CN113856649B - 一种硅基介孔五价砷阴离子印迹聚合物的制备方法 - Google Patents

一种硅基介孔五价砷阴离子印迹聚合物的制备方法 Download PDF

Info

Publication number
CN113856649B
CN113856649B CN202111174907.6A CN202111174907A CN113856649B CN 113856649 B CN113856649 B CN 113856649B CN 202111174907 A CN202111174907 A CN 202111174907A CN 113856649 B CN113856649 B CN 113856649B
Authority
CN
China
Prior art keywords
imprinted polymer
pentavalent arsenic
silicon
based mesoporous
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111174907.6A
Other languages
English (en)
Other versions
CN113856649A (zh
Inventor
徐斐
阴凤琴
徐峰
袁敏
曹慧
叶泰
吴秀秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202111174907.6A priority Critical patent/CN113856649B/zh
Publication of CN113856649A publication Critical patent/CN113856649A/zh
Application granted granted Critical
Publication of CN113856649B publication Critical patent/CN113856649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/268Polymers created by use of a template, e.g. molecularly imprinted polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提出一种硅基介孔五价砷阴离子印迹聚合物的制备方法,本发明的印迹聚合物主要用于高效去除水中有毒重金属五价砷阴离子As(V)。本发明方法采用功能单体3‑[2‑(2‑氨基乙基氨基)乙基氨基]丙基‑三甲氧基硅烷(AAAPTS)、辅助配体二乙烯三胺(DETA)与As(V)模板阴离子形成预聚合水溶液,后在碱性环境下通过“一锅法”共缩聚合成硅基介孔五价砷阴离子印迹聚合物(As(V)‑IIP)。该材料能高效吸附五价砷阴离子,10min即可达到吸附平衡,饱和吸附容量达78.74mg/g。本发明采用“一锅法”并结合溶胶凝胶技术制备印迹聚合物,实验过程简便;同时印迹位点分布在介孔材料表面利于缩短捕获和识别金属阴离子所需的时间,因此具有经济和实用的优势。

