CN113851568A - 一种利用原子层沉积技术提高微型led调制带宽的办法 - Google Patents

一种利用原子层沉积技术提高微型led调制带宽的办法 Download PDF

Info

Publication number
CN113851568A
CN113851568A CN202110954861.3A CN202110954861A CN113851568A CN 113851568 A CN113851568 A CN 113851568A CN 202110954861 A CN202110954861 A CN 202110954861A CN 113851568 A CN113851568 A CN 113851568A
Authority
CN
China
Prior art keywords
led
micro
mini
modulation bandwidth
improving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110954861.3A
Other languages
English (en)
Inventor
吴挺竹
林万胜
潘建华
卢霆威
郭伟杰
林岳
陈国龙
郭自泉
吕毅军
陈忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202110954861.3A priority Critical patent/CN113851568A/zh
Publication of CN113851568A publication Critical patent/CN113851568A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • Optical Communication System (AREA)

Abstract

一种利用原子层沉积技术提高微型LED调制带宽的办法,涉及光通信技术领域。提供一种利用原子层沉积技术来提高微型LED调制带宽的办法;主要通过在Mini‑LED/Micro‑LED侧壁沉积一定厚度的ALD来降低载流子寿命以获得较高的调制带宽,并最终实现提高VLC通信速率的目的;通过修复侧壁损伤,降低载流子寿命同时进一步提高器件调制带宽和发光强度的目的,通过降低载流子寿命以提高Mini‑LED/Micro‑LED调制带宽,从而进一步提高系统的通信速率;通过改善载流子寿命提高其发光强度,从而进一步增加系统的通信距离。对未来推动这种频谱丰富、高保密性高的通信方式的普遍应用有着积极促进作用。

Description

一种利用原子层沉积技术提高微型LED调制带宽的办法
技术领域
本发明涉及光通信技术领域,尤其是涉及一种利用原子层沉积技术提高微型LED调制带宽的办法。
背景技术
光通信技术是指利用可见光波段的光作为信息载体,不使用光纤等有线信道的传输介质,而在空气中直接传输光信号的通信方式。Mini-LED/Micro-LED光通信是基于Mini-LED/Micro-LED具有切换速度快的特点,利用配备有Mini-LED/Micro-LED的照明设备和电子显示屏等发出的用肉眼无法识别的高速光波信号来对信息进行调制和传输,然后通过APD等光电转换器接收光信号并从光信号中恢复出原始信息的通信技术。无论是应用于何种场景的光通信系统,其均由输入和处理电路、驱动调制电路、光学系统以及光电探测器等组成;其中,驱动调制电路、输入和处理电路共同构成光通信系统的光发射部分。光发射部分的功能是将信号源信号转换成便于信道传输的电信号以及将电信号调制成相应的光信号。而光学系统和光电探测器等模块构成光通信系统的光接收部分。光接收部分实现的功能正好与光发射部分相反,即主要完成光信号的接收和转换。
光通信作为下一代高速接入技术的一个有前途的解决方案,是射频通信的重要补充。相比较传统的射频通信,光通信具有诸多优点:一是带宽资源丰富,当前广泛使用的射频通信,其电磁波频谱资源十分有限,并且需要审批授权。而光通信除能够提供丰富的频谱资源外,还无需相关机构授权;二是安全性高,光通信技术的传输媒介是可见光,因为可见光无法穿透墙壁等遮挡物,所以传输被限制在一定范围内,这就能够有效地避免传输信息的泄露,从而保证信息的安全性;三是应用领域广,光通信不产生电磁辐射,也不容易受外部电磁干扰影响,因此能够广泛应用在对电磁干扰敏感的特殊场合,如加油站和医院等。
虽然光通信可以满足用户在高速、安全等方面的要求,并且为无线通信提供一种全新的接入方式。但是,光通信本身存在一定的局限性,即当前VLC系统中可用光源的调制带宽不高,因此阻碍该项技术的大规模应用。
LED调制带宽满足公式:
Figure BDA0003220066490000021
式中,τ、d、e和J分别代表载流子寿命、有源层厚度、基本电荷以及注入电流密度,B代表辐射复合系数。由上述公式可见,LED的调制带宽会随着载流子寿命的降低而提高。
VLC系统中常用的光源是基于InGaN量子阱的C面微型发光二极管,但目前光源的调制带宽会受到载流子复合速率的固有限制,但随着芯片尺寸的减低,芯片的电流密度注入效率可以明显提升,载流子寿命相较于与普通LED明显缩短,因此小尺寸LED芯片在光通信领域有着广阔的应用前景,但是目前小尺寸Ш族氮化物LED的制备方法还是主要通过干法蚀刻技术,这种方法不可避免会对芯片侧壁造成损伤,这些会导致Mini-LED/Micro-LED发热加剧性能下降,特别是会使载流子寿命增,发光强度减弱,从而限制光通信的速率和距离,阻碍了光通信的普及。
发明内容
本发明的目的在于针对现有技术存在的上述问题,提供一种利用原子层沉积技术来提高微型LED调制带宽的办法;主要通过在Mini-LED/Micro-LED侧壁沉积一定厚度的ALD来降低载流子寿命以获得较高的调制带宽,并最终实现提高VLC通信速率的目的;通过在Mini-LED/Micro-LED表面形成一定厚度的ALD钝化层除能提升通信速率外,还可以增大器件的发光强度,进而增加系统的通信距离。
本发明所述利用原子层沉积技术提高微型LED调制带宽的办法,包括以下步骤:
1)利用干法刻蚀技术制备Mini-LED/Micro-LED;
2)采用ALD沉积法,在干法刻蚀后的Mini-LED/Micro-LED侧壁沉积一层ALD钝化层,用于修补被等离子刻蚀造成的破坏性表面;
3)在光通信系统的发送端采用步骤2)制备所得Mini-LED/Micro-LED作为光源,即可实现提高微型LED调制带宽。
在步骤2)中,所述ALD钝化层的厚度可为70~150nm。
以下给出本发明的原理:
微型发光二极管的调制带宽满足公式(1):
Figure BDA0003220066490000022
从上式可以看出,调制带宽主要取决于Mini-LED/Micro-LED的载流子寿命。
Mini-LED/Micro-LED的总载流子寿命τ,可以用式(2)描述:
Figure BDA0003220066490000031
式中,τr和τnr分别代表辐射复合和非辐射复合的载流子寿命。
目前制造Ш族氮化物Mini-LED/Micro-LED的最主要方法是采用干法刻蚀技术,但是干法蚀刻技术会对器件侧壁造成不可避免的损坏。侧壁缺陷产生后,在相同注入电流密度下的载流子浓度会降低。此外,侧壁缺陷也会降低QCSE的库仑屏蔽效应,并且由于量子阱中电子和空穴的波函数重叠较少,辐射复合系数B也变小。因此,由载流子浓度和辐射复合系数B共同决定的辐射复合寿命τr将增加。此外,非辐射复合载流子寿命τnr会随着侧壁缺陷后注入量子阱的有效载流子浓度的降低而增加。无论是辐射复合载流子寿命τr还是非辐射复合载流子寿命τnr,均会因侧壁缺陷的引入而增加。因此,侧壁缺陷会使器件总的载流子寿命增加。根据Mini-LED/Micro-LED的-3dB带宽公式(1)可知,载流子寿命的增加会降低器件的调制带宽。侧壁缺陷除影响Mini-LED/Micro-LED的调制带宽外,还会降低Mini-LED/Micro-LED的发光效率以及发光强度从而限制光通信的距离。因此,要想实现光通信的大规模应用,让高速、远距离通信成为可能,就必须采取相应的技术手段来减小损坏对器件的影响,因此对Mini-LED/Micro-LED的侧壁缺陷进行修复就显得尤为必要。
目前对侧壁缺陷进行修复最常采用的方法是PECVD法,该方法的原理是在低气压下,利用低温等离子体在工艺腔体的阴极上产生辉光放点,利用辉光放点使样品升温到预定的温度,然后通入适量的工艺气体,这些气体经一系列化学反应和等离子体反应,最终在样品表面形成固态薄膜。该方法虽然原理简单,但是存在对气体纯度要求高、沉积层均匀性不佳等缺点。本发明采用ALD沉积法,即通过在Mini-LED/Micro-LED侧壁沉积一定厚度ALD的方法进行缺陷修复。由于使用ALD方法可以很好的阻挡水汽,所以相较于前一种方法具有无颗粒、无针孔薄膜、在非平整表面甚至纳米颗粒上都可以有极高的保形性和覆盖性能好等优点。
在Mini-LED/Micro-LED侧壁沉积一定厚度的ALD层,能够有效减小侧壁缺陷对器件的损坏,明显提升器件的通信性能。一是,可以通过降低Mini-LED/Micro-LED的总载流子寿命时间,提高Mini-LED/Micro-LED的调制带宽,进而增加光通信的信息传输速率;二是,明显改善Mini-LED/Micro-LED的发光强度,因此提高VLC系统的通信距离。
本发明利用在Mini-LED/Micro-LED侧壁沉积一定厚度的ALD层,通过修复侧壁损伤,降低载流子寿命同时进一步提高器件调制带宽和发光强度的目的,具有很好的创新型和可行性。本发明利用ALD对Mini-LED/Micro-LED的侧壁进行修复,通过降低载流子寿命以提高Mini-LED/Micro-LED调制带宽,从而进一步提高系统的通信速率;通过改善载流子寿命提高其发光强度,从而进一步增加系统的通信距离。对未来推动这种频谱丰富、高保密性高的通信方式的普遍应用有着积极促进作用。
附图说明
图1为本发明实施例所制备的具有ALD结构的Mini-LED/Micro-LED器件用于实际通信系统的原理图。
图2为本发明实施例所制备的具有ALD结构的Mini-LED/Micro-LED器件结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下实施例将结合附图对本发明进行作进一步的说明。应当理解,此处所描述的具体实施例仅为本发明可以实施的具体实例举例,仅用于解释本发明,并不用于限定本发明。
以下实施例将结合附图对本发明做进一步说明。
参见图1,描述Mini-LED/Micro-LED的ALD侧壁修复过程以及该器件用做光通信系统光源时,系统实现信息交互的过程。
以太网信号1被传输到驱动模块2中,驱动模块2将输入信号和直流信号进行耦合,并将耦合得到的信号加载到Mini-LED/Micro-LED 3的两端,完成信号的发射。
Mini-LED/Micro-LED3发出的光信号经自由空间传播到达光信号接受模块4,由光信号接受模块4做进一步处理后,传递给信号接收端5,完成信号的接收。
在发送端选用本发明提供的器件Mini-LED/Micro-LED 3作为光源,能使该可见光通信系统的通信速率和通信距离明显提升。
参见图2,以下给出一种具有原子层沉积的Mini-LED/Micro-LED的制备方法,包括如下步骤:
步骤1:通过金属有机化学气相沉积法在蓝宝石衬底3-1上生长未掺杂GaN层缓冲层3-2、掺硅的n型GaN层3-3、InGaN/GaN多量子阱3-4、掺镁p型GaN层3-5以及透明电极3-6。
步骤2:结合光刻技术,通过电感耦合等离子体蚀刻形成台面区,通过热退火实现p型欧姆接触。
步骤3:在Mini-LED/Micro-LED侧壁沉积一定厚度的ALD 3-7。
利用干法刻蚀技术制备Mini-LED/Micro-LED,会造成Mini-LED/Micro-LED侧壁缺陷。侧壁缺陷使得Mini-LED/Micro-LED的发光强度减弱载流子寿命增加,从而影响光通信的通信速率与距离。因此,若想实现高速长距离的光通信,必须设法修复刻蚀形成的侧壁缺陷。而ALD能形成超薄、无针孔的薄膜的特性,使它可以均匀、保形地覆盖至纳米级别的高台阶落差结构以及气孔、沟槽、空隙和孔洞的内部。因此,ALD薄膜优异的保型性使其在一些非常具有挑战性的特殊形貌与3D纳米结构的Mini-LED/Micro-LED表面实现出色的钝化保护层,从而提高Mini-LED/Micro-LED的性能。用ALD在Mini-LED/Micro-LED表面沉积一层钝化膜可以很好的修补被等离子刻蚀造成的破坏性表面,可有效降低漏电流,显著降低载流子寿命并提高LED的效率和发光强度,从而实现高速长距离的可见光系统。以ALD-Al2O3为例,具体修复过程就是利用三甲基铝和H2O在氩气氛中反应生长致密的Al2O3的钝化层,并通过使用循环次数来精确控制钝化层的厚度。
步骤4:使用电子束蒸发依次蒸发具有不同图案的铬/铝/钛/金金属,以分别形成p型电极3-9和n型电极3-8。
本发明制备的Mini-LED/Micro-LED器件无需使用任何其它特殊材料,而是通过在Mini-LED/Micro-LED侧壁沉积合适厚度的ALD,从而获得低载流子寿命和高发光强度等优异性能。低载流子寿命使得器件具有高调制带宽,因此能够提高系统的通信速率;高发光强度使得器件发出的光信号能传输到更远的范围,从而增加系统的通信距离。
表1给出不同芯片尺寸Mini-LED在ALD钝化处理后调制带宽结果对比。
表1
Figure BDA0003220066490000051
从表1可以看出,三种不同芯片尺寸的Mini-LED在ALD钝化处理后,芯片载流子寿命都呈现下降趋势,带宽都得到提升。在驱动电流密度为823A/cm2时,芯片载流子寿命和带宽的具体参数表1所示,当芯片尺寸为101.6*203.2μm2时,在进行ALD侧壁修复后,载流子寿命从3.00ns.减小到2.86ns,带宽则从84.1MHz提高到101.0MHz,提升20%;当芯片尺寸为101.6*203.2μm2时,在进行ALD侧壁修复后,载流子寿命从3.28ns减小到2.99ns,带宽则从87.0MHz提高到96.0MHz,提升10.3%;当芯片尺寸为101.6*203.2μm2时,在进行ALD侧壁修复后,载流子寿命从4.88ns减小到3.25ns,带宽则从70.4MHz提高到76.6MHz,提升8.8%。可以看出随着芯片的减低,在进行ALD侧壁修复后,芯片带宽的改善效果更加明显。综上所述,本发明提供的利用ALD同时提高Mini-LED/Micro-LED调制带宽的方法,对光通信技术的大规模应用具有重要意义。

Claims (2)

1.一种利用原子层沉积技术提高微型LED调制带宽的办法,其特征在于包括以下步骤:
1)利用干法刻蚀技术制备Mini-LED/Micro-LED;
2)采用ALD沉积法,在干法刻蚀后的Mini-LED/Micro-LED侧壁沉积一层ALD钝化层,用于修补被等离子刻蚀造成的破坏性表面;
3)在光通信系统的发送端采用步骤2)制备所得Mini-LED/Micro-LED作为光源,即可实现提高微型LED调制带宽。
2.如权利要求1所述一种利用原子层沉积技术提高微型LED调制带宽的办法,其特征在于在步骤2)中,所述ALD钝化层的厚度为70~150nm。
CN202110954861.3A 2021-08-19 2021-08-19 一种利用原子层沉积技术提高微型led调制带宽的办法 Pending CN113851568A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110954861.3A CN113851568A (zh) 2021-08-19 2021-08-19 一种利用原子层沉积技术提高微型led调制带宽的办法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110954861.3A CN113851568A (zh) 2021-08-19 2021-08-19 一种利用原子层沉积技术提高微型led调制带宽的办法

Publications (1)

Publication Number Publication Date
CN113851568A true CN113851568A (zh) 2021-12-28

Family

ID=78976115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110954861.3A Pending CN113851568A (zh) 2021-08-19 2021-08-19 一种利用原子层沉积技术提高微型led调制带宽的办法

Country Status (1)

Country Link
CN (1) CN113851568A (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014591A2 (en) * 2004-07-08 2006-02-09 Itn Energy Systems, Inc. Permeation barriers for flexible electronics
US20140217540A1 (en) * 2013-02-04 2014-08-07 Teledyne Scientific & Imaging, Llc Fully depleted diode passivation active passivation architecture
US20160079437A1 (en) * 2013-06-28 2016-03-17 Kabushiki Kaisha Kobe Sho (Kobe Steel, Ltd.) Thin film transistor and method for manufacturing same
US20160197232A1 (en) * 2015-01-06 2016-07-07 Apple Inc. Led structures for reduced non-radiative sidewall recombination
CN106449931A (zh) * 2016-10-31 2017-02-22 江苏新广联半导体有限公司 一种led倒装芯片的钝化沉积方法
CN107170822A (zh) * 2017-07-10 2017-09-15 西安电子科技大学 基于负电容介质的GaN基凹槽绝缘栅增强型高电子迁移率晶体管
US20180053915A1 (en) * 2016-08-16 2018-02-22 The Japan Steel Works, Ltd. Method of forming protection film for organic el device, method of manufacturing display device and display device
US20190013463A1 (en) * 2017-07-10 2019-01-10 University Of Kansas Atomic layer deposition of ultrathin tunnel barriers
CN110165028A (zh) * 2019-06-19 2019-08-23 厦门大学 基于局域表面等离激元增强的mis结构紫外led及其制备方法
US20190317374A1 (en) * 2016-11-23 2019-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
CN110993701A (zh) * 2019-12-30 2020-04-10 晋能光伏技术有限责任公司 一种光伏se电池及其制备方法
CN111010232A (zh) * 2019-12-20 2020-04-14 厦门大学 一种提高可见光通信中Micro-LED带宽方法
CN112234118A (zh) * 2020-09-28 2021-01-15 厦门大学 一种可见光通信的微型阵列光收发集成芯片及制作方法
US20210193871A1 (en) * 2017-11-01 2021-06-24 The Regents Of The University Of California Reduction in leakage current and increase in efficiency of iii-nitride leds by sidewall passivation using atomic layer deposition

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006014591A2 (en) * 2004-07-08 2006-02-09 Itn Energy Systems, Inc. Permeation barriers for flexible electronics
US20140217540A1 (en) * 2013-02-04 2014-08-07 Teledyne Scientific & Imaging, Llc Fully depleted diode passivation active passivation architecture
US20160079437A1 (en) * 2013-06-28 2016-03-17 Kabushiki Kaisha Kobe Sho (Kobe Steel, Ltd.) Thin film transistor and method for manufacturing same
US20160197232A1 (en) * 2015-01-06 2016-07-07 Apple Inc. Led structures for reduced non-radiative sidewall recombination
US20180053915A1 (en) * 2016-08-16 2018-02-22 The Japan Steel Works, Ltd. Method of forming protection film for organic el device, method of manufacturing display device and display device
CN106449931A (zh) * 2016-10-31 2017-02-22 江苏新广联半导体有限公司 一种led倒装芯片的钝化沉积方法
US20190317374A1 (en) * 2016-11-23 2019-10-17 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
CN107170822A (zh) * 2017-07-10 2017-09-15 西安电子科技大学 基于负电容介质的GaN基凹槽绝缘栅增强型高电子迁移率晶体管
US20190013463A1 (en) * 2017-07-10 2019-01-10 University Of Kansas Atomic layer deposition of ultrathin tunnel barriers
US20210193871A1 (en) * 2017-11-01 2021-06-24 The Regents Of The University Of California Reduction in leakage current and increase in efficiency of iii-nitride leds by sidewall passivation using atomic layer deposition
CN110165028A (zh) * 2019-06-19 2019-08-23 厦门大学 基于局域表面等离激元增强的mis结构紫外led及其制备方法
CN111010232A (zh) * 2019-12-20 2020-04-14 厦门大学 一种提高可见光通信中Micro-LED带宽方法
CN110993701A (zh) * 2019-12-30 2020-04-10 晋能光伏技术有限责任公司 一种光伏se电池及其制备方法
CN112234118A (zh) * 2020-09-28 2021-01-15 厦门大学 一种可见光通信的微型阵列光收发集成芯片及制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
竹鹏辉: "粉体原子层沉积系统设计及纳米铝粉表面钝化研究", 《中国优秀硕士学位论文全文数据库(电子期刊)》, no. 3, pages 022 - 127 *

Similar Documents

Publication Publication Date Title
CN101572288B (zh) 一种GaN基多量子阱超辐射发光二极管及其制备方法
Cao et al. Color converted white light-emitting diodes with 637.6 MHz modulation bandwidth
CN106449915B (zh) 一种发光二极管外延片的生长方法
CN102881788A (zh) 一种改善GaN基LED量子阱结构提高载子复合效率的外延生长方法
CN112259650B (zh) 发光二极管外延片及其制备方法
CN106057996A (zh) 一种发光二极管的外延片及其生长方法
Lu et al. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication
CN106159047A (zh) 具有pn掺杂量子垒的发光二极管外延结构及其制备方法
Chai et al. High-speed parallel micro-LED arrays on Si substrates based on via-holes structure for visible light communication
Zhu et al. Embedded electrode micro-LEDs with high modulation bandwidth for visible light communication
CN114883464A (zh) 提高可靠性的发光二极管外延片及其制备方法
CN108550676B (zh) 一种发光二极管外延片及其制造方法
KR102701214B1 (ko) 갈륨 함유 발광 장치의 성능 향상 방법
CN107316925B (zh) 紫光led外延结构及其生长方法
CN104952710A (zh) 一种led外延层生长方法
CN109473520B (zh) 一种发光二极管外延片及其制造方法
KR102506957B1 (ko) 발광소자
CN113851568A (zh) 一种利用原子层沉积技术提高微型led调制带宽的办法
CN109346580B (zh) 一种发光二极管外延片的制造方法
JP2011258843A (ja) 窒化物半導体発光素子及びその製造方法
CN105655454B (zh) 高调制发光二极管及其制备方法
CN108735867A (zh) 发光二极管的芯片及其量子阱结构和制造方法
CN113471340A (zh) 一种基于局域表面等离激元耦合增强的MIS结构的超快micro-LED及其制备方法
CN208938995U (zh) 发光二极管的芯片及其量子阱结构
Ho et al. Blue micro-LED with a red/green blended polymer film for 3.5-Gbps visible light communication employing adaptive SNR-Flattening Algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination