CN113860366B - 一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法 - Google Patents

一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法 Download PDF

Info

Publication number
CN113860366B
CN113860366B CN202111207492.8A CN202111207492A CN113860366B CN 113860366 B CN113860366 B CN 113860366B CN 202111207492 A CN202111207492 A CN 202111207492A CN 113860366 B CN113860366 B CN 113860366B
Authority
CN
China
Prior art keywords
dysprosium
oxycarbonate
bismuth
water
oxide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111207492.8A
Other languages
English (en)
Other versions
CN113860366A (zh
Inventor
裴立宅
凌贤长
宇春虎
张勇
樊传刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Juna New Materials Technology Co ltd
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CN202111207492.8A priority Critical patent/CN113860366B/zh
Publication of CN113860366A publication Critical patent/CN113860366A/zh
Application granted granted Critical
Publication of CN113860366B publication Critical patent/CN113860366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Abstract

本发明公开了一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法,属于复合材料技术领域。所述复合纳米线由四方Bi2O2CO3、六方Dy2O2CO3和三斜Bi2O3晶相构成;该复合纳米线的直径为20~100nm、长度大于5μm。该电极材料的制备方法是将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,采用磁力搅拌器搅拌混合均匀,再放置在油浴锅内,于温度150‑220℃、保温12‑24h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤。本发明采用一步制备过程,制备过程易于控制,得到的复合纳米线作为电极材料,在电化学传感器领域具有良好的应用前景。

Description

一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制 备方法
技术领域
本发明属于复合材料技术领域,具体涉及一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法。
背景技术
铋基和镝基复合物属于重要的稀有金属材料,由于具有大的活性表面积、良好的电子输运性能、界面性能、电催化特性、化学和热稳定性,在检测不同种类的生物分子用电化学传感器、催化、锂离子电池、超级电容器等领域具有良好的应用前景。碳酸氧铋、碳酸氧镝及氧化铋作为重要的稀有金属材料,引起了人们的研究兴趣。
国家发明专利“碳酸氧铋光催化剂的制备方法”(国家发明专利号:ZL201210037356.3)公开了一种纳米片状及微球形貌的碳酸氧铋,此种碳酸氧铋所用原料为铋源(柠檬酸铋或柠檬酸铋氨)及可溶性碳酸盐(碳酸钠、碳酸氢钠、碳酸钾或碳酸氢钾)。国家发明专利“一种碳酸氧铋微米花的制备方法及产品”(国家发明专利号:ZL201410494219.1)报道了以钛酸四丁酯、硝酸铋作为原料,加入氢氧化钾控制溶液pH值制备出了碳酸氧铋微米花。国家发明专利“氧化铋/碳酸氧铋/钼酸铋复合光催化材料及其制备方法”(国家发明专利号:ZL201910555108.X)报道了在钼酸铋光催化材料的表面通过碳酸钠协助和焙烧引入碳酸氧铋和氧化铋纳米片制备出了氧化铋/碳酸氧铋/钼酸铋复合光催化材料。将碳酸氧铋与碳酸氧镝、氧化铋相复合,形成碳酸氧铋/碳酸氧镝/氧化铋复合纳米材料,能够增加材料中的催化活性位点,可以作为电极材料,测定溶液中的生物分子,在电化学传感器方面具有良好的应用潜力。
发明内容
本发明的目的在于提供一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料。
本发明一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料,所述碳酸氧铋/碳酸氧镝/氧化铋复合纳米线由四方Bi2O2CO3、六方Dy2O2CO3和三斜Bi2O3晶相构成;该纳米线的直径为20~100nm、长度大于5μm。
本发明同时提供了上述碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料的制备方法,具体步骤是:
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度150-200℃、保温12-24h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。
所述三氟甲磺酸镝与铋酸钠的摩尔比为1:5;所述十二烷基磺酸钠的重量占水重量的3~8%;所述三氟甲磺酸镝、铋酸钠的总重量占水重量的1~3%;所述三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为60~80%。
作为一种优化,所述十二烷基磺酸钠的重量占水重量的3%;所述三氟甲磺酸镝、铋酸钠的总重量占水重量的1%;所述三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为60%。
本发明的科学原理如下:
本发明采用上述制备过程,铋酸钠具有强氧化作用,通过油浴均匀加热,在一定温度下,铋酸钠与三氟甲磺酸镝和水反应生成碳酸氧铋、碳酸氧镝及氧化铋,碳酸氧铋、碳酸氧镝及氧化铋在水中达到过饱和析出形成晶核,十二烷基磺酸钠吸附于晶核的表面,在蒸发冷凝后的水回流后在容器内形成一定的温度梯度及十二烷基磺酸钠的共同作用下促进了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线的形成。
与现有技术相比,本发明具有以下技术效果:
1、本发明采用一步制备过程,制备过程易于控制,具有良好的可重复性,所得碳酸氧铋/碳酸氧镝/氧化铋复合纳米线的成本低,为碳酸氧铋/碳酸氧镝/氧化铋复合纳米线的实际应用提供了条件;
2、本发明所使用的原料为三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水,不产生任何有毒有害气体,对环境无污染;
3、碳酸氧铋/碳酸氧镝/氧化铋复合纳米线具有大量的催化活性位点,能够作为电极材料,在水溶液中高灵敏的测定半胱氨酸等生物分子,在电化学传感器领域具有良好的应用前景。
附图说明
图1为实施例1所制备的碳酸氧铋/碳酸氧镝/氧化铋复合纳米线的X~射线衍射(XRD)图谱;
根据JCPDS PDF卡片,可以检索出所得碳酸氧铋/碳酸氧镝/氧化铋复合纳米线由四方Bi2O2CO3(JCPDS卡,卡号:41~1488)、六方Dy2O2CO3(JCPDS卡,卡号:26~0588)和三斜Bi2O3(JCPDS卡,卡号:50~1088)晶相构成。
图2为实施例1所制备的碳酸氧铋/碳酸氧镝/氧化铋复合纳米线的低倍(图2(a))和高倍(图2(b))扫描电子显微镜(SEM)图像;
从图中可以看出产物由碳酸氧铋/碳酸氧镝/氧化铋复合纳米线构成,纳米线的直径为20~100nm、长度大于5μm。
图3为实施例1所制备的碳酸氧铋/碳酸氧镝/氧化铋复合纳米线的透射电子显微镜(TEM)图像(图3(a))和高分辨TEM(HRTEM)图像(图3(b));
从图中可以看出产物由碳酸氧铋/碳酸氧镝/氧化铋复合纳米线构成,纳米线为多晶结构,晶面间距为0.68nm、0.72nm、0.76nm,分别对应于四方Bi2O2CO3晶相的{002}晶面、三斜Bi2O3晶相的{100}晶面及六方Dy2O2CO3晶相的{002}晶面的晶面间距。
图4为实施例1所制备的碳酸氧铋/碳酸氧镝/氧化铋复合纳米线作为玻碳电极修饰材料,在含有不同浓度半胱氨酸的0.1M氯化钾缓冲液中的电化学循环伏安(CV)曲线,右下角插入图为CV峰电流与半胱氨酸浓度的关系曲线;
根据信噪比为3(S/N=3)计算出碳酸氧铋/碳酸氧镝/氧化铋复合纳米线修饰玻碳电极测定半胱氨酸的检测限为0.21μM,线性检测范围为0.001~2mM。
具体实施方式
以下结合具体实施例详述本发明,但本发明不局限于下述实施例。
实施例1
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,其中三氟甲磺酸镝与铋酸钠的摩尔比为1:5,十二烷基磺酸钠的重量占水重量的3%,三氟甲磺酸镝、铋酸钠的总重量占水重量的1%,三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为60%,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度150℃、保温12h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。
实施例2
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,其中三氟甲磺酸镝与铋酸钠的摩尔比为1:5,十二烷基磺酸钠的重量占水重量的8%,三氟甲磺酸镝、铋酸钠的总重量占水重量的3%,三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为80%,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度200℃、保温24h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。
实施例3
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,其中三氟甲磺酸镝与铋酸钠的摩尔比为1:5,十二烷基磺酸钠的重量占水重量的4%,三氟甲磺酸镝、铋酸钠的总重量占水重量的2%,三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为62%,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度155℃、保温14h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。
实施例4
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,其中三氟甲磺酸镝与铋酸钠的摩尔比为1:5,十二烷基磺酸钠的重量占水重量的5%,三氟甲磺酸镝、铋酸钠的总重量占水重量的1.5%,三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为65%,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度160℃、保温16h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。
实施例5
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,其中三氟甲磺酸镝与铋酸钠的摩尔比为1:5,十二烷基磺酸钠的重量占水重量的6%,三氟甲磺酸镝、铋酸钠的总重量占水重量的1.8%,三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为68%,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度170℃、保温18h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。
实施例6
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,其中三氟甲磺酸镝与铋酸钠的摩尔比为1:5,十二烷基磺酸钠的重量占水重量的7%,三氟甲磺酸镝、铋酸钠的总重量占水重量的2.2%,三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为72%,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度180℃、保温20h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。
实施例7
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,其中三氟甲磺酸镝与铋酸钠的摩尔比为1:5,十二烷基磺酸钠的重量占水重量的7.5%,三氟甲磺酸镝、铋酸钠的总重量占水重量的2.5%,三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为74%,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度190℃、保温22h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。
实施例8
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,其中三氟甲磺酸镝与铋酸钠的摩尔比为1:5,十二烷基磺酸钠的重量占水重量的7.8%,三氟甲磺酸镝、铋酸钠的总重量占水重量的2.8%,三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为76%,在磁力搅拌器搅拌混合均匀后,再放置在油浴锅内,于温度185℃、保温23h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线。

Claims (3)

1.一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料,其特征在于,所述碳酸氧铋/碳酸氧镝/氧化铋复合纳米线由四方Bi2O2CO3、六方Dy2O2CO3和三斜Bi2O3晶相构成;该复合纳米线的直径为20~100nm、长度大于5μm。
2.如权利要求1所述的碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料的制备方法,其特征在于包括如下步骤:
将三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠与水放入石英玻璃烧瓶内,采用磁力搅拌器搅拌混合均匀,再放置在油浴锅内,于温度150-220℃、保温12-24h,加热过程中蒸发的水通过回流装置回流至烧瓶内,冷却后离心,并用乙醇洗涤后获得了碳酸氧铋/碳酸氧镝/氧化铋复合纳米线;
所述三氟甲磺酸镝与铋酸钠的摩尔比为1:5;
所述十二烷基磺酸钠的重量占水重量的3~8%;
所述三氟甲磺酸镝、铋酸钠的总重量占水重量的1~3%;
所述三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为60~80%。
3.如权利要求2所述的碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料的制备方法,其特征在于,
所述十二烷基磺酸钠的重量占水重量的3%;
所述三氟甲磺酸镝、铋酸钠的总重量占水重量的1%;
所述三氟甲磺酸镝、铋酸钠、十二烷基磺酸钠和水总量占烧瓶的填充度为60%。
CN202111207492.8A 2021-10-18 2021-10-18 一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法 Active CN113860366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111207492.8A CN113860366B (zh) 2021-10-18 2021-10-18 一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111207492.8A CN113860366B (zh) 2021-10-18 2021-10-18 一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113860366A CN113860366A (zh) 2021-12-31
CN113860366B true CN113860366B (zh) 2023-02-07

Family

ID=78999849

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111207492.8A Active CN113860366B (zh) 2021-10-18 2021-10-18 一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113860366B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3646818B2 (ja) * 1995-12-27 2005-05-11 同和鉱業株式会社 オキシ炭酸ビスマス粉末およびその製造方法
CN102942219A (zh) * 2012-11-16 2013-02-27 西南石油大学 一种室温下制备碳酸氧铋纳米片的方法
CN105271405B (zh) * 2015-11-25 2017-10-17 上海交通大学 一种基于碳酸氧铋或氧化铋纳米管的材料及其制备方法
CN108212186B (zh) * 2018-01-18 2019-08-06 蚌埠学院 一种室温固相化学反应制备三氧化二铋-碳酸氧铋纳米复合物的方法
CN108722458A (zh) * 2018-05-30 2018-11-02 苏州科技大学 一种四氧化铋-碳酸氧铋复合材料及其制备方法和应用
CN109518222B (zh) * 2019-01-28 2020-06-23 苏州大学 用于电催化co2还原至甲酸的铋基催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113860366A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
Wang et al. One-pot synthesis of 3D hierarchical SnO2 nanostructures and their application for gas sensor
Gao et al. Mesocrystalline Cu 2 O hollow nanocubes: synthesis and application in non-enzymatic amperometric detection of hydrogen peroxide and glucose
Li et al. Enhanced ethanol sensing performance of hollow ZnO–SnO2 core–shell nanofibers
CN102275981B (zh) 一种自基底的SnO2纳米棒阵列的制备方法
CN103342388B (zh) 一种α型氧化钼纳米棒气敏材料及其制备方法和应用
CN101311360B (zh) 一维单晶氧化铋纳米材料的合成方法
CN103130276B (zh) 一种钒酸镉纳米棒的制备方法
Wang et al. Room temperature synthesis of hierarchical SrCO3 architectures by a surfactant-free aqueous solution route
Manibalan et al. CeO2-based heterostructure nanocomposite for electrochemical determination of L-cysteine biomolecule
Yin et al. Gas sensing selectivity of SnO2-xNiO sensors for homogeneous gases and its selectivity mechanism: Experimental and theoretical studies
Ying et al. Synthesis, semiconductor characteristics and gas-sensing selectivity for cerium-doped neodymium vanadate nanorods
Li et al. Novel neuron-network-like Cu–MoO2/C composite derived from bimetallic organic framework for highly efficient detection of hydrogen peroxide
Hao et al. The partial substitution of Cd by La ions in CdWO4 nanocrystal for the efficiently enhanced electrochemical sensing of BPA
Liu et al. Au-decorated In2O3 nanospheres/exfoliated Ti3C2Tx MXene nanosheets for highly sensitive formaldehyde gas sensing at room temperature
Liu et al. Synthesis of cadmium oxide nanowires by calcining precursors prepared in a novel inverse microemulsion
CN111994954A (zh) 一种MoO3气敏材料及其制备方法和应用
Wu et al. Preparation, structure and properties of Mn-doped ZnO rod arrays
Harshavardhan et al. Synthesis of Tin oxide nanoparticles using Nelumbo nucifera leaves extract for electrochemical sensing of dopamine
Raza et al. Insightful study of the characterization of the Cobalt oxide nanomaterials and hydrothermal synthesis
CN102706936B (zh) 铜-氧化铜复合电极的制备方法
CN102807248A (zh) 一种纳米阵列硫化亚铜的制备方法
CN113860366B (zh) 一种碳酸氧铋/碳酸氧镝/氧化铋复合纳米线电极材料及其制备方法
Jiao et al. A facile in-situ etching route to hollow C@ SnO2 nanocomposites and their gas-sensing properties
CN101538067B (zh) 一种铌酸钠钾纳米粉体的化学合成方法
Chen et al. A novel method for synthesizing one or two-dimensional metal oxide (hydroxide) nanomaterials using deep eutectic solvents

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230614

Address after: 518000 Shangfeng Garden Shangfeng Business Center, Longtang Community, Minzhi Street, Longhua District, Shenzhen City, Guangdong Province 212

Patentee after: Shenzhen Chengze Information Technology Co.,Ltd.

Address before: 243002 No. 59 East Lake Road, Anhui, Ma'anshan

Patentee before: ANHUI University OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230726

Address after: Group 10, Hangdong Community, Lichun Town, Pengzhou City, Chengdu, Sichuan 610000

Patentee after: Chengdu Juna New Materials Technology Co.,Ltd.

Address before: 518000 Shangfeng Garden Shangfeng Business Center, Longtang Community, Minzhi Street, Longhua District, Shenzhen City, Guangdong Province 212

Patentee before: Shenzhen Chengze Information Technology Co.,Ltd.

TR01 Transfer of patent right