Description

一种硅基介孔五价砷阴离子印迹聚合物的制备方法
技术领域
本发明涉及离子印迹材料领域,尤其涉及一种硅基介孔五价砷阴离子印迹聚合物的制备方法。
背景技术
随着工业的发展,水体污染日益严重,尤其铅、汞、镉、砷、铬等重金属离子对水污染越来越严重。砷是重要的致癌物之一,是普遍存在于自然界中的一种准金属元素。根据化合价不同,砷可分为正五价砷As(V)和正三价砷As(III)。由于砷的剧毒性和迁移特性,五价砷化合物如Na2HAsO4等大都易溶于水,且呈阴离子存在形式;易在水和土壤中沉积,对环境和人体的危害更大。因此,从水溶液中有效去除五价砷阴离子已成为水污染控制中富有意义的研究之一。
对水中特定离子的回收利用,不仅节约资源还能减少环境污染。近年来,五价砷阴离子的去除受到了更多的关注。迄今为止,已开发出多种用于从污染水中去除砷的合适技术,包括吸附、离子交换、膜过滤、化学沉淀和电化学等方法。其中吸附法因其高去除效率,操作简单,处置质量优良,被证实是最简单有效的处理方法之一。但是现有的一般吸附剂的特异选择性吸附效果较差,因此离子印迹聚合物成为了检测与去除含重金属离子水体的首选吸附剂。
属于锁和钥匙模型的离子印迹聚合物(Ion Imprinted Polymers,IIPs)是具有代表性的先进吸附分离材料。IIPs是以金属离子为模板,通过静电、配位等作用与带有螯合配体单元的功能单体相互作用,并通过聚合过程被“记忆”下来,具有高吸附和特异性分离的聚合物。目前的报道大多是介绍阳离子模板印迹聚合物,如Cd(II)、Pb(II)、Ni(II)、Nd(III)、和Dy(III)等阳离子,而阴离子印迹聚合物的发展相对滞后,主要因为阴离子的电荷尺寸之比相对阳离子小得多,且加之不同于单一结构的阳离子,阴离子的结构具有多样性,如NO3 -为平面三角形结构、As(V)阴离子为四面体结构等,这导致阴离子印迹聚合物中明确的识别位点的建立变得十分困难;另外当前相关制备方法中较多采用纯有机相合成,而多数阴离子是水溶性的,且广泛存在于自然水体中,印迹合成环境与吸附环境的差异性即溶剂效应可能会影响阴离子印迹聚合物的性能。同时,目前有关用于阴离子富集、分离和检测的印迹聚合物的报道较少,因此研究开发去除水体重金属五价砷阴离子的技术具有重要的现实意义。
发明内容
本发明的目的在于提出一种选择吸附性能优良的硅基介孔五价砷阴离子印迹聚合物的制备方法。
为达到上述目的,本发明提出一种硅基介孔五价砷阴离子印迹聚合物的制备方法,其特征在于,包括以下步骤:
步骤1:将模板七水合砷酸氢二钠溶解于超纯水中,随后加入功能单体和辅助配体形成预聚合混合物;
步骤2:将溶剂、氨水和致孔剂在圆底烧瓶中均匀混合,随后加入所述预聚合混合物和四乙氧基硅烷,搅拌至产生白色沉淀物;
步骤3:对步骤2中的混合液离心分离得到固体粗产物;
步骤4:将所述固体粗产物置于洗脱剂中取出模板离子和致孔剂,得到白色颗粒产物;
步骤5:将所述白色颗粒水洗至中性后,干燥得到硅基介孔五价砷阴离子印迹聚合物。
优选的,在步骤1中,所述功能单体为3-氨丙基三乙氧基硅烷、3-(2-氨基乙基氨基)丙基三甲氧基硅烷或13-[2-(2-氨基乙基氨基)乙基氨基]丙基-三甲氧基硅烷;
所述辅助配体为含胺试剂,包括二乙烯三胺、三乙烯四胺或者五乙烯四胺。
优选的,在步骤1中,所述七水合砷酸氢二钠、所述功能单体和所述辅助配体在20~50℃下快速搅拌0.5~3h后形成预聚合混合物。
优选的,在步骤2中,所述溶剂为水或水与乙醇的混合物;其中水和乙醇的体积比为1:1-1:10。
优选的,在步骤2中,所述白色沉淀物为混合液在10~60℃下磁力搅拌0.1~48h产生。
优选的,在步骤4中,所述洗脱剂为乙醇与稀酸混合液;所述乙醇和所述稀酸的体积比为10:1-100:1。
优选的,在步骤4中,将固体粗产物置于圆底烧瓶中,使用乙醇与稀酸混合液加热回流2-24h以去除模板离子和致孔剂。
优选的,在步骤4中,所述致孔剂为P123、F127或CTAB。
优选的,在步骤5中,所述干燥环境为60℃真空干燥。
与现有技术相比,本发明的优势之处在于:本发明制备的硅基介孔五价砷阴离子印迹聚合物,其在含水混合相中采用离子印迹-溶胶凝胶技术,以氨基硅烷AAAPTS为功能单体和DETA为辅助配体,基于质子化氨基与五价砷阴离子存在的静电作用力,赋予了其稳定性好、吸附量大的优势。
本发明方法制备的As(V)-IIP具有良好的介孔结构,使其具备快速的吸附动力学特性,改善了现有离子印迹吸附材料的低吸附量、吸附平衡时间过长的不足。
本发明的硅基介孔五价砷阴离子印迹聚合物的制备方法所选用的原料均为化学常用试剂,制备方法简单、条件要求不高,原料成本低廉,具有经济和实用的优势。
附图说明
图1为本发明实施例1中得到的As(V)-IIP的扫描电子显微图SEM(图1a,和图1b)和透射电子显微图TEM(图1c和图1d)。
图2为本发明实施例1中得到的As(V)-IIP及As(V)-NIP等温吸附情况、Langmuir模型拟合曲线(图2a)和Freundlich模型拟合曲线(图2b)。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将对本发明的技术方案作进一步地说明。
本发明采用离子印迹策略结合溶胶凝胶法技术成功制备了硅基介孔五价砷阴离子印迹聚合物,并研究其对重金属阴离子As(V)的去除效率及使用条件,本发明制备方法步骤简单,操作方便,使用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和傅里叶红外光谱(FTIR)等手段进行了形态与结构表征。
实施例1:
(1)制备预聚合混合物:称取模板0.2mmol Na2HAsO4`7H2O、功能单体0.8mmolAAAPTS和辅助配体0.2mmol DETA于超纯水中,磁力搅拌0.5h混匀后形成预聚合混合物。
(2)制备硅基介孔五价砷阴离子印迹聚合物:在250mL圆底烧瓶里,先加入0.3gCTAB、1.5mL浓氨水和一定比例的乙醇与水混合液,在磁力搅拌0.5h后,分别加入预聚合混合物和四乙氧基硅烷,继续反应12h至产生白色沉淀物,离心分离,无水乙醇洗涤后得到未洗脱的As(V)-IIP。
(3)As(V)模板和CTAB的去除:使用将固体粗产物置于圆底烧瓶中,使用乙醇与盐酸混合液(体积比为16)加热回流24h以去除模板离子和CTAB,并测定洗脱液中As(V)浓度,直至完全脱除模板离子,随后将颗粒水洗至中性,真空干燥后得到As(V)-IIP。
非印迹聚合物(As(V)-NIP)的制备方法与印迹聚合物的制备方法相同,除了在步骤(2)中不加入As(V)模板。
表征实验得到As(V)-IIP和As(V)-NIP均具有良好的微球颗粒形貌如图1所示。吸附实验探讨了As(V)-IIP的最佳除As(V)参数及吸附性能,结果表明在pH3、聚合物用量20mg、25℃下对初始浓度为100mg/L的As(V)溶液的去除效率最佳,10min即可达到吸附平衡,受化学吸附作用的吸附过程符合拟二级动力学模型。等温吸附条件下,As(V)-IIP的饱和吸附容量可达78.74mg/g,As(V)-NIP的吸附能力则相对较低为68.09mg/g(图2)。
为了了解和评价离子印迹聚合物的吸附性能,如图2所示,绘制了As(V)-IIP和As(V)-NIP对As(V)离子的吸附动力学曲线,结果表明:材料的吸附量随着时间的增加而增加,10min后吸附量不再随着时间的延长而明显变化。这表明应用离子印迹策略的有效性,As(V)-IIP的实验饱和吸附容量高达78.74mg/g,As(V)-NIP的吸附容量为68.09mg/g。
实施例2:
(1)制备预聚合混合物:称取模板0.04mmol Na2HAsO4`7H2O、功能单体0.16mmolAAAPTS和辅助配体0.04mmol DETA于超纯水中,磁力搅拌0.5h混匀后形成预聚合混合物。
(2)制备硅基介孔五价砷阴离子印迹聚合物:在50mL圆底烧瓶里,先加入0.06gCTAB、0.3mL浓氨水和一定比例的乙醇与水混合液,在磁力搅拌0.5h后,分别加入预聚合混合物和四乙氧基硅烷,继续反应12h至产生白色沉淀物,离心分离,无水乙醇洗涤后得到未洗脱的As(V)-IIP。
(3)As(V)模板和CTAB的去除:使用将固体粗产物置于圆底烧瓶中,使用乙醇与盐酸混合液(体积比为16)加热回流6h以去除模板离子和CTAB,并测定洗脱液中As(V)浓度,直至完全脱除模板离子,随后将颗粒水洗至中性,真空干燥后得到As(V)-IIP。
非印迹聚合物(As(V)-NIP)的制备方法与印迹聚合物的制备方法相同,除了在步骤(2)中不加入As(V)模板。
上述仅为本发明的优选实施例而已,并不对本发明起到任何限制作用。任何所属技术领域的技术人员,在不脱离本发明的技术方案的范围内,对本发明揭露的技术方案和技术内容做任何形式的等同替换或修改等变动,均属未脱离本发明的技术方案的内容,仍属于本发明的保护范围之内。

Claims (6)

1.一种硅基介孔五价砷阴离子印迹聚合物的制备方法,其特征在于,包括以下步骤:
步骤1:将模板七水合砷酸氢二钠溶解于超纯水中,随后加入功能单体和辅助配体形成预聚合混合物;
步骤2:将溶剂、氨水和致孔剂在圆底烧瓶中均匀混合,随后加入所述预聚合混合物和四乙氧基硅烷,搅拌至产生白色沉淀物;
步骤3:对步骤2中的混合液离心分离得到固体粗产物;
步骤4:将所述固体粗产物置于洗脱剂中取出模板离子和致孔剂,得到白色颗粒产物;
步骤5:将所述白色颗粒水洗至中性后,干燥得到硅基介孔五价砷阴离子印迹聚合物;
所述功能单体为3-氨丙基三乙氧基硅烷或3-(2-氨基乙基氨基)丙基三甲氧基硅烷;
所述辅助配体为含胺试剂,包括二乙烯三胺或者三乙烯四胺;
所述溶剂为水或水与乙醇的混合物;其中水和乙醇的体积比为1:1-1:10;
所述致孔剂为P123、F127或CTAB。
2.根据权利要求1所述的硅基介孔五价砷阴离子印迹聚合物的制备方法,其特征在于,在步骤1中,所述七水合砷酸氢二钠、所述功能单体和所述辅助配体在20~50℃下快速搅拌0.5~3 h后形成预聚合混合物。
3.根据权利要求1所述的硅基介孔五价砷阴离子印迹聚合物的制备方法,其特征在于,在步骤2中,所述白色沉淀物为混合液在10~60 ℃下磁力搅拌0.1~48h产生。
4.根据权利要求1所述的硅基介孔五价砷阴离子印迹聚合物的制备方法,其特征在于,在步骤4中,所述洗脱剂为乙醇与稀酸混合液;所述乙醇和所述稀酸的体积比为10:1-100:1。
5.根据权利要求4所述的硅基介孔五价砷阴离子印迹聚合物的制备方法,其特征在于,在步骤4中,将固体粗产物置于圆底烧瓶中,使用乙醇与稀酸混合液加热回流2-24h以去除模板离子和致孔剂。
6.根据权利要求1所述的硅基介孔五价砷阴离子印迹聚合物的制备方法,其特征在于,在步骤5中,所述干燥环境为60 ℃真空干燥。
CN202111174907.6A 2021-10-09 2021-10-09 一种硅基介孔五价砷阴离子印迹聚合物的制备方法 Active CN113856649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111174907.6A CN113856649B (zh) 2021-10-09 2021-10-09 一种硅基介孔五价砷阴离子印迹聚合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111174907.6A CN113856649B (zh) 2021-10-09 2021-10-09 一种硅基介孔五价砷阴离子印迹聚合物的制备方法

Publications (2)

Publication Number Publication Date
CN113856649A CN113856649A (zh) 2021-12-31
CN113856649B true CN113856649B (zh) 2024-01-12

Family

ID=79002062

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111174907.6A Active CN113856649B (zh) 2021-10-09 2021-10-09 一种硅基介孔五价砷阴离子印迹聚合物的制备方法

Country Status (1)

Country Link
CN (1) CN113856649B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626611A (zh) * 2012-04-11 2012-08-08 哈尔滨工程大学 水中具有选择识别性能金属离子印迹吸附剂的制备方法
CN105085924A (zh) * 2014-04-24 2015-11-25 北京普析通用仪器有限责任公司 金属离子印迹聚合物及其制备方法与应用
CN108837813A (zh) * 2018-06-27 2018-11-20 桂林理工大学 一种介孔硅藻As(V)离子表面印迹材料的制备方法和应用
CN110201648A (zh) * 2019-06-09 2019-09-06 桂林理工大学 一种硅藻土表面As(Ⅴ)离子印迹吸附材料的制备方法
CN111036181A (zh) * 2019-12-26 2020-04-21 南京师范大学 一种分子印迹硅胶聚合物及其制备方法与应用
CN111232994A (zh) * 2020-03-20 2020-06-05 西北工业大学 一种中空介孔二氧化硅纳米微球的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102626611A (zh) * 2012-04-11 2012-08-08 哈尔滨工程大学 水中具有选择识别性能金属离子印迹吸附剂的制备方法
CN105085924A (zh) * 2014-04-24 2015-11-25 北京普析通用仪器有限责任公司 金属离子印迹聚合物及其制备方法与应用
CN108837813A (zh) * 2018-06-27 2018-11-20 桂林理工大学 一种介孔硅藻As(V)离子表面印迹材料的制备方法和应用
CN110201648A (zh) * 2019-06-09 2019-09-06 桂林理工大学 一种硅藻土表面As(Ⅴ)离子印迹吸附材料的制备方法
CN111036181A (zh) * 2019-12-26 2020-04-21 南京师范大学 一种分子印迹硅胶聚合物及其制备方法与应用
CN111232994A (zh) * 2020-03-20 2020-06-05 西北工业大学 一种中空介孔二氧化硅纳米微球的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
氨基化硅藻基As(Ⅴ)印迹复合材料的制备与性能;梁效铭;钟溢健;马丽丽;李聪;杨勤桃;陈南春;解庆林;;无机化学学报;35(05);第829-836页 *

Also Published As

Publication number Publication date
CN113856649A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
Zhou et al. Fabrication of Schiff base decorated PAMAM dendrimer/magnetic Fe3O4 for selective removal of aqueous Hg (II)
Hasanzadeh et al. Effective removal of toxic metal ions from aqueous solutions: 2-Bifunctional magnetic nanocomposite base on novel reactive PGMA-MAn copolymer@ Fe3O4 nanoparticles
US20210299634A1 (en) Metal organic resins with zirconium nodes
Venkateswarlu et al. Core–shell ferromagnetic nanorod based on amine polymer composite (Fe3O4@ DAPF) for fast removal of Pb (II) from aqueous solutions
Tan et al. High efficient removal of Pb (II) by amino-functionalized Fe3O4 magnetic nano-particles
Milja et al. Synthesis of surface imprinted nanospheres for selective removal of uranium from simulants of Sambhar salt lake and ground water
He et al. Design and fabrication of highly ordered ion imprinted SBA-15 and MCM-41 mesoporous organosilicas for efficient removal of Ni2+ from different properties of wastewaters
Kang et al. A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater
Zhang et al. Core–shell structured magnetic γ-Fe2O3@ PANI nanocomposites for enhanced As (V) adsorption
US20220219142A1 (en) Polymeric lanthanum nanocomposite, and preparation method and application thereof
Anirudhan et al. Adsorption and separation behavior of uranium (VI) by 4-vinylpyridine-grafted-vinyltriethoxysilane-cellulose ion imprinted polymer
Gao et al. Highly-efficient amphiphilic magnetic nanocomposites based on a simple sol-gel modification for adsorption of phthalate esters
CN110327889B (zh) UiO-66-NH2复合凹凸棒材料及其应用
Anirudhan et al. Arsenic adsorption from contaminated water on Fe (III)‐coordinated amino‐functionalized poly (glycidylmethacrylate)‐grafted TiO2‐densified cellulose
Liu et al. Fabrication of novel magnetic core-shell chelating adsorbent for rapid and highly efficient adsorption of heavy metal ions from aqueous solution
Wu et al. Optimum synthesis of an amino functionalized microcrystalline cellulose from corn stalk for removal of aqueous Cu 2+
Luo et al. Selective removal Pb (II) ions form wastewater using Pb (II) ion-imprinted polymers with bi-component polymer brushes
CN112452302A (zh) 三维镓印迹五倍子单宁硅基复合材料及其在回收镓中的应用
Cen et al. Application of magnetic Cd 2+ ion-imprinted mesoporous organosilica nanocomposites for mineral wastewater treatment
Pengfei et al. Synthesis of PGMA microspheres with amino groups for high-capacity adsorption of Cr (VI) by cerium initiated graft polymerization
Pang et al. Highly efficient removal of As (V) using metal–organic framework BUC-17
Jia et al. Rod-shaped lanthanum oxychloride-decorated porous carbon material for efficient and ultra-fast removal of phosphorus from eutrophic water
Peng et al. A study of adsorption behaviour of Cu (II) on hydroxyapatite-coated-limestone/chitosan composite
CN113856649B (zh) 一种硅基介孔五价砷阴离子印迹聚合物的制备方法
Zheng et al. Self-assembled bacterial cellulose imprinted aerogel for efficient and selective adsorption of erbium from tailings wastewater

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant