CN113854315B - 一种Ag-Bi复合纳米光催化杀菌材料及其制备方法 - Google Patents

一种Ag-Bi复合纳米光催化杀菌材料及其制备方法 Download PDF

Info

Publication number
CN113854315B
CN113854315B CN202111207715.0A CN202111207715A CN113854315B CN 113854315 B CN113854315 B CN 113854315B CN 202111207715 A CN202111207715 A CN 202111207715A CN 113854315 B CN113854315 B CN 113854315B
Authority
CN
China
Prior art keywords
biocl
solution
doped
photocatalytic
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111207715.0A
Other languages
English (en)
Other versions
CN113854315A (zh
Inventor
周云雷
王壮壮
田莹
殷焕顺
谯振
崔晓婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Agricultural University
Original Assignee
Shandong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Agricultural University filed Critical Shandong Agricultural University
Priority to CN202111207715.0A priority Critical patent/CN113854315B/zh
Publication of CN113854315A publication Critical patent/CN113854315A/zh
Application granted granted Critical
Publication of CN113854315B publication Critical patent/CN113854315B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/232Carbonates
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/02Inorganic materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2101/00Chemical composition of materials used in disinfecting, sterilising or deodorising
    • A61L2101/02Inorganic materials
    • A61L2101/06Inorganic materials containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Abstract

本发明公开了一种纳米Ag掺杂Bi‑BiOCl‑Bi2O2CO3复合纳米光催化杀菌材料及其制备,制备方法包括:步骤(1):将硝酸银和五水合硝酸铋加入到硝酸溶液中,得溶液A;步骤(2):将氯化镍加入到步骤(1)制备得到的溶液A中,得溶液B;步骤(3):向步骤(2)制备得到得溶液B中加入DMF,采用水热法在170摄氏度下加热12h,洗涤干燥后获得Ag掺杂Bi‑BiOCl‑Bi2O2CO3复合材料固体粉末。利用本发明的方法制备得到的Ag掺杂Bi‑BiOCl‑Bi2O2CO3复合纳米光催化材料呈片层结构,光催化杀真菌效率高、稳定性好。

Description

一种Ag-Bi复合纳米光催化杀菌材料及其制备方法
技术领域
本发明涉及光催化杀菌技术领域,具体涉及一种Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料及其制备方法。
背景技术
粮食安全关乎到千家万户的和谐稳定。小麦赤霉病(fusarium head blight,FHB)是一种常见的毁灭性的作物病害,感染小麦赤霉病的作物产量和品质都会显著下降。禾谷镰刀菌是引起小麦赤霉病主要病原菌之一。禾谷镰刀菌可以产生多种霉菌毒素,对人和动物的粮食安全有潜在的危险。人和动物误食了感染毒素的食品后,能够造成呕吐、腹泻等疾病,严重时还能够导致死亡。传统的农业病原菌防治方法依赖于化学合成的农药。然而,大量使用化学农药,其残留毒性通常对环境和动物是有害的。此外,一些真菌已经对传统的杀菌剂,如苯并咪唑和二甲酰亚胺,产生了抗性,这使得真菌防治越来越难。因此,需要开发新、环境友好的真菌防治方法或材料。这种防治方法或材料具有高效杀菌、价格低廉、对环境无害并且能够克服真菌抗药性的特点,且还能够分解真菌产生的霉菌毒素。
人们发现半导体材料对致病菌微生物有着杀灭能力,比如TiO2作为半导体材料,具有很强的氧化性,在可见光和水中产生自由基,进攻微生物的细胞膜,使得细胞膜破碎进而杀菌。但是TiO2因光谱利用范围窄、光量子效率低等问题限制了其应用。
铋系半导体材料是近年来研究较热的一类新型光催化剂,具有片层结构、合适的带隙及独特的电子构型。Bi系材料在一定波长光照下价带电子受到激发后跃迁至导带而形成空穴-电子对。空穴-电子对具有一定氧化还原能力,在环境污染物降解方面和光催化杀细菌方面展现出极大的潜力。但是目前暂无铋系半导体材料在杀真菌(如禾谷镰刀菌)上的研究。
发明内容
针对上述现有技术,本发明的目的是提供一种Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料及其制备方法。本发明采用水热法制备Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料,可以减少化学有机农药作为杀菌剂的使用。本发明的制备方法操作简单、易于实现、可重复性好、成本低廉,制备的杀菌材料可实现高效杀菌且对环境无二次污染。
为实现上述目的,本发明采用如下技术方案:
本发明的第一方面,提供一种纳米Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料的制备方法,包括以下步骤:
(1)将硝酸银作为银源和五水合硝酸铋作为铋源加入到硝酸溶液中,在磁力搅拌下得到硝酸银/硝酸铋的硝酸水溶液;
(2)将氯化镍作为氯源加入到硝酸银/硝酸铋的硝酸水溶液中,室温下磁力搅拌获得AgCl/BiOCl的悬浊液;
(3)向步骤(2)得到的AgCl/BiOCl的悬浊液中加入DMF并进行水热反应,洗涤干燥后得到Ag掺杂Bi-BiOCl-Bi2O2CO3固体粉末。
优选的,步骤(1)中,所述硝酸银和五水合硝酸铋的摩尔比为1:(2~10);所述硝酸溶液的浓度为0.8~1.5mol/mL。
优选的,步骤(1)中,所述搅拌为磁力搅拌,搅拌的时间为15min,搅拌的功率为20W、频率为40Hz。
优选的,步骤(2)中,所述氯化镍与五水合硝酸铋的摩尔比为5:(8~13)。所述搅拌为磁力搅拌,搅拌的时间为15min,搅拌的功率为20W、频率为40Hz。
优选的,步骤(3)中,所述DMF与硝酸溶液的体积比为1:(5~7);所述水热反应的温度为170℃,时间为12h。所述搅拌为磁力搅拌,搅拌的时间为15min,搅拌的功率为20W、频率为40Hz。
本发明的第二方面,提供制备方法得到的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料。
本发明的第三方面,提供Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料在光催化杀灭禾谷镰刀菌中的应用。
本发明的有益效果:
(1)本发明制备的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料较单一的Bi-BiOCl-Bi2O2CO3复合材料及单一Ag纳米材料的光催化杀菌效果有了更大的提升。该材料稳定性高,可重复性好,成本低,是一种清洁高效、应用前景广泛的绿色环保型光催化杀菌材料。
(2)本发明制备的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料引入低剂量银纳米材料,由于贵金属表面等离子体共振效应,不仅扩展了半导体复合材料的可见光吸收范围,还增加了对可见光的利用率;另外,贵金属还可以作为光生电子的接收器,可以提高复合系统界面的载流子载运,光生电子在金属表面积累,而空穴会留在Bi-BiOCl-Bi2O2CO3表面,从而在光催化过程中生成更多的具有强氧化作用的活性自由基,如单线态氧、羟基自由基和超氧阴离子等,能够进一步提升光催化杀菌的效率,并可以同样应用于染料降解、异味祛除的相关环保领域。
附图说明
图1为实例1制备的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料的SEM图,放大35100倍,可见该复合材料为片层结构。
图2为实例1制备的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料XRD图,均与标准卡一致。
图3为实例1制备的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料与Bi-BiOCl-BiO2CO3复合纳米光催化杀菌材料及单质Ag纳米粒子在光照下一小时内杀菌效果图。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
正如背景技术部分介绍的,铋系半导体材料是近年来研究较热的一类新型光催化剂,具有片层结构、合适的带隙及独特的电子构型。Bi系材料在一定波长光照下价带电子受到激发后跃迁至导带而形成空穴-电子对。空穴-电子对具有一定氧化还原能力,在环境污染物降解方面和光催化杀细菌方面展现出极大的潜力。
另外,Ag是优良的导体,可以作为电子沉积池,捕获来自Bi系复合材料导带的电子,从而抑制电子和空穴的重组速率。等离子体贵金属可以散射入射光子,使得光子在Bi系复合材料表面的光路通道增长,促进Bi系复合材料对光子的吸收,从而增加光生电子和空穴的形成速率。
基于此,本发明的目的是提供Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料及其制备方法。本发明硝酸银作为银源、五水合硝酸铋作为铋源、氯化镍作为氯源,研发一种低剂量Ag纳米粒子掺杂Bi系纳米材料光催化杀菌剂,催化杀灭禾谷镰刀菌性能,为治疗小麦赤霉菌的防治提供可靠的方法。
本发明采用水热法一锅合成纳米Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化材料,制备过程简单。制备的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米材料结构是成片层状,不形成微球。从图1上看出Ag纳米粒子长在片层结构,Ag纳米粒子受可见光激发产生光生电子-空穴对,电子从激发态的Ag纳米粒子上转移到Bi-BiOCl-Bi2O2CO3导带上,进而被溶液中的氧分子俘获形成超氧自由基或羟基自由基等,这些自由基进一步进攻真菌细胞,破坏细胞膜,起到杀菌作用。本发明杀菌表征是使用真核真菌禾谷镰刀菌,结构上比原核真菌(如大肠杆菌)复杂,所以本发明制备的杀菌材料杀菌效果更优。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本发明实施例中所用的试验材料均为本领域常规的试验材料,均可通过商业渠道购买得到。
实施例
S1称取0.485g Bi(NO3)3·5H2O(纯度为99.99%,购于上海阿拉丁试剂公司)作为铋源,称取0.0849g AgNO3(纯度为99.99%,购于上海阿拉丁试剂公司)作为银源,用1mol/mL硝酸溶解电磁搅拌15min,搅拌功率为20W,频率为40Hz,得到溶液A。
S2称取0.1902g NiCl2(纯度为99.99%,购于上海阿拉丁试剂公司)作为氯源溶解于A中,电磁搅拌15min,搅拌功率为20W,频率为40Hz,得到溶液B。
S3向溶液B中加入10mL DMF(纯度为,购于上海阿拉丁试剂公司),电磁搅拌15min。搅拌功率为20W,频率为40Hz。
S4分别用去离子水、无水乙醇,清洗反应釜内胆,清洗后用吹风机吹干。将溶液B倒入反应釜内胆,拧紧反应釜。
S5将反应釜放在电热鼓风干燥箱(上海一恒科技有限公司,DHG-9070)内,在170℃下反应生成Ag-Bi复合材料。
图1是实施例制备得到的Ag掺杂Bi-BiOCl-Bi2O2CO3复合材料的SEM图。从图中可以看到,Ag-Bi纳米片层结构碎片化程度高,更加分散,这种形貌具有较高的光催化活性。Bi-BiOCl-Bi2O2CO3复合材料片层结构上附着有很多Ag纳米颗粒,1~5μm的粒径大小,在光催化进程,可以预见密集的活性位点和银纳米颗粒的表面等离子共振效应的共同作用下,该纳米复合材料较不掺Ag的Bi系材料,具有更高的杀菌效率。
图2为实施例制备得到的Ag掺杂Bi-BiOCl-Bi2O2CO3复合材料光催化的XRD图,与Ag、BiOCl、Bi、Bi2O2CO3标准卡片相配,因此可以看出成功制备出Ag掺杂Bi-BiOCl-Bi2O2CO3复合材料光催化杀菌材料。
对比例1
Bi-BiOCl-Bi2O2CO3的制备方法:
S1称取0.485g Bi(NO3)3·5H2O(纯度为99.99%,购于上海阿拉丁试剂公司)作为铋源,用1mol/ml硝酸溶解搅拌15min,搅拌功率为20W,频率为40Hz,得到溶液A。
S2称取0.1902g NiCl2(纯度为99.99%,购于上海阿拉丁试剂公司)作为氯源溶解于A中,搅拌15min,搅拌功率为20W,频率为40Hz,得到溶液B。
S3向溶液B中加入10mLDMF(纯度为,购于上海阿拉丁试剂公司),电磁搅拌15min。搅拌功率为20W,频率为40Hz。
S4分别用去离子水、无水乙醇,清洗反应釜内胆,清洗后用吹风机吹干。将溶液B倒入反应釜内胆,拧紧反应釜。
S5将反应釜放在电热鼓风干燥箱(上海一恒科技有限公司,DHG-9070)内,在170℃反应生成Bi-BiOCl-Bi2O2CO3复合材料。
对比例2
Ag纳米颗粒的制备方法:
S1称取0.0849g AgNO3(纯度为99.99%,购于上海阿拉丁试剂公司)作为银源,用1mol/ml硝酸溶解电磁搅拌15min,搅拌功率为20W,频率为40Hz,得到溶液A。
S2称取0.1902g NiCl2(纯度为99.99%,购于上海阿拉丁试剂公司)作为氯源溶解于A中,电磁搅拌15min,搅拌功率为20W,频率为40Hz,得到溶液B。
S3向溶液B中加入10mLDMF(纯度为,购于上海阿拉丁试剂公司),电磁搅拌15min。搅拌功率为20W,频率为40Hz。
S4分别用去离子水、无水乙醇,清洗反应釜内胆,清洗后用吹风机吹干。将溶液B倒入反应釜内胆,拧紧反应釜。
S5将反应釜放在电热鼓风干燥箱(上海一恒科技有限公司,DHG-9070)内,170℃生成Ag纳米颗粒材料。
试验例:杀菌试验
将1mg的实施例制备的Ag-Bi复合纳米光催化杀菌材料、对比例1制备Bi-BiOCl-Bi2O2CO3复合材料、对比例2制备的Ag纳米颗粒材料分别放置于浓度为2×105CFU/mL的禾谷镰刀菌液中,并以在浓度为2×105CFU/mL的禾谷镰刀菌液中加入等量去离子水作为对照。选用氙灯作为光源,滤光片截取350~780nm范围内的可将光照射,光照强度为150mW/cm2,每隔20min取样一次,每次取样3个,利用显微镜计数计算并统计。
图3为Ag掺杂Bi-BiOCl-Bi2O2CO3复合材料杀禾谷镰刀菌效果图,由图3可见,在相同处理时间下,实施例制备的低剂量Ag的掺杂增强了Bi系纳米光催化材料的杀菌效果。随着光照时间的增加,菌液中的活菌数量逐渐减少。对比例1制备的无Ag掺杂的Bi-BiOCl-Bi2O2CO3复合材料在60min的光照下消灭约10%的禾谷镰刀菌,杀菌效率不高;对比例2制备的Ag纳米粒子在相同时间内杀菌效果较Bi-BiOCl-Bi2O2CO3复合材料有所提高;但是实施例制备的低剂量Ag-Bi纳米复合光催化材料与对比例2制备的Ag纳米粒子相比杀菌效率显著提高,在光照60min时,实施例制备的Ag-Bi纳米复合光催化材料杀菌效果几乎达到100%。这表明Bi-BiOCl-Bi2O2CO3复合材料和Ag纳米颗粒之间的有效转移光生电子的相互作用在提高杀菌效率过程中发挥了重要作用。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (3)

1.一种纳米Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料的制备方法,其特征在于,包括以下步骤:
(1)称取0.485g Bi(NO3)3·5H2O作为铋源,称取0.0849g AgNO3作为银源,用1mol/mL硝酸溶解电磁搅拌15min,搅拌功率为20W,频率为40Hz,得到溶液A;
(2)称取0.1902g NiCl2作为氯源溶解于溶液A中,电磁搅拌15min,搅拌功率为20W,频率为40Hz,得到溶液B;
(3)向溶液B中加入10mL DMF,电磁搅拌15min,搅拌功率为20W,频率为40Hz;搅拌完成后倒入反应釜在170℃下进行水热反应,反应完成后,洗涤干燥后得到Ag掺杂Bi-BiOCl-Bi2O2CO3固体粉末。
2.权利要求1所述的制备方法得到的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料。
3.权利要求2所述的Ag掺杂Bi-BiOCl-Bi2O2CO3复合纳米光催化杀菌材料在光催化杀灭禾谷镰刀菌中的应用。
CN202111207715.0A 2021-10-18 2021-10-18 一种Ag-Bi复合纳米光催化杀菌材料及其制备方法 Active CN113854315B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111207715.0A CN113854315B (zh) 2021-10-18 2021-10-18 一种Ag-Bi复合纳米光催化杀菌材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111207715.0A CN113854315B (zh) 2021-10-18 2021-10-18 一种Ag-Bi复合纳米光催化杀菌材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113854315A CN113854315A (zh) 2021-12-31
CN113854315B true CN113854315B (zh) 2022-03-08

Family

ID=78999875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111207715.0A Active CN113854315B (zh) 2021-10-18 2021-10-18 一种Ag-Bi复合纳米光催化杀菌材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113854315B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1942162A (zh) * 2004-02-18 2007-04-04 玛丽安娜·库利 抗微生物制剂及其使用方法
CN113019409A (zh) * 2021-03-23 2021-06-25 四川轻化工大学 一种Bi2O2CO3/BiOCl催化剂的制备方法及其应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108187701B (zh) * 2018-01-30 2020-10-16 青岛科技大学 一种管状AgCl结构的AgCl/BiOCl光催化剂制备方法
CN108432804B (zh) * 2018-04-12 2020-06-16 青岛科技大学 一种复合抑菌剂及其制备方法与应用
CN109046450B (zh) * 2018-08-17 2021-05-25 瑞力恒生态科技(深圳)有限公司 一种BiOCl/(BiO)2CO3负载的醋酸纤维素/丝素杂化膜的制备方法和应用
CN110064394A (zh) * 2019-05-20 2019-07-30 江南大学 一种具有高催化降解活性的Ag@Ag2O/BiOCl复合材料及其制备方法
CN110250203A (zh) * 2019-06-19 2019-09-20 南开大学 一种杀菌剂银/氯化银/钼酸铋复合材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1942162A (zh) * 2004-02-18 2007-04-04 玛丽安娜·库利 抗微生物制剂及其使用方法
CN113019409A (zh) * 2021-03-23 2021-06-25 四川轻化工大学 一种Bi2O2CO3/BiOCl催化剂的制备方法及其应用

Also Published As

Publication number Publication date
CN113854315A (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
Wang et al. Encapsulation of colloidal semiconductor quantum dots into metal-organic frameworks for enhanced antibacterial activity through interfacial electron transfer
Guan et al. Enhanced Escherichia coli inactivation and oxytetracycline hydrochloride degradation by a Z-scheme silver iodide decorated bismuth vanadate nanocomposite under visible light irradiation
Zhang et al. Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities
Shi et al. Recent progress of silver-containing photocatalysts for water disinfection under visible light irradiation: A review
Liu et al. Thermal-sprayed photocatalytic coatings for biocidal applications: A review
Yadav et al. Enhanced photocatalytic inactivation of bacteria on Fe-containing TiO 2 nanoparticles under fluorescent light
US20090148484A1 (en) Stably-dispersing composite of metal nanoparticle and inorganic clay and method for producing the same
García-Salcido et al. MOF-based composites for visible-light-driven heterogeneous photocatalysis: Synthesis, characterization and environmental application studies
Jabbar et al. Supported heterogeneous nanocomposites (SiO2/Fe3O4/Ag2WO4) for visible-light-driven photocatalytic disinfection against E. coli
She et al. Green synthesis of Ag nanoparticles decorated phosphorus doped g-C3N4 with enhanced visible-light-driven bactericidal activity
CN111418608A (zh) Ag-MoS2@TiO2纳米光催化杀菌材料及其制备方法
CN108822838A (zh) 铜掺杂碳量子点的制备方法及应用
Desiati et al. Effect of calcination temperature on the antibacterial activity of TiO2/Ag nanocomposite
CN102784645A (zh) 金属粒子组合TiO2光触媒强化杀菌组成物及制造方法
CN114471734B (zh) 一种可见光响应的氧化亚铜/zif-8异质结光催化抗菌材料的制备方法与应用
Manikandan et al. Microwave-assisted thermochemical conversion of Zr–FeOOH nanorods to Zr–ZnFe2O4 nanorods for bacterial disinfection and photo-Fenton catalytic degradation of organic pollutants
Cai et al. Metal–organic-framework-based photocatalysts for microorganism inactivation: a review
Li et al. Hybridization of carboxymethyl chitosan with bimetallic MOFs to construct renewable metal ion “warehouses” with rapid sterilization and long-term antibacterial effects
Moradi et al. Visible-light-driven photocatalytic inactivation of Escherichia coli by titanium dioxide anchored on natural pyrite
CN113854315B (zh) 一种Ag-Bi复合纳米光催化杀菌材料及其制备方法
CN112375804B (zh) 一种Au/g-C3N4全天候光催化抗菌材料及其明-暗双模式抗菌机理
CN102284291A (zh) 用于车内空气净化器的二氧化钛负载型纳米冷触媒
He et al. Efficient antibacterial study based on near-infrared excited metal–organic framework nanocomposite
CN113647411A (zh) 一种铜纳米粒子/二硫化钼复合材料及其制备方法和应用
Zhang et al. Preparation of enhanced AgI@ MnO2 heterojunction photocatalysts for rapid sterilization under visible light

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant