CN113871493A - 基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法 - Google Patents

基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法 Download PDF

Info

Publication number
CN113871493A
CN113871493A CN202111083954.XA CN202111083954A CN113871493A CN 113871493 A CN113871493 A CN 113871493A CN 202111083954 A CN202111083954 A CN 202111083954A CN 113871493 A CN113871493 A CN 113871493A
Authority
CN
China
Prior art keywords
film
source bottle
chamber
opening
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111083954.XA
Other languages
English (en)
Inventor
宋晓敏
刘莹
黄增光
童锐
尹海鹏
顾裕华
张颖
钱宇昂
程浩
张丽娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Ocean University
Original Assignee
Jiangsu Ocean University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Ocean University filed Critical Jiangsu Ocean University
Priority to CN202111083954.XA priority Critical patent/CN113871493A/zh
Publication of CN113871493A publication Critical patent/CN113871493A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02697Forming conducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法,该方法将原硅片进行RCA标准工艺清洗;将硅片放入ALD腔室中,基底温度150℃,腔室抽真空;ALD腔室通入三甲基铝,开阀时间16ms,抽真空25s后通入H2O,开阀时间8ms,抽真空30s,硅片表面形成1层Al2O3;向腔室通入四(二甲胺基)钛,开阀时间180ms,抽真空25s后通入H2O,开阀时间8ms,抽真空30s,硅片表面形成1层Al2O3和5层TiO2薄膜。本发明利用ALD技术,将Al引入TiO2薄膜中,这种薄膜同时具有优异的导电性和钝化性,将其应用在PERC太阳电池上,获得的转化效率优于应用了未掺杂的TiO2薄膜。

Description

基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法
技术领域
本发明涉及新能源技术领域,特别涉及一种基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法。
背景技术
晶硅表面有大量由于晶体周期性被破坏而产生的悬挂键,使硅片表面存在大量的缺陷能级;并且位错,表面金属污染,化学残留物都会引入缺陷能级,因此硅表面会成为复合中心。为了减少表面悬挂键,降低表面复合速率,引入了各种各样的钝化层。研究最多的硅表面钝化介质是。目前,适用于光伏的电介质包括二氧化硅(SiO2),氮化硅(SiNx)1,非晶氮化硅(a-SiNx:H)2,3,SiO2/a-SiNx:H叠层4,氧化铝(Al2O3)薄膜5–7或AlOx/SiNx叠层8,9等。目前,市场主流的钝化发射极和背面(PERC)太阳电池背面叠层钝化膜以Al2O3/SiNx叠层为主,但由于两层膜皆是绝缘膜,所以需要通过激光开窗,将钝化膜破开,再进行丝网印刷或者蒸镀电极,形成局域线或点接触。
但是背面需要局部开孔的PERC电池在金属接触区仍有复合损失,为解决这一问题,并去除背面开孔工艺,一种新型的技术:载流子选择性接触(CSCs)技术成为近年来研究的热点。CSCs的本质是利用载流子电导率的强不对称性,选择性地通过一种载流子并对硅提供钝化。最常见的方法是使用高度掺杂的硅结合界面钝化层,该钝化层足够薄以允许多数载流子传输。传统载流子选择性接触技术方案是:以单晶硅为基底,利用硝酸湿法氧化出一层1~2 nm左右的极薄氧化硅层,再利用PECVD(等离子体加强的化学气相沉积)在氧化层表面沉积一层20 nm掺杂的微晶非晶混合Si薄膜。这层混合Si薄膜需通过850℃退火,由微晶非晶转变为多晶以激活其钝化性能。但是这种方法容易造成俄歇复合和寄生吸收等问题。主要原因是,掺杂的多晶硅会吸收一部分的光子,即寄生吸收;掺杂剂扩散到下面的硅衬底中导致俄歇复合,且期间用到的PECVD危险性高,需高温退火。
因此,一种透明导电薄膜同时能钝化硅基底引起了科研人员的广泛关注。
发明内容
本发明所要解决的技术问题是针对现有技术的不足,提供一种设计合理,提高TiO2薄膜的钝化性和导电性,降低电池制备过程中对激光开窗的依赖,基于原子层沉积技术的铝掺杂氧化钛薄膜。
本发明所要解决的另一技术问题是针对现有技术的不足,提供一种上述铝掺杂氧化钛薄膜的制备方法。
为了实现上述目的,本发明采用了如下技术方案:
一种基于原子层沉积技术的铝掺杂氧化钛薄膜,其特点是,该薄膜包括作为基底的硅片,硅片上方至少设有一层铝掺杂氧化钛层,每层铝掺杂氧化钛层均由Al2O3薄膜层和若干TiO2薄膜层组成,Al2O3薄膜层设在TiO2薄膜层下方。
本发明所要解决的技术问题还可以通过以下技术方案实现,所述硅片采用n型(100)面切割、50×50 mm2尺寸、Fz硅片,硅片厚度285±10 μm,电阻率为3 Ωcm。
一种权利要求1或2所述铝掺杂氧化钛薄膜的制备方法,其特点是,具体步骤如下,
(1)将硅片进行RCA标准工艺清洗;
(2)将清洗好的硅片放入ALD腔室中,基底温度设置在150℃,腔室抽真空;
(3)打开三甲基铝源瓶快阀,向ALD腔室通入三甲基铝,开阀时间10ms-20ms后,关闭三甲基铝源瓶快阀,将ALD腔室抽真空20s-30s后,打开H2O源瓶快阀,开阀时间5ms-10ms,关闭水源瓶快阀,再次将ALD腔室抽真空20s-40s,此时,硅片表面形成1层Al2O3薄膜;
(4)打开四(二甲胺基)钛源瓶快阀,向腔室通入四(二甲胺基)钛,开阀时间150ms-200ms后,关闭四(二甲胺基)钛源瓶快阀,将ALD腔室抽真空20-30s后,打开H2O源瓶快阀,开阀时间8ms,关闭水源瓶快阀,再次将ALD腔室抽真空20-40s,此时,在覆有一层Al2O3薄膜的硅片表面形成有一层TiO2薄膜,从而制得Al掺杂TiO2薄膜。
本发明所要解决的技术问题还可以通过以下技术方案实现,所述Al掺杂TiO2薄膜中的Al : Ti比例为1:5,其制备方法为,先按步骤(1)-(4)制得含有一层Al2O3薄膜和一层TiO2薄膜的产品,接着按步骤(4)重复5次,从而制得含有一层Al2O3薄膜和五层TiO2薄膜的产品,再按步骤(3)-(4)重复40次,制得厚度为16.5nm的比例为1:5的Al掺杂TiO2薄膜。
本发明所要解决的技术问题还可以通过以下技术方案实现,所述三甲基铝源瓶内的温度为常温,所述水源瓶内的温度为42℃,所述四(二甲胺基)钛源瓶内的温度为85℃。
本发明所要解决的技术问题还可以通过以下技术方案实现,具体步骤如下,
(1)将硅片进行RCA标准工艺清洗;
(2)将清洗好的硅片放入ALD腔室中,基底温度设置在150℃,腔室抽真空;
(3)打开三甲基铝源瓶快阀,向ALD腔室通入三甲基铝,开阀时间16ms后,关闭三甲基铝源瓶快阀,将ALD腔室抽真空25s后,打开H2O源瓶快阀,开阀时间8ms,关闭水源瓶快阀,再次将ALD腔室抽真空30s,此时,硅片表面形成1层Al2O3薄膜;
(4)打开四(二甲胺基)钛源瓶快阀,向腔室通入四(二甲胺基)钛,开阀时间180ms后,关闭四(二甲胺基)钛源瓶快阀,将ALD腔室抽真空25s后,打开H2O源瓶快阀,开阀时间8ms,关闭水源瓶快阀,再次将ALD腔室抽真空30s,此时,在覆有一层Al2O3薄膜的硅片表面形成有一层TiO2薄膜,从而制得Al掺杂TiO2薄膜。
与现有技术相比,本发明通过ALD沉积技术,将Al引入TiO2薄膜中,这种新型的Al掺杂TiO2(ATO)薄膜应用在单晶硅上,最终成功获得了 1.9 ms 超高有效少数载流子寿命(τeff) 和 0.1Ω•cm2 的低接触电阻率 (ρc),这意味着Al的掺杂同时提高了薄膜的钝化和导电性。得益于该薄膜光学和电学性能的改进,将其应用的PERC太阳电池的发光面上,获得的冠军电池转换效率21.4%,短路电流密度39.2 mA·cm-2,开路电压0.679V,填充因子80.5%,明显优于应用了未掺杂TiO2的PERC电池。
附图说明
图1中,a) 横截面 TEM 图像;
b) EDS 元素映射(Si、Ti、Al 和 P 元素);
c) HAADF-STEM 显微镜图像以及 c-Si/SiOx/ATO(Al:Ti=1:5)/Pt 界面的 EDS线扫描;
图2为应用ATO薄膜的PERC太阳电池示意图;
图3为应用ATO或TiO2薄膜的 PERC 太阳电池的 I-V 和 P-V 曲线图;
图4为应用ATO薄膜,效率为21.4%的冠军太阳电池的I-V 和 P-V 曲线,(c)照片和(d)PL 图像图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1,参照图1-4,一种基于原子层沉积技术的铝掺杂氧化钛薄膜,该薄膜包括作为基底的硅片,硅片上方至少设有一层铝掺杂氧化钛层,每层铝掺杂氧化钛层均由Al2O3薄膜层和若干TiO2薄膜层组成,Al2O3薄膜层设在TiO2薄膜层下方,以Al : Ti比例为1:5,每层铝掺杂氧化钛层由一层Al2O3薄膜层和五层TiO2薄膜层组成,再根据铝掺杂氧化钛薄膜的厚度要求,在硅片上方连续设置40层铝掺杂氧化钛层,采用n型(100)面切割的、50×50 mm2尺寸(赝平方)、Fz硅片,硅片厚度285±10 μm,电阻率大约在3 Ωcm;
参照图2,应用本发明所述铝掺杂氧化钛薄膜的PERC太阳电池的结构为,从下至上依次设置有背接触板、SiNX覆盖层、AlOX纯化层、P型硅、n+发射极、本发明所述铝掺杂氧化钛薄膜、SiNX减反膜、前表面接触层。
实施例2,一种上述铝掺杂氧化钛薄膜的制备方法,具体步骤如下,
(1)将硅片进行RCA标准工艺清洗;
(2)将清洗好的硅片放入ALD腔室(指原子层沉积设备中的腔室)中,基底温度设置在150℃,腔室抽真空;
(3)三甲基铝源瓶内的温度为常温,打开三甲基铝源瓶快阀,向ALD腔室通入三甲基铝,开阀时间16ms后,关闭三甲基铝源瓶快阀,将ALD腔室抽真空25s后,打开H2O源瓶快阀,开阀时间8ms,关闭水源瓶快阀,再次将ALD腔室抽真空30s,此时,硅片表面形成1层Al2O3薄膜,所述水源瓶内的温度为42℃;
(4)打开四(二甲胺基)钛源瓶快阀,向腔室通入四(二甲胺基)钛,开阀时间180ms后,关闭四(二甲胺基)钛源瓶快阀,将ALD腔室抽真空25s后,打开H2O源瓶快阀,开阀时间8ms,关闭水源瓶快阀,再次将ALD腔室抽真空30s,此时,在覆有一层Al2O3薄膜的硅片表面形成有一层TiO2薄膜,从而制得Al掺杂TiO2薄膜,所述四(二甲胺基)钛源瓶内的温度为85℃。
实施例3,一种上述铝掺杂氧化钛薄膜的制备方法,具体步骤如下,
(1)将硅片进行RCA标准工艺清洗;
(2)将清洗好的硅片放入ALD腔室中,基底温度设置在150℃,腔室抽真空;
(3)打开三甲基铝源瓶快阀,向ALD腔室通入三甲基铝,开阀时间10ms后,关闭三甲基铝源瓶快阀,将ALD腔室抽真空20s后,打开H2O源瓶快阀,开阀时间5ms,关闭水源瓶快阀,再次将ALD腔室抽真空20s,此时,硅片表面形成1层Al2O3薄膜;
(4)打开四(二甲胺基)钛源瓶快阀,向腔室通入四(二甲胺基)钛,开阀时间150ms后,关闭四(二甲胺基)钛源瓶快阀,将ALD腔室抽真空20s后,打开H2O源瓶快阀,开阀时间5ms,关闭水源瓶快阀,再次将ALD腔室抽真空20-40s,此时,在覆有一层Al2O3薄膜的硅片表面形成有一层TiO2薄膜,从而制得Al掺杂TiO2薄膜。
实施例4,一种上述铝掺杂氧化钛薄膜的制备方法,具体步骤如下,
(1)将硅片进行RCA标准工艺清洗;
(2)将清洗好的硅片放入ALD腔室中,基底温度设置在150℃,腔室抽真空;
(3)打开三甲基铝源瓶快阀,向ALD腔室通入三甲基铝,开阀时间10ms-20ms后,关闭三甲基铝源瓶快阀,将ALD腔室抽真空30s后,打开H2O源瓶快阀,开阀时间10ms,关闭水源瓶快阀,再次将ALD腔室抽真空20s-40s,此时,硅片表面形成1层Al2O3薄膜;
(4)打开四(二甲胺基)钛源瓶快阀,向腔室通入四(二甲胺基)钛,开阀时间200ms后,关闭四(二甲胺基)钛源瓶快阀,将ALD腔室抽真空30s后,打开H2O源瓶快阀,开阀时间10ms,关闭水源瓶快阀,再次将ALD腔室抽真空40s,此时,在覆有一层Al2O3薄膜的硅片表面形成有一层TiO2薄膜,从而制得Al掺杂TiO2薄膜。
以Al : Ti比例为1:5,其制备方法为,先按步骤(1)-(4)制得含有一层Al2O3薄膜和一层TiO2薄膜的产品,接着按步骤(4)重复5次,从而制得含有一层Al2O3薄膜和五层TiO2薄膜的产品,再按步骤(3)-(4)重复40次,制得厚度为16.5nm的比例为1:5的Al掺杂TiO2薄膜。
由于氧化钛(TiO2)薄膜与硅之间存在小导带带阶和大价带带阶,使TiO2有望成为选择性接触薄膜。但是,目前还没有同时具有优异的导电性和钝化性的TiO2薄膜。而向半导体内引入掺杂剂以改变该材料特性(例如,带隙,功函数,电荷载流子复合率和电导率)是较为常见的改性方式10,11。为了提高TiO2薄膜的性能,考虑引入金属离子掺杂,在TiO2的晶格中引入缺陷,形成缺陷能级,形成光生电子-空穴的浅势捕获阱,从而延长电子空穴对的复合时间,并且使TiO2的带隙宽度变窄,提高长波段可见光的吸收。
原子层沉积(Atomic layer deposition,ALD)是一种基于气态前驱体在基底表面发生化学吸附的纳米薄膜沉积技术,通过自限制性的前驱体交替饱和反应获得厚度、组分、形貌及结构在纳米尺度上高度可控的薄膜。该方法将物质以单原子膜的形式一层一层镀在基底表面的方法。采用ALD制备的薄膜具有高致密性(无针孔)、高保形性及大面积均匀性等优异性能,这对薄膜的使用具有重要的实际意义。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种基于原子层沉积技术的铝掺杂氧化钛薄膜,其特征在于,该薄膜包括作为基底的硅片,硅片上方至少设有一层铝掺杂氧化钛层,每层铝掺杂氧化钛层均由Al2O3薄膜层和TiO2薄膜层组成。
2.根据权利要求1所述的一种基于原子层沉积技术的铝掺杂氧化钛薄膜,其特征在于,所述硅片采用n型(100)面切割、50×50 mm2尺寸、Fz硅片,硅片厚度285±10 μm,电阻率为3Ωcm。
3.一种权利要求1或2所述铝掺杂氧化钛薄膜的制备方法,其特征在于,具体步骤如下,
(1)将硅片进行RCA标准工艺清洗;
(2)将清洗好的硅片放入ALD腔室中,基底温度设置在150℃,腔室抽真空;
(3)打开三甲基铝源瓶快阀,向ALD腔室通入三甲基铝,开阀时间10ms-20ms后,关闭三甲基铝源瓶快阀,将ALD腔室抽真空20s-30s后,打开H2O源瓶快阀,开阀时间5ms-10ms,关闭水源瓶快阀,再次将ALD腔室抽真空20s-40s,此时,硅片表面形成1层Al2O3薄膜;
(4)打开四(二甲胺基)钛源瓶快阀,向腔室通入四(二甲胺基)钛,开阀时间150ms-200ms后,关闭四(二甲胺基)钛源瓶快阀,将ALD腔室抽真空20-30s后,打开H2O源瓶快阀,开阀时间5-10ms,关闭水源瓶快阀,再次将ALD腔室抽真空20-40s,此时,在覆有一层Al2O3薄膜的硅片表面形成有一层TiO2薄膜,从而制得Al掺杂TiO2薄膜。
4.根据权利要求3所述的一种铝掺杂氧化钛薄膜的制备方法,其特征在于,所述Al掺杂TiO2薄膜中的Al : Ti比例为1:5,其制备方法为,先按步骤(1)-(4)制得含有一层Al2O3薄膜和一层TiO2薄膜的产品,接着按步骤(4)重复5次,从而制得含有一层Al2O3薄膜和五层TiO2薄膜的产品,再按步骤(3)-(4)重复40次,制得厚度为16.5nm的比例为1:5的Al掺杂TiO2薄膜。
5.根据权利要求3所述的一种铝掺杂氧化钛薄膜的制备方法,其特征在于,所述三甲基铝源瓶内的温度为常温,所述水源瓶内的温度为42℃,所述四(二甲胺基)钛源瓶内的温度为85℃。
6.根据权利要求3所述的一种铝掺杂氧化钛薄膜的制备方法,其特征在于,具体步骤如下,
(1)将硅片进行RCA标准工艺清洗;
(2)将清洗好的硅片放入ALD腔室中,基底温度设置在150℃,腔室抽真空;
(3)打开三甲基铝源瓶快阀,向ALD腔室通入三甲基铝,开阀时间16ms后,关闭三甲基铝源瓶快阀,将ALD腔室抽真空25s后,打开H2O源瓶快阀,开阀时间8ms,关闭水源瓶快阀,再次将ALD腔室抽真空30s,此时,硅片表面形成1层Al2O3薄膜;
(4)打开四(二甲胺基)钛源瓶快阀,向腔室通入四(二甲胺基)钛,开阀时间180ms后,关闭四(二甲胺基)钛源瓶快阀,将ALD腔室抽真空25s后,打开H2O源瓶快阀,开阀时间8ms,关闭水源瓶快阀,再次将ALD腔室抽真空30s,此时,在覆有一层Al2O3薄膜的硅片表面形成有一层TiO2薄膜,从而制得Al掺杂TiO2薄膜。
CN202111083954.XA 2021-09-14 2021-09-14 基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法 Pending CN113871493A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111083954.XA CN113871493A (zh) 2021-09-14 2021-09-14 基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111083954.XA CN113871493A (zh) 2021-09-14 2021-09-14 基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN113871493A true CN113871493A (zh) 2021-12-31

Family

ID=78996175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111083954.XA Pending CN113871493A (zh) 2021-09-14 2021-09-14 基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113871493A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117144333A (zh) * 2023-09-21 2023-12-01 无锡松煜科技有限公司 一种柔性基底ald沉积氧化铝薄膜的方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117144333A (zh) * 2023-09-21 2023-12-01 无锡松煜科技有限公司 一种柔性基底ald沉积氧化铝薄膜的方法及应用
CN117144333B (zh) * 2023-09-21 2024-05-14 无锡松煜科技有限公司 一种柔性基底ald沉积氧化铝薄膜的方法及应用

Similar Documents

Publication Publication Date Title
KR102100909B1 (ko) 넓은 밴드갭 반도체 재료를 갖는 이미터 영역을 구비한 태양 전지
CN108963005B (zh) 一种新型复合结构全背面异质结太阳电池及制备方法
CN110707159A (zh) 一种正背面全面积接触钝化的p型晶硅太阳电池及其制备方法
TW200947725A (en) Improved HIT solar cell structure
US8283559B2 (en) Silicon-based dielectric stack passivation of Si-epitaxial thin-film solar cells
CN114038921B (zh) 太阳能电池及光伏组件
WO2024087838A1 (zh) 一种太阳电池及其制备方法
CN111834476B (zh) 一种太阳能电池及其制备方法
CN114256385B (zh) 一种tbc背接触太阳能电池及其制备方法
CN103050553A (zh) 一种双面钝化晶硅太阳能电池及其制备方法
CN112259686A (zh) 一种叠层电池及其制作方法
WO2023123814A1 (zh) 一种ibc太阳能电池及其制备方法
CN115020507A (zh) 一种选择性钝化接触电池及其制备方法
WO2022156101A1 (zh) 一种太阳能电池叠层钝化结构及其制备方法
CN113871493A (zh) 基于原子层沉积技术的铝掺杂氧化钛薄膜及其制备方法
WO2024060933A1 (zh) 太阳电池及其制备方法
CN111584670B (zh) 一种叠层太阳能电池及其制备方法
TW201818557A (zh) 高光電變換效率太陽電池及高光電變換效率太陽電池之製造方法
CN116247123A (zh) P型背面隧穿氧化钝化接触太阳能电池的制备方法
JP2675754B2 (ja) 太陽電池
CN111900228B (zh) 一种面向晶硅太阳电池的电子选择性接触
CN114695583B (zh) 太阳电池及生产方法、光伏组件
CN112563342A (zh) 一种光伏电池的钝化层结构、其制备方法及光伏电池
CN112349801A (zh) 叠层电池的中间串联层及生产方法、叠层电池
CN114744053B (zh) 太阳能电池及生产方法、光伏组件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination