墨打印液及其制备方法、有机发光二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111145219.7A CN113881284B (zh) 2021-09-28 2021-09-28 纳米石墨打印液及其制备方法、有机发光二极管

Publications (2)

Publication Number Publication Date
CN113881284A true CN113881284A (zh) 2022-01-04
CN113881284B CN113881284B (zh) 2022-08-02

Family

ID=79007534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111145219.7A Active CN113881284B (zh) 2021-09-28 2021-09-28 纳米石墨打印液及其制备方法、有机发光二极管

Country Status (2)

Country Link
CN (1) CN113881284B (zh)
WO (1) WO2023051054A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051054A1 (zh) * 2021-09-28 2023-04-06 惠科股份有限公司 纳米石墨打印液及其制备方法、有机发光二极管

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076885A1 (en) * 2004-10-11 2006-04-13 Samsung Sdi Co., Ltd. Organic EL device and method of manufacturing the same
CN1783532A (zh) * 2004-10-11 2006-06-07 三星Sdi株式会社 有机电致发光装置及其制备方法
CN104205394A (zh) * 2012-03-19 2014-12-10 欧司朗光电半导体有限公司 光电子器件和用于制造光电子器件的方法
CN104521022A (zh) * 2012-08-08 2015-04-15 欧司朗Oled股份有限公司 光电子器件和用于制造光电子器件的方法
US20150221881A1 (en) * 2012-10-19 2015-08-06 Fujifilm Corporation Resin composition for forming protective film, protective film, pattern forming method, method for manufacturing electronic device, and electronic device
CN105251381A (zh) * 2015-11-02 2016-01-20 东莞市正林化工科技有限公司 一种水性石墨分散悬浮液及其制备方法
CN106098945A (zh) * 2016-07-13 2016-11-09 电子科技大学 一种带自体散热复合阴极缓冲层的光伏电池及其制备方法
CN106972115A (zh) * 2017-05-27 2017-07-21 深圳市华星光电技术有限公司 Oled显示面板的制作方法及oled显示面板
CN107230747A (zh) * 2017-05-27 2017-10-03 深圳市华星光电技术有限公司 Oled显示面板的制作方法及oled显示面板
CN107556811A (zh) * 2017-09-25 2018-01-09 东莞印美涂料有限公司 一种环保油墨及其生产工艺
CN108117799A (zh) * 2017-12-31 2018-06-05 中山市威傲联复合材料有限公司 一种室内led显示屏间隙遮蔽油墨及其制备方法
CN108690402A (zh) * 2017-04-12 2018-10-23 华瑞墨石丹阳有限公司 石墨纳米片印刷油墨和由其印刷的天线的制备方法和用途
CN109326727A (zh) * 2017-08-01 2019-02-12 Tcl集团股份有限公司 一种qled器件及其制备方法
CN111986834A (zh) * 2020-07-29 2020-11-24 北海惠科光电技术有限公司 一种碳纳米管导电薄膜的制作方法、显示面板和显示装置
US20210022927A1 (en) * 2019-07-25 2021-01-28 Biolink Systems, Llc Conductive inks and method of manufacture
US20210210578A1 (en) * 2018-06-12 2021-07-08 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Amoled display and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016057250A1 (en) * 2014-10-05 2016-04-14 Leonid Grigorian 3d printers and feedstocks for 3d printers
CN111218158A (zh) * 2020-03-19 2020-06-02 福建奥博兹新材料科技有限公司 一种喷墨打印墨水配方
CN113308146A (zh) * 2021-05-19 2021-08-27 上海驰纺材料科技有限公司 一种水性石墨烯导电油墨及其制备方法
CN113881284B (zh) * 2021-09-28 2022-08-02 惠科股份有限公司 纳米石墨打印液及其制备方法、有机发光二极管

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076885A1 (en) * 2004-10-11 2006-04-13 Samsung Sdi Co., Ltd. Organic EL device and method of manufacturing the same
CN1783532A (zh) * 2004-10-11 2006-06-07 三星Sdi株式会社 有机电致发光装置及其制备方法
CN104205394A (zh) * 2012-03-19 2014-12-10 欧司朗光电半导体有限公司 光电子器件和用于制造光电子器件的方法
CN104521022A (zh) * 2012-08-08 2015-04-15 欧司朗Oled股份有限公司 光电子器件和用于制造光电子器件的方法
US20150221881A1 (en) * 2012-10-19 2015-08-06 Fujifilm Corporation Resin composition for forming protective film, protective film, pattern forming method, method for manufacturing electronic device, and electronic device
CN105251381A (zh) * 2015-11-02 2016-01-20 东莞市正林化工科技有限公司 一种水性石墨分散悬浮液及其制备方法
CN106098945A (zh) * 2016-07-13 2016-11-09 电子科技大学 一种带自体散热复合阴极缓冲层的光伏电池及其制备方法
CN108690402A (zh) * 2017-04-12 2018-10-23 华瑞墨石丹阳有限公司 石墨纳米片印刷油墨和由其印刷的天线的制备方法和用途
CN107230747A (zh) * 2017-05-27 2017-10-03 深圳市华星光电技术有限公司 Oled显示面板的制作方法及oled显示面板
CN106972115A (zh) * 2017-05-27 2017-07-21 深圳市华星光电技术有限公司 Oled显示面板的制作方法及oled显示面板
CN109326727A (zh) * 2017-08-01 2019-02-12 Tcl集团股份有限公司 一种qled器件及其制备方法
CN107556811A (zh) * 2017-09-25 2018-01-09 东莞印美涂料有限公司 一种环保油墨及其生产工艺
CN108117799A (zh) * 2017-12-31 2018-06-05 中山市威傲联复合材料有限公司 一种室内led显示屏间隙遮蔽油墨及其制备方法
US20210210578A1 (en) * 2018-06-12 2021-07-08 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Amoled display and manufacturing method thereof
US20210022927A1 (en) * 2019-07-25 2021-01-28 Biolink Systems, Llc Conductive inks and method of manufacture
CN111986834A (zh) * 2020-07-29 2020-11-24 北海惠科光电技术有限公司 一种碳纳米管导电薄膜的制作方法、显示面板和显示装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
MICHEL,M ET AL.: "Engineering chemically exfoliated dispersions of two-dimensional graphite and molybdenum disulphide for ink-jet printing", 《NANOTECHNOLOGY》 *
YAP, SS,ET AL.: "Effects of diamond-like carbon thin film in organic light emitting devices", 《THIN SOLID FILMS》 *
姚宁等: ""石墨缓冲层对有机电致发光器件性能的影响"", 《第七届中国功能材料及其应用学术会议论文集(第2分册)》 *
李银峰等: "《碳纳米材料制备及其应用研究》", 31 March 2019, 中国原子能出版社 *
贾瑛等: "《轻质碳材料的应用》", 30 November 2013, 国防工业出版社 *
马晓旭等: "导电性填料对电热膜用导电油墨性能的影响", 《北京印刷学院学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023051054A1 (zh) * 2021-09-28 2023-04-06 惠科股份有限公司 纳米石墨打印液及其制备方法、有机发光二极管

Also Published As

Publication number Publication date
WO2023051054A1 (zh) 2023-04-06
CN113881284B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
US8040042B2 (en) Transparent electroconductive layered structure, organic electroluminescent device using the same layered structure, method for producing the same layered structure, and method for producing the same device
JP5324089B2 (ja) 高分子酸コロイドを用いて生成した電子用途向け水分散性ポリピロール
KR101210217B1 (ko) 전기 전도성 유기 중합체/나노입자 복합체 및 그것의 사용방법
KR101703845B1 (ko) 이식 도전체 제조를 위한 향상된 cnt/탑코팅 프로세스
AU2012275284B2 (en) Transparent conductors incorporating additives and related manufacturing methods
TWI373483B (en) Water dispersible polythiophenes made with polymeric acid colloids
AU2011220397B2 (en) Structures with surface-embedded additives and related manufacturing methods
KR101974019B1 (ko) 전기전도성 나노구조, 그러한 나노구조의 제조방법, 그러한 나노구조를 포함하는 전기전도성 폴리머 필름, 및 그러한 필름을 포함하는 전자 장치
EP2341118A1 (en) Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
CN113881284B (zh) 纳米石墨打印液及其制备方法、有机发光二极管
Hou et al. Highly conductive inkjet-printed PEDOT: PSS film under cyclic stretching
Onoda et al. Controlling Morphology of Nanostructured Conjugated Polymer Films by Electrophoretic Deposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant