CN113862613A - 非晶梯度结构超硬dlc刀具涂层及其制备方法和刀具 - Google Patents

非晶梯度结构超硬dlc刀具涂层及其制备方法和刀具 Download PDF

Info

Publication number
CN113862613A
CN113862613A CN202111103747.6A CN202111103747A CN113862613A CN 113862613 A CN113862613 A CN 113862613A CN 202111103747 A CN202111103747 A CN 202111103747A CN 113862613 A CN113862613 A CN 113862613A
Authority
CN
China
Prior art keywords
gradient
dlc
transition layer
layer
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111103747.6A
Other languages
English (en)
Inventor
陈辉
王丽君
刘艳
王梦超
胡登文
陈红杰
史娇
范晓海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meigoli Zhejiang Rail Transit Research Institute Co ltd
Original Assignee
Meigoli Zhejiang Rail Transit Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meigoli Zhejiang Rail Transit Research Institute Co ltd filed Critical Meigoli Zhejiang Rail Transit Research Institute Co ltd
Priority to CN202111103747.6A priority Critical patent/CN113862613A/zh
Publication of CN113862613A publication Critical patent/CN113862613A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3492Variation of parameters during sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/242Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及超硬涂层技术领域,公开了一种非晶梯度结构超硬DLC刀具涂层及其制备方法和刀具。所述刀具涂层包括先后逐层沉积在刀具基体材料上的过渡层和DLC(sp3梯度层),所述过渡层中含有Cr和C元素,其中,所述元素Cr和C的含量分别梯度设置,DLC中sp3梯度设置。其中,DLC(sp3梯度层)内应力较低,韧性增强,有止裂效果,同时涂层具备高硬度,达到超硬涂层的硬度值,并且具备较好的热稳定性和化学稳定性;Cr/C梯度过渡层有效增强了过渡层纯Cr与上层DLC的结合强度,组织呈现非晶C包裹纳米晶CrC的纳米复合结构,硬度提高的同时大大增加了涂层的韧性;由于纯Cr过渡层作为结合层和Cr/C过渡层的存在,涂层的膜基结合强度较高,在加工过程中不易发生涂层剥落。

Description

非晶梯度结构超硬DLC刀具涂层及其制备方法和刀具
技术领域
本发明涉及刀具超硬涂层材料技术领域,特别是涉及一种非晶梯度结构超硬DLC刀具涂层及其制备方法和刀具。
背景技术
钛及钛合金具有比强度高、抗蚀性好、高热强性和良好的生物相容性的优点,广泛用于航空航天、生物医学和海洋船舶领域,被誉为“太空金属”、“全能金属”、“海洋金属”。
但钛合金的切削加工是难以实现的。其弹性模量较小,仅为钢的1/2,刚性较差,容易发生变形,其热导率小(7.955W/(mK)),仅为钢的1/5。在切削时,TC4内部积累的热量无法向外界散出,导致刀刃会承受大量热量,温度升高很快,缩短刀具使用时间,使刀具磨损严重。由于钛合金切削加工中存在的难点和局限,因此需要选择导热系数大、散热性好和化学性能稳定的刀具材料。业内公认最适合加工钛合金,且效果最好的切削刀具是金刚石刀具,但由于金刚石刀具价格昂贵。目前硬质合金涂层刀具作为切削钛合金的切削刀具仍然占据着加工市场的主要地位。硬质合金涂层刀具中类金刚石膜层(DLC)具有摩擦系数低、硬度高、弹性模量大、热导率高、热膨胀系数小、化学稳定性好的特点,在刀具切削中可以延长刀具使用寿命,大大提高被加工材料表面质量。
因此,需要开发一种新的非晶梯度结构超硬刀具涂层材料,对进一步提升刀具涂层的强度、韧性、耐热性及膜基结合强度有重要意义。
发明内容
本发明要解决的技术问题是:现有的金刚石刀具价格昂贵,改进的硬质合金涂层刀具的强度达不到使用要求。
为了解决上述技术问题,本发明提供了一种非晶梯度结构超硬DLC刀具涂层,包括先后逐层沉积在刀具基体材料上的过渡层和DLC(sp3梯度层),所述过渡层中含有Cr和C元素,其中,所述元素Cr和C的含量分别梯度设置,DLC中sp3梯度设置。sp3是指由C元素形成的sp3化学键。
优选的,所述过渡层包括纯Cr过渡层和设于纯Cr过渡层之上的Cr/C梯度过渡层,所述Cr/C梯度过渡层中自所述纯Cr过渡层至所述DLC层的方向Cr含量逐渐减少,C含量逐渐增加,DLC中sp3含量自所述过渡层至DLC层外表面逐渐减少。
优选的,按重量份数计,所述Cr/C梯度过渡层的组成组分中,Cr含量由100份逐渐下降至50份,C含量由0份逐渐增加至50份,所述DLC中,sp3含量由75份逐渐减少至40份。
优选的,所述纯Cr过渡层的厚度为80~100nm,所述Cr/C梯度过渡层厚度为150~200nm,DLC(sp3梯度层)厚度为1.5~2.2μm。
优选的,所述Cr/C梯度过渡层与所述纯Cr过渡层的厚度比为1.5~2。
优选的,所述起始过渡层的厚度为0.23~0.35μm。
优选的,所述涂层总厚度为1.73~2.55μm。
本发明还提供所述非晶梯度结构超硬DLC刀具涂层的制备方法,按照以下步骤进行;
S1、预处理:对刀具基体表面进行喷砂清洗,去除表面油污、氧化层及其他附着物,再对刀具进行酸洗,这一步主要是为了提高涂层与基体之间的结合强度;
S2、溅射清洗:利用靶材溅射出的离子对机体表面进行溅射清洗,处理室内压力10-3~7×10-3Pa,充入的气体为Ar(99.99%),基体偏压为50~150V,温度为200~250℃,清洗时间为10~20mi n;
S3、沉积纯Cr过渡层:利用物理气相沉积法沉积纯Cr过渡层,只开启Cr靶,沉积时间为10~20Ah,基体偏压为80~120V,电流为80~130A,温度为210~235℃,优选为220℃;
S4、沉积Cr/C过渡层:利用物理气相沉积法沉积Cr/C过渡层,同时开启Cr靶和石墨靶,充入气体为Ar,沉积时间为20~30Ah,Cr靶材电流变化情况为:130A沉积5Ah,110A沉积5Ah,90A沉积5~10Ah,80A沉积5~10Ah,通过控制Cr靶的电流逐渐减小来改变Cr含量的变化;石墨靶电流恒为55A,沉积20~30Ah,基体偏压为80~120V,温度为90~110℃,优选为100℃。C含量的变化是通过增加Cr含量来相对减小的;
S5、沉积DLC(sp3梯度层):利用物理气相沉积法沉积DLC层,只开启石墨靶,充入气体为Ar,沉积时间为90Ah,靶材电流为55A,基体偏压为从-50V依次降为-40V,-30V,-20V,-10V,0V,每个电流沉积15Ah,温度为100~130℃,通过控制基体偏压逐渐减小来改变sp3含量的逐渐减小;
S6、冷却:冷却0.5~1.2小时,镀膜完成。
优选的,所述Cr靶的纯度为99.99r,所述石墨靶的纯度为99.99,可根据组分需求于市场订制。根据组分需求,由靶材厂家制作粉末冶金靶材。
优选的,所述涂层溅射设备采用的工具架为三轴旋转,转速为4r/min,采用三轴旋转视为了刀具工件在镀膜过程中能够均匀沉积涂层,保证涂覆膜层的厚度一致,采用该转速是为了保证旋转稳定。
本发明提供一种刀具,包括刀具基体,所述刀具基体按重量份数计,由90~92份WC、8~10份Co制成,所述刀具基体上涂覆有所述非晶梯度结构超硬DLC刀具涂层。
与现有技术相比,本发明具有以下优点:
1、本发明的非晶梯度结构超硬DLC刀具涂层中,DLC(sp3梯度层)内应力较低,韧性增强,有一定的止裂效果,同时涂层具备高硬度,达到超硬涂层的硬度值,并且具备较好的热稳定性和化学稳定性;
2、本发明的非晶梯度结构超硬DLC刀具涂层中,Cr/C梯度过渡层有效增强了打的层纯Cr与上层DLC的结合强度,组织呈现非晶C包裹纳米晶CrC的纳米复合结构,硬度提高的同时大大增加了涂层的韧性;另外由于纯Cr过渡层作为结合层和Cr/C过渡层的存在,涂层的膜基结合强度较高,在切削加工过程中不易发生涂层剥落。
3、本发明的非晶梯度结构超硬DLC刀具涂层的制备方法,能够制备出非晶梯度结构超硬刀具涂层,使刀具具有良好的导热性和硬度。
附图说明
图1是本发明所述的刀具涂层的结构示意图,图中,1、纯Cr过渡层;2、Cr/C梯度过渡层;3、DLC(sp3梯度层)。
图2是本发明实施例1中Cr/C梯度过渡层的衍射图,图中衍射斑点有两个亮斑,表示仅有很少晶体存在,环绕两个亮斑的宽阔圆环表示的非晶结构。
图3是本发明实施例1中Cr/C梯度过渡层的电镜透射图,图中的原子排列混乱,说明非晶结构占比较大。
具体实施方式
下面结合附图和实施例,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
以下实施例中,所述Cr靶材和石墨靶均为市场订制,由靶材厂家根据粉末冶金的方法制备的靶材,且均采用瑞士的OerlikonBalzersDomino.mini设备进行制备,所述工具架为三轴旋转,转速为4r/min。本发明的非晶梯度结构超硬DLC刀具涂层如图1所示。
实施例1:本实施例提供一种非晶梯度结构超硬DLC刀具涂层,采用PVD沉积的方法在刀具集体上沉积2.5μm厚的涂层。刀具基体组成为92份WC粉末和8份Co。所述涂层由依次沉积在刀具基体材料上的纯Cr过渡层、Cr/C过渡层、DLC(sp3梯度层)构成,纯Cr过渡层厚约100nm,Cr/C过渡层厚约200nm,DLC(sp3梯度层)厚2.2μm。所述Cr/C过渡层的组成组分按重量份计,由100份的Cr变化至50份,0份的C提高至50份,所述DLC中,sp3含量由75份逐渐减少至40份。
实施例2:本实施例提供一种非晶梯度结构超硬DLC刀具涂层,采用PVD沉积的方法在刀具集体上沉积2.08μm厚的涂层。刀具基体由92份WC粉末和8份Co烧结而成。所述涂层由依次沉积在刀具基体材料上的纯Cr过渡层、Cr/C过渡层、DLC(sp3梯度层)构成,纯Cr过渡层厚约150nm,Cr/C过渡层厚约230nm,DLC(sp3梯度层)厚1.7μm。所述Cr/C过渡层的组成组分按重量份计,由100份的Cr变化至50份,C由0份提高至50份,所述DLC(sp3梯度层)由sp3含量从过渡层至表面逐渐降低沉积构成,按重量份计,所述DLC中,sp3含量由78份逐渐减少至表层的48份。
实施例3:本实施例提供一种非晶梯度结构超硬DLC刀具涂层,采用PVD沉积的方法在刀具集体上沉积2.7μm厚的涂层。刀具基体由92份WC粉末和8份Co烧结而成。所述涂层由依次沉积在刀具基体材料上的纯Cr过渡层、Cr/C过渡层、DLC(sp3梯度层)构成,纯Cr过渡层厚约100nm,Cr/C过渡层厚约200nm,DLC(sp3梯度层)厚2.4μm。所述Cr/C过渡层的组成组分按重量份计,由100份的Cr变化至50份,0份的C提高至50份,所述DLC中,sp3含量由75份逐渐减少至40份。
本还提供所述非晶梯度结构超硬DLC刀具涂层的制备方法,按照以下步骤进行;
S1、预处理:对刀具基体表面进行喷砂清洗,去除表面油污、氧化层及其他附着物,再对刀具进行酸洗,以提高过渡层涂层与刀具基体之间的结合强度;酸洗时采用的是Caro’s酸蚀剂进行酸洗,该酸蚀剂是由硫酸和过氧化氢按照体积比1:10混合而成。
S2、溅射清洗:利用靶材溅射出的离子对机体表面进行溅射清洗,处理室内压力6.5×10-3Pa,充入的气体为Ar(99.99%),基体偏压为100V,温度为220℃,清洗时间为20min;本方法中采用Ti靶材溅射出的Ti离子离化氩气产生的氩离子刻蚀刀具基体。
S3、沉积纯Cr过渡层:利用物理气相沉积法沉积纯Cr过渡层,只开启Cr靶,沉积时间为10Ah,基体偏压为100V,电流为130A,温度为220℃;
S4、沉积Cr/C过渡层:利用物理气相沉积法沉积Cr/C过渡层,同时开启Cr靶和石墨靶,充入气体为Ar,沉积时间为30Ah,Cr靶材电流变化情况为:130A沉积5Ah,110A沉积5Ah,90A沉积5~10Ah,80A沉积5~10Ah;石墨靶电流恒为55A,沉积30Ah,基体偏压为120V,温度为100℃;
S5、沉积DLC(sp3梯度层):利用物理气相沉积法沉积DLC层,只开启石墨靶,充入气体为Ar,沉积时间为90Ah,靶材电流为55A,基体偏压为从-50V依次降为-40V,-30V,-20V,-10V,0V,每个电流沉积15Ah,温度为120℃;
S6、冷却:冷却1小时,镀膜完成。
对比例:本对比例选用的是由市面上购买的YG10牌号的毛坯,然后自行加工得到的刀片。
提供一种刀具,包括刀具基体,所述刀具基体按重量份数计,由90~92份WC、8~10份Co制成,所述刀具基体上分别沉积实施例1至3制备的非晶梯度结构超硬DLC刀具涂层。具体的,制备所述刀具涂层所使用的Cr靶的纯度为99.99,石墨靶的纯度为99.99。
然后将实施例1至3制备涂层的刀具和对比例的刀片进行以下性能测试,并将测试数据结果记录于表1中。
硬度测试:采用Wilson 400型显微维氏硬度计进行测试,测试载荷为0.05N,载荷保持时间为15s,尽量保证压头深度不超过涂层厚度的1/10-1/7,减少由于压头压入过深而受到基体硬度的影响所造成的误差。测试20个结果,取平均值。
膜基结合强度测试:采用划痕法对膜基结合强度进行测试,使用设备为瑞士CSM生产的MST型纳米划痕仪。金刚石划痕针头曲率半径100μm,在声发射模式下,采用多点测量求平均值的方法对涂层的结合力进行测试。取10个测试结果,计算平均值。
断裂韧性测试:
Figure BDA0003270027550000071
P为施加载荷;δ为常数,为0.016;E为弹性模量;H为硬度值;C为裂纹长度,测试值越大表明材料的韧性越好。
耐热性测试:将涂层置于800℃环境下保温6h,取出冷却后对其硬度和增重情况进行测试。判断硬度低于测试前测量值的80%为失效(耐热性不符合要求)。结果证明实施例1至3刀具涂层的热稳定温度可达800℃。
表1:实施例1至3和对比例刀片的性能对比表
对比项 硬度/HV<sub>0.05</sub> 膜基结合强度/N 断裂韧性K<sub>IC</sub>/MPa m<sup>1/2</sup>
对比例 1250 18.7
实施例1 3865 88 4.4
实施例2 3577 78 4.2
实施例3 3580 80 4.2
通过试验证明:本发明的非晶梯度结构超硬刀具涂层,DLC(sp3梯度层)明显降低涂层内应力,改善涂层的韧性,使涂层的强度和基体的韧性相结合,在铣削加工过程中很好的避免了涂层的剥落磨损,提高刀具材料使用寿命,耐热性也符合要求,在800℃的温度下仍能保持稳定。Cr金属结合层和Cr/C过渡层能够很好的增强涂层与基体间的结合强度,达到78~88N;涂层中的非晶结构令涂层的硬度和耐磨性有了明显提高,硬度提高约2.8~3.1倍。
将沉积了所述涂层的刀具和对比例的刀片用于切削铝硅合金,铣削参数为:铣削速度v=200m/min,转速n=10616r/min,每齿进给量f=0.05mm/z,铣削深度ap=2mm,铣削宽度ae=0.1mm。切削过程为干式切削。将切削工件表面精度、表面粗糙度、加工效率以及刀片寿命测试结果记录于表2中,四个性能相应的测试数据如下表2所示:
表2:涂覆有本发明的DLC刀具涂层的刀具与普通刀片的性能对比表
Figure BDA0003270027550000081
测量结果如表2所示,采用具有本发明的非晶梯度结构超硬DLC刀具涂层的刀具切削工件表面精度较普通刀片(即YG10牌号毛坯自行加工的刀片)提高了50%,表面粗糙度降低了30%,加工效率提高了50%,刀片寿命是普通刀片的7倍。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (10)

1.一种非晶梯度结构超硬DLC刀具涂层,其特征在于:包括先后逐层沉积在刀具基体材料上的过渡层和DLC(sp3梯度层),所述过渡层中含有Cr和C元素,其中,所述元素Cr和C的含量分别梯度设置,DLC中sp3梯度设置。
2.根据权利要求1所述的非晶梯度结构超硬DLC刀具涂层,其特征在于:所述过渡层包括纯Cr过渡层和设于纯Cr过渡层之上的Cr/C梯度过渡层,所述Cr/C梯度过渡层中自所述纯Cr过渡层至所述DLC层的方向Cr含量逐渐减少,C含量逐渐增加;DLC中sp3含量自所述过渡层至DLC层外表面逐渐减少。
3.根据权利要求2所述的非晶梯度结构超硬DLC刀具涂层,其特征在于:按重量份数计,所述Cr/C梯度过渡层的组成组分中,Cr含量由100份逐渐下降至50份,C含量由0份逐渐增加至50份,所述DLC中,sp3含量由75份逐渐减少至40份。
4.根据权利要求1至3任一项所述的非晶梯度结构超硬DLC刀具涂层,其特征在于:所述纯Cr过渡层的厚度为80~150nm,所述Cr/C梯度过渡层厚度为150~200nm,DLC(sp3梯度层)厚度为1.5~2.2μm。
5.根据权利要求4所述的非晶梯度结构超硬DLC刀具涂层,其特征在于:所述Cr/C梯度过渡层与所述纯Cr过渡层的厚度比为1.5~2。
6.根据权利要求4所述的非晶梯度结构超硬DLC刀具涂层,其特征在于:所述起始过渡层的厚度为0.23~0.35μm。
7.根据权利要求4所述的非晶梯度结构超硬DLC刀具涂层,其特征在于:所述涂层总厚度为1.73~2.55μm。
8.一种非晶梯度结构超硬DLC刀具涂层的制备方法,其特征在于,按照以下步骤进行;
S1、预处理:对刀具基体表面进行喷砂清洗,再对刀具进行酸洗;
S2、溅射清洗:利用靶材溅射出的离子对机体表面进行溅射清洗,处理室内压力10-3~7×10-3Pa,充入的气体为Ar(99.99%),基体偏压为50~150V,温度为200~250℃,清洗时间为10~20min;
S3、沉积纯Cr过渡层:利用物理气相沉积法沉积纯Cr过渡层,只开启Cr靶,沉积时间为10~20Ah,基体偏压为80~120V,电流为80~130A,温度为210~235℃;
S4、沉积Cr/C过渡层:利用物理气相沉积法沉积Cr/C过渡层,同时开启Cr靶和石墨靶,充入气体为Ar,沉积时间为20~30Ah,Cr靶材电流变化情况为:130A沉积5Ah,110A沉积5Ah,90A沉积5~10Ah,80A沉积5~10Ah;石墨靶电流恒为55A,沉积20~30Ah,基体偏压为80~120V,温度为90~110℃;
S5、沉积DLC(sp3梯度层):利用物理气相沉积法沉积DLC层,只开启石墨靶,充入气体为Ar,沉积时间为90Ah,靶材电流为55A,基体偏压为从-50V依次降为-40V,-30V,-20V,-10V,0V,每个电流沉积15Ah,温度为100~130℃;
S6、冷却:冷却0.5~1.2小时,镀膜完成。
9.根据权利要求8所述的非晶梯度结构超硬DLC刀具涂层的制备方法,其特征在于:所述Cr靶的纯度为99.99,所述石墨靶的纯度为99.99。
10.一种刀具,其特征在于:包括刀具基体,按重量份数计,所述刀具基体由90~92份WC、8~10份Co制成,所述刀具基体上涂覆有权利要求1-7任一项所述的非晶梯度结构超硬DLC刀具涂层。
CN202111103747.6A 2021-09-18 2021-09-18 非晶梯度结构超硬dlc刀具涂层及其制备方法和刀具 Pending CN113862613A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111103747.6A CN113862613A (zh) 2021-09-18 2021-09-18 非晶梯度结构超硬dlc刀具涂层及其制备方法和刀具

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111103747.6A CN113862613A (zh) 2021-09-18 2021-09-18 非晶梯度结构超硬dlc刀具涂层及其制备方法和刀具

Publications (1)

Publication Number Publication Date
CN113862613A true CN113862613A (zh) 2021-12-31

Family

ID=78992988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111103747.6A Pending CN113862613A (zh) 2021-09-18 2021-09-18 非晶梯度结构超硬dlc刀具涂层及其制备方法和刀具

Country Status (1)

Country Link
CN (1) CN113862613A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381689A (zh) * 2022-01-10 2022-04-22 欧伊翔 一种刀具用梯度纳米涂层、制备设备及方法
CN115058687A (zh) * 2022-06-13 2022-09-16 西南交通大学 一种刀具涂层及其制备方法
CN116892006A (zh) * 2023-07-10 2023-10-17 有研国晶辉新材料有限公司 一种大口径深曲面红外窗口增透保护结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444985A (zh) * 2007-12-19 2009-06-03 中国人民解放军装甲兵工程学院 一种非晶碳涂层及其制备方法和用途
WO2010064879A2 (ko) * 2008-12-05 2010-06-10 주식회사 도루코 면도기 면도날의 박막 증착 방법
JP2014098184A (ja) * 2012-11-14 2014-05-29 Minebea Co Ltd 多層dlc皮膜を有する摺動部材
CN109898064A (zh) * 2019-03-29 2019-06-18 中南大学 一种DLC/Me-C复合薄膜及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444985A (zh) * 2007-12-19 2009-06-03 中国人民解放军装甲兵工程学院 一种非晶碳涂层及其制备方法和用途
WO2010064879A2 (ko) * 2008-12-05 2010-06-10 주식회사 도루코 면도기 면도날의 박막 증착 방법
JP2014098184A (ja) * 2012-11-14 2014-05-29 Minebea Co Ltd 多層dlc皮膜を有する摺動部材
CN109898064A (zh) * 2019-03-29 2019-06-18 中南大学 一种DLC/Me-C复合薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
严少平;蒋百灵;段冰;: "Cr含量对掺铬类石墨镀层摩擦学性能的影响", 金属热处理, no. 05, pages 53 - 57 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381689A (zh) * 2022-01-10 2022-04-22 欧伊翔 一种刀具用梯度纳米涂层、制备设备及方法
CN114381689B (zh) * 2022-01-10 2023-12-12 欧伊翔 一种刀具用梯度纳米涂层、制备设备及方法
CN115058687A (zh) * 2022-06-13 2022-09-16 西南交通大学 一种刀具涂层及其制备方法
CN116892006A (zh) * 2023-07-10 2023-10-17 有研国晶辉新材料有限公司 一种大口径深曲面红外窗口增透保护结构及其制备方法
CN116892006B (zh) * 2023-07-10 2024-02-13 有研国晶辉新材料有限公司 一种大口径深曲面红外窗口增透保护结构及其制备方法

Similar Documents

Publication Publication Date Title
CN113862613A (zh) 非晶梯度结构超硬dlc刀具涂层及其制备方法和刀具
KR101506031B1 (ko) 초합금의 일반적인 선삭가공용의 코팅된 절삭공구 인서트
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
CN105683412B (zh) 涂层工具以及制造和使用涂层工具的方法
JP5124793B2 (ja) 表面被覆切削工具
JP5872748B1 (ja) 表面被覆切削工具
JP2018521862A (ja) 多層アークpvdコーティングを有する工具
WO2006064724A1 (ja) 表面被覆切削工具
JP2007001007A (ja) 硬化鋼の仕上げ用複合被膜
CN108823526B (zh) 一种纳米多层复合超硬刀具涂层及其制备方法
CN101517127B (zh) 涂覆的切削工具
CN100534779C (zh) 用于加工铸铁的涂层刀片
JP2008183708A (ja) 被覆されたフライス加工用植刃及びその製造方法
US20070104953A1 (en) DLC coating, and DLC coating coated tool
Bhaduri et al. On tribological behaviour and application of TiN and MoS2-Ti composite coating for enhancing performance of monolayer cBN grinding wheel
EP2851451B1 (en) Amorphous-carbon-containing film
KR20110003278A (ko) 코팅된 절삭 공구 인서트
JP2017042902A (ja) 表面被覆切削工具
JP5765627B2 (ja) 耐久性に優れる被覆工具およびその製造方法
KR101503128B1 (ko) 표면 피복 절삭 공구
JP2002146515A (ja) 摺動性に優れる硬質膜およびその被覆工具
KR20100126357A (ko) 산화물 코팅된 절삭 인서트
CN116162917B (zh) 一种多层涂层刀具及制备方法
JP3640310B2 (ja) 硬質皮膜
WO2018097286A1 (ja) 金型およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination