CN113846113B - 一种有限自我复制mRNA分子系统、制备方法及应用 - Google Patents

一种有限自我复制mRNA分子系统、制备方法及应用 Download PDF

Info

Publication number
CN113846113B
CN113846113B CN202111080355.2A CN202111080355A CN113846113B CN 113846113 B CN113846113 B CN 113846113B CN 202111080355 A CN202111080355 A CN 202111080355A CN 113846113 B CN113846113 B CN 113846113B
Authority
CN
China
Prior art keywords
mrna
sequence
protein
ala
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111080355.2A
Other languages
English (en)
Other versions
CN113846113A (zh
Inventor
王刚
于寅
黄健
易桦林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Helin Biomedical Co ltd
Zhenhe Medicine Hangzhou Co ltd
Original Assignee
Zhenhe Medicine Hangzhou Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenhe Medicine Hangzhou Co ltd filed Critical Zhenhe Medicine Hangzhou Co ltd
Priority to PCT/CN2021/126076 priority Critical patent/WO2023035372A1/zh
Publication of CN113846113A publication Critical patent/CN113846113A/zh
Application granted granted Critical
Publication of CN113846113B publication Critical patent/CN113846113B/zh
Priority to US18/598,120 priority patent/US20240200042A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/127RNA-directed RNA polymerase (2.7.7.48), i.e. RNA replicase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4715Pregnancy proteins, e.g. placenta proteins, alpha-feto-protein, pregnancy specific beta glycoprotein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/54Interleukins [IL]
    • C07K14/55IL-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/07Nucleotidyltransferases (2.7.7)
    • C12Y207/07048RNA-directed RNA polymerase (2.7.7.48), i.e. RNA replicase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/602Sox-2
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/603Oct-3/4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/604Klf-4
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/606Transcription factors c-Myc
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/60Transcription factors
    • C12N2501/608Lin28
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/12011Asfarviridae
    • C12N2710/12022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16622New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/20011Papillomaviridae
    • C12N2710/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2760/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
    • C12N2760/00011Details
    • C12N2760/16011Orthomyxoviridae
    • C12N2760/16111Influenzavirus A, i.e. influenza A virus
    • C12N2760/16122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Toxicology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Pregnancy & Childbirth (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Plant Pathology (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)

Abstract

本发明涉及生物医药技术领域,尤其涉及一种有限自我复制mRNA分子系统、制备方法及应用。本发明的有限自我复制mRNA分子系统包括编码甲病毒属突变型复制酶的第一mRNA,以及至少一个编码目标蛋白的第二mRNA,通过在突变型复制酶的nsP2亚单元产生特异突变调整,使该有限自我复制mRNA分子系统能够实现有限自我复制,避免产生细胞毒性;通过将突变型复制酶及不同的目标蛋白构建不同的mRNA,第一mRNA编码的突变型复制酶能够同时有限复制多个不同的目标蛋白,实现多重目标蛋白的持续表达。

Description

一种有限自我复制mRNA分子系统、制备方法及应用
【技术领域】
本发明涉及生物医药技术领域,尤其涉及一种有限自我复制mRNA分子系统、制备方法及应用。
【背景技术】
信使RNA(mRNA)疗法是一种全新的治疗方式,具有广泛的临床应用潜力,包括针对传染源的疫苗以及针对癌症或遗传疾病的治疗、再生疗法和免疫疗法。与基于蛋白质的生物制剂相比,信使RNA疗法的优势包括信使RNA可以通过机体自身的细胞合成蛋白,不需要复杂的蛋白质合成及纯化工艺或生产线;可以将细胞内和膜结合蛋白作为治疗靶点;可以快速无细胞GMP条件下工业化生产,研发到产品的周期短等。
但是信使RNA疗法的应用受到结构不稳定、先天免疫原性、体内递送低效等因素的限制,该技术发展的方向在于:第一,它必须避免先天免疫系统排斥,先天免疫系统会将治疗性信使RNA误认为非自身核酸,从而产生排斥,这对于信使RNA治疗药物的重复给药尤其重要,因为免疫记忆可能会限制药物产品的有效性。目前有研究认为通过化学修饰信使RNA的核苷酸碱基可以降低先天免疫排斥,从而提高信使RNA的翻译为蛋白的效率,但是如何进行核苷修饰,修饰的比例和如何进行核苷酸修饰组合尚不清楚。第二,普通信使RNA不稳定,容易降解且表达持续的时间不长,有研究表明普通信使RNA在细胞中仅能表达24小时。自我复制的信使RNA,因其可以自我复制,可以放大信使RNA的蛋白翻译指令,可以增强和延长信使RNA蛋白的表达。现有技术中采用的自我复制信使RNA分子系统源自甲病毒的基因组骨架,其中编码病毒RNA复制酶部分骨架是完整的,编码病毒的结构蛋白骨架被取代为编码目标蛋白序列。该信使RNA分子系统有如下缺陷:首先,相对于非自我复制的信使RNA,自我复制信使RNA核苷酸序列要长很多,细胞负担重,体外转录合成信使RNA有技术难度,工业化生产成本高;其次,自我复制信使RNA分子系统实质为能够自我复制的RNA假病毒,其病毒属性明显,例如无法预测其复制的次数,存在无限复制的可能(体内假病毒繁殖),例如,水泡性口炎病毒抗原和狂犬病病毒抗原被包装为上述的自我复制RNA时存在从而放大其毒性的可能;第三,上述的信使RNA分子系统的细胞毒性大,而且由于无法对其进行核苷修饰而导致细胞或者机体的免疫反应大大超过非自我复制信使RNA。
因此,有必要提供一种有限自我复制的信使RNA分子系统。
【发明内容】
本发明的目的在于提供一种有限自我复制mRNA分子系统、制备方法及应用,以解决现有技术中mRNA无法实现有限自我复制的技术问题。
本发明第一方面提供了一种有限自我复制mRNA分子系统,包括:
编码甲病毒属突变型复制酶的第一mRNA;以及
至少一个编码目标蛋白的第二mRNA;
其中,所述突变型复制酶产生nsP2区域的第259位的突变以及nsP2区域的第650位的突变。
可选地,所述突变型复制酶包括依次连接的nsP1区域、nsP2区域、nsP3区域以及nsP4区域,所述突变型复制酶的氨基酸序列如SEQ ID NO.1所示,所述突变型复制酶产生在SEQ ID NO.1所示的796位点的丝氨酸S突变为脯氨酸P以及在SEQ ID NO.1所示的1187位点的精氨酸R突变为天冬氨酸D。
可选地,所述第一mRNA包括突变型复制酶编码序列,所述突变型复制酶编码序列包括如SEQ ID NO.2所示的核酸序列对应的RNA序列;
每个所述第二mRNA包括依次连接的复制酶5’端特异性序列、目标蛋白编码序列以及复制酶3’端特异性序列,所述复制酶5’端特异性序列包括如SEQ ID NO.7所示的核酸序列对应的RNA序列,所述复制酶3’端特异性序列包括如SEQ ID NO.8所示的核酸序列对应的RNA序列。
可选地,所述第一mRNA和所述第二mRNA还包括:5’帽结构、5’UTR序列、3’UTR序列以及多聚腺苷酸序列;
其中,所述第一mRNA按照5’→3’方向依次包括如下元件:5’帽结构、5’UTR序列、突变型复制酶编码序列、3’UTR序列和多聚腺苷酸序列;
每个所述第二mRNA按照5’→3’方向依次包括如下元件:5’帽结构、5’UTR序列、复制酶5’端特异性序列、目标蛋白编码序列、复制酶3’端特异性序列、3’UTR序列和多聚腺苷酸序列;
所述5’UTR序列包括如SEQ ID NO.9所示的核酸序列对应的RNA序列,所述3’UTR序列包括如SEQ ID NO.10所示的核酸序列对应的RNA序列,所述5’帽结构选自3′-O-Me-m7G、m7 GpppG、m 2 7,3′-O GpppG、m 7 Gppp(5')N1或m 7 Gppp(m 2′-O)N1中的至少一种。
可选地,所述第一mRNA或所述第二mRNA中部分或全部的尿嘧啶进行了能够提高所述第一mRNA在生物体内稳定性的化学改性,所述化学改性包括利用N1-甲基假尿苷置换所述第一mRNA中的至少50%、至少60%、至少70%、至少80%、至少90%或100%的尿嘧啶;
或,所述第一mRNA和所述第二mRNA被RNase III处理,所述第一mRNA和所述第二mRNA经快速蛋白质液相色谱提纯。
可选地,所述目标蛋白包括SARS-CoV-2的抗原性多肽;
或,所述目标蛋白包括白细胞介素-2和不含氨基的甲胎蛋白;
或,所述目标蛋白包括HPV6的L1蛋白、HPV11的L1蛋白、HPV16的L1蛋白、HPV18的L1蛋白和HPV的E6蛋白;
或,所述目标蛋白包括HSV的包膜糖蛋白E和HSV的包膜糖蛋白D;
或,所述目标蛋白包括流感病毒HA抗原;
或,所述目标蛋白包括HIV的Gag抗原、HIV的EnV抗原和HIV的CD40L;
或,所述目标蛋白包括非洲猪瘟病毒的NL-S蛋白、非洲猪瘟病毒的cd2v ep402r蛋白和非洲猪瘟病毒的TK蛋白;
或,所述目标蛋白包括Taffazin蛋白;
或,所述目标蛋白包括c-Myc蛋白、Klf4蛋白、Sox2蛋白、OCT4蛋白和Lin28蛋白;
或,所述目标蛋白包括Cas9蛋白和DNAJC19蛋白;
或,所述目标蛋白包括水解GFP蛋白。
本发明第二方面提供了一种有限自我复制mRNA分子系统的制备方法,包括:
合成第一mRNA;
合成至少一个第二mRNA;
其中,第一mRNA编码甲病毒属突变型复制酶,第二mRNA编码目标蛋白,所述突变型复制酶产生nsP2区域的第259位的突变以及nsP2区域的第650位的突变。
可选地,还包括:
利用RNase III对所述第一mRNA和所述第二mRNA进行处理;
利用快速蛋白质液相色谱对所述第一mRNA和所述第二mRNA进行提纯。
可选地,所述合成第一mRNA,包括:
合成突变型复制酶DNA编码序列,其中,所述突变型复制酶DNA编码序列包括如SEQID NO.9所示的5’非翻译区DNA序列、如SEQ ID NO.2所示的突变型复制酶编码序列、如SEQID NO.10所示的3’非翻译区DNA序列;
通过PCR在所述突变型复制酶DNA编码序列上添加mRNA的poly-(a)尾巴得到第一mRNA的DNA合成模版;
将所述第一mRNA的DNA合成模版进行体外转录合成第一mRNA。
可选地,所述合成第二mRNA,包括:
合成特异性修饰的目标蛋白DNA编码序列,其中,所述特异性修饰的目标蛋白DNA编码序列包括如SEQ ID NO.9所示的5’非翻译区DNA序列、如SEQ ID NO.7所示的复制酶5’端特异性DNA序列、目标蛋白DNA编码序列、如SEQ ID NO.8所示的复制酶3’端特异性DNA序列、如SEQ ID NO.10所示的3’非翻译区DNA序列;
通过PCR在所述特异性修饰的目标蛋白DNA编码序列上添加mRNA的poly-(a)尾巴得到第二mRNA的DNA合成模版;
将所述第二mRNA的DNA合成模版进行体外转录合成第二mRNA。
本发明第三方面提供了一种生物材料,所述生物材料为A1)至A6)中的任一种:
A1)编码所述第一mRNA的核酸分子;
A2)编码所述第二mRNA的核酸分子;
A3)含有A1)所述核酸分子的重组载体;
A4)含有A2)所述核酸分子的重组载体;
A5)含有A3)所述重组载体以及的转基因动物细胞系;
A6)含有A4)所述重组载体的转基因动物细胞系。
本发明第四方面提供了一种药物组合物,包括上述的有限自我复制mRNA分子系统中的至少一种,以及递送载体。
本发明第五方面提供了上述编码甲病毒属突变型复制酶的第一mRNA在制备调节免疫系统的佐剂的用途,其中,所述突变型复制酶产生nsP2区域的第259位的突变以及nsP2区域的第650位的突变。
本发明第六方面提供了上述的有限自我复制mRNA分子系统或上述的生物材料或上述的药物组合物在制备细胞重编辑试剂中的用途、在制备基因编辑试剂中的用途、在制备Barth综合征治疗药物中的用途、在制备感染性疾病疫苗中的用途或在制备肿瘤疫苗中的用途。
本发明的有限自我复制mRNA分子系统包括编码甲病毒属突变型复制酶的第一mRNA,以及至少一个编码目标蛋白的第二mRNA,通过在突变型复制酶的nsP2亚单元产生特异突变调整,使该有限自我复制mRNA分子系统能够实现有限自我复制,避免产生细胞毒性;通过将突变型复制酶及不同的目标蛋白构建不同的mRNA,第一mRNA编码的突变型复制酶能够同时有限复制多个不同的目标蛋白,实现多重目标蛋白的持续表达。
【附图说明】
图1为本发明小鼠Barth综合症模型治疗实验的心脏射血份数效果图;
图2为本发明小鼠Barth综合症模型治疗实验的心脏病理评价染色图;
图3为本发明有限自我复制mRNA分子系统功能半衰期及细胞先天免疫排斥结果图;
图4为本发明有限自我复制mRNA分子系统低细胞毒性效应结果图;
图5为本发明有限自我复制mRNA分子系统应用于细胞重编程结果对比图;
图6为本发明有限自我复制mRNA分子系统应用于细胞重编程产物染色结果图;
图7为本发明有限自我复制mRNA分子系统应用于基因编辑的结果图;
图8为本发明有限自我复制mRNA分子系统的结构原理图。
【具体实施方式】
下面将结合本发明实施例中的附图,对发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
下述实施例中的实验方法,如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
正链RNA病毒基因组是翻译和复制的模板,其导致宿主翻译因子(hosttranslation factor)与RNA复制之间在多水平相互作用。所有已知的正链RNA病毒均携带用于基因组复制的RNA依赖性RNA聚合酶(RdRp)的基因。然而,不同于其它RNA病毒,正链RNA病毒不将该RNA聚合酶壳体化。因此,在新细胞感染时,直至基因组RNA进行翻译以产生RNA聚合酶(对于大部分正链RNA病毒而言还有复制因子)时,才开始病毒RNA复制。所有特征化的正链RNA病毒均将其RNA复制复合体装配到细胞内膜上。正链RNA病毒在复制过程中产生负链RNA、正链RNA、双链RNA(dsRNA)和亚基因组mRNA,这些物质自身即是先天性免疫应答途径的强诱导剂。
正链RNA病毒基因组具有与细胞mRNA相同的极性,并且正链RNA病毒基因组RNA能够利用细胞翻译体系进行直接翻译。首先,合成非结构蛋白作为前体多蛋白,并通过病毒蛋白酶将其剪切成成熟的非结构蛋白。然后,在翻译和多蛋白处理后,组装包括RNA聚合酶(RdRp)、附加的非结构蛋白、病毒RNA和宿主细胞因子的复合体。组装形成的复制复合体(RC)进行病毒RNA的合成。
“RNA依赖型RNA聚合酶”或“RdRp”为一种具有催化由RNA模板从头合成RNA的酶活性的酶、蛋白质或肽。复制酶是一种具有RdRp活性,并催化特定病毒RNA复制的病毒多蛋白或多蛋白加工产物的复合体。RdRp和复制酶通常由具有RNA基因组的病毒编码。因此,复制酶不但提供RNA依赖型RNA聚合酶的功能,而且还进一步包括提供除RdRp活性以外的其它功能的额外的病毒非结构性多蛋白亚单元。
“重组载体”是指以核酸序列形式携带基因信息的基于DNA或RNA的载体或质粒。术语“质粒”、“载体”、“重组载体”和/或“表达载体”在本文中可互用。
本发明实施例提供了一种有限自我复制mRNA分子系统,包括一个第一mRNA以及至少一个第二mRNA,其中,第一mRNA编码甲病毒属突变型复制酶,每个第二mRNA编码一个目标蛋白,通过突变型复制酶实现至少一个目标蛋白的有限复制。
其中,所述突变型复制酶产生nsP2区域的第259位的突变(丝氨酸S突变为脯氨酸P)以及nsP2区域的第650位的突变(精氨酸R突变为天冬氨酸D)。具体地,所述突变型复制酶包括依次连接的nsP1区域(537个氨基酸)、nsP2区域(799个氨基酸)、nsP3区域(482个氨基酸)以及nsP4区域(1254个氨基酸),所述突变型复制酶的氨基酸序列如SEQ ID NO.1所示,所述突变型复制酶的两个突变点分别产生在SEQ ID NO.1所示的796位点(丝氨酸S突变为脯氨酸P)以及在SEQ ID NO.1所示的1187位点(精氨酸R突变为天冬氨酸D)。
在本实施例中,请参阅图8所示,可以包括多个第二mRNA,多个第二mRNA分别编码第一个目标蛋白、第二个目标蛋白,…,第N个目标蛋白。
在一个可选的实施方式中,所述第一mRNA包括突变型复制酶编码序列,所述突变型复制酶编码序列包括如SEQ ID NO.2所示的核酸序列对应的RNA序列。如SEQ ID NO.2所示的核酸序列为高GC含量的DNA序列,在不改变对应氨基酸序列的前提下,选用GC含量高的密码子,比野生型复制酶DNA序列GC含量高7~20%,具体地,如SEQ ID NO.2所示的1-1611位对应nsP1区域的高GC含量DNA序列、1612-4008位对应nsP2区域的高GC含量DNA序列、4009-5454位对应nsP3区域的高GC含量DNA序列、5455-9216位对应nsP4区域的高GC含量DNA序列。如SEQ ID NO.11所示的核酸序列为野生型甲病毒的复制酶DNA序列,其中,如SEQ IDNO.11所示的1-1611位对应nsP1区域的原始DNA序列、1612-4008位对应nsP2区域的原始DNA序列、4009-5454位对应nsP3区域的原始DNA序列、5455-9216位对应nsP4区域的原始DNA序列。
在一个可选的实施方式中,每个所述第二mRNA包括依次连接的复制酶5’端特异性序列、目标蛋白编码序列以及复制酶3’端特异性序列,在目标蛋白编码序列的两端分别连接了复制酶识别的特异性序列,以提高目标蛋白编码序列的翻译水平,在不保留整个甲病毒RNA框架体系的前提下,实现与之同样的效果,具体地,所述复制酶5’端特异性序列包括如SEQ ID NO.7所示的核酸序列对应的RNA序列,该复制酶5’端特异性序列来源于复制酶nsP1区域对应原始DNA序列的第1位至第221位;所述复制酶3’端特异性序列包括如SEQ IDNO.8所示的核酸序列对应的RNA序列,该复制酶3’端特异性序列来源于复制酶nsP4区域对应原始DNA序列的倒数第2位至倒数第985位。本实施例的mRNA组合有限复制,彻底去除病毒属性,彻底杜绝目前使用甲病毒载体的病毒体内繁殖可能。
进一步地,所述第一mRNA和所述第二mRNA还包括:5’帽结构、5’UTR序列、3’UTR序列以及多聚腺苷酸序列;其中,所述第一mRNA按照5’→3’方向依次包括如下元件:5’帽结构、5’UTR序列、突变型复制酶编码序列、3’UTR序列和多聚腺苷酸序列。同样地,每个所述第二mRNA按照5’→3’方向依次包括如下元件:5’帽结构、5’UTR序列、复制酶5’端特异性序列、目标蛋白编码序列、复制酶3’端特异性序列、3’UTR序列和多聚腺苷酸序列。具体地,目标蛋白编码序列优选为目标蛋白编码基因中开放阅读框(ORF)对应的RNA序列,所述5’UTR序列包括如SEQ ID NO.9所示的核酸序列对应的RNA序列,所述3’UTR序列包括如SEQ ID NO.10所示的核酸序列对应的RNA序列,所述5’帽结构选自3′-O-Me-m7G、m 7 GpppG、m 2 7,3′-OGpppG、m 7 Gppp(5')N1或m 7 Gppp(m 2′-O)N1中的至少一种,优选为3′-O-Me-m7G。多聚腺苷酸序列为包含60~200个腺苷酸的序列;优选地,多聚腺苷酸序列为包含120个腺苷酸的序列。
在本实施例中,所述第一mRNA或第二mRNA中部分或全部的尿嘧啶进行了能够提高所述第一mRNA在生物体内稳定性的化学改性,所述化学改性包括利用N1-甲基假尿苷置换所述第一mRNA中的至少50%、至少60%、至少70%、至少80%、至少90%或100%的尿嘧啶。进一步地,在本实施例中,利用N1-甲基假尿苷置换所述第一mRNA或第二mRNA中100%的尿嘧啶,降低先天免疫排斥,提高mRNA翻译为蛋白的效率。
在本实施例中,经重组载体体外转录所得第一mRNA和第二mRNA首先经过RNaseIII处理,随后经快速蛋白质液相色谱提纯,能够进一步提高mRNA翻译为蛋白的效率。
在本实施例中,理论上目标蛋白可以为任意可接受的蛋白或多肽,例如:
有限自我复制mRNA分子系统包括一个第二mRNA,编码SARS-CoV-2的抗原性多肽,该抗原性多肽可以选自SARS-CoV-2的受体结合结构域RBD,SARS-CoV-2的刺突蛋白S1亚基或SARS-CoV-2的刺突蛋白S全长序列;上述刺突蛋白来源于SARS-CoV-2德尔塔突变株或SARS-CoV-2原始株。此时,该有限自我复制mRNA分子系统为mRNA疫苗。
有限自我复制mRNA分子系统包括两个第二mRNA,其中一个编码白细胞介素-2,另一个编码不含氨基的甲胎蛋白。
有限自我复制mRNA分子系统包括五个第二mRNA,分别编码HPV6的L1蛋白、HPV11的L1蛋白、HPV16的L1蛋白、HPV18的L1蛋白和HPV的E6蛋白。
有限自我复制mRNA分子系统包括两个第二mRNA,分别编码HSV的包膜糖蛋白E和HSV的包膜糖蛋白D。
有限自我复制mRNA分子系统包括一个第二mRNA,编码流感病毒HA抗原。
有限自我复制mRNA分子系统包括三个第二mRNA,分别编码HIV的Gag抗原、HIV的EnV抗原和HIV的CD40L。
有限自我复制mRNA分子系统包括三个第二mRNA,分别编码非洲猪瘟病毒的NL-S蛋白、非洲猪瘟病毒的cd2v ep402r蛋白和非洲猪瘟病毒的TK蛋白。
有限自我复制mRNA分子系统包括一个第二mRNA,编码包括Taffazin蛋白。
有限自我复制mRNA分子系统包括五个第二mRNA,分别编码c-Myc蛋白、Klf4蛋白、Sox2蛋白、OCT4蛋白和Lin28蛋白。
有限自我复制mRNA分子系统包括两个第二mRNA,分别编码Cas9蛋白和DNAJC19蛋白。
有限自我复制mRNA分子系统包括一个第二mRNA,编码水解GFP蛋白。
本发明实施例还提供了一种生物材料,所述生物材料包括:(i)编码所述第一mRNA的核酸分子;以及(ii)编码所述第二mRNA的核酸分子。
其中,编码第一mRNA的核酸分子包括如SEQ ID NO.2所示的核酸序列,编码第二mRNA的核酸分子包括依次连接的如SEQ ID NO.7所示的核酸序列、目标蛋白DNA编码序列以及如SEQ ID NO.8所示的核酸序列。
在一个可选的实施方式中,编码第一mRNA的核酸分子包括依次连接的如SEQ IDNO.9所示的核酸序列、如SEQ ID NO.2所示的核酸序列、如SEQ ID NO.10所示的核酸序列以及多聚腺苷酸序列。编码第二mRNA的核酸分子包括依次连接的如SEQ ID NO.9所示的核酸序列、如SEQ ID NO.7所示的核酸序列、目标蛋白DNA编码序列、如SEQ ID NO.8所示的核酸序列、如SEQ ID NO.10所示的核酸序列以及多聚腺苷酸序列。
本发明实施例还提供了一种生物材料,所述生物材料包括:含有编码第一mRNA的核酸分子的第一重组载体;以及含有编码第二mRNA的核酸分子的第二重组载体。
本发明实施例还提供了一种生物材料,所述生物材料包括:含有所述第一重组载体的转基因动物细胞系;以及含有所述第二重组载体的转基因动物细胞系。
实施例1:第一mRNA的合成
步骤一、利用GeneArtTM Gibson
Figure BDA0003263775910000111
HiFi reaction(美国ThermoFisher,A46624)合成突变型复制酶DNA编码序列(编码第一mRNA的核酸分子不含多聚腺苷酸序列),合成成功后将该突变型复制酶DNA编码序列克隆于pcDNA3.3载体质粒中以备工业化生产。
1.1突变型复制酶DNA编码序列:5’非翻译区DNA序列(SEQ ID NO.9)、突变型复制酶编码序列(SEQ ID NO.2)、3’非翻译区DNA序列(SEQ ID NO.10),其中,突变型复制酶编码序列(SEQ ID NO.2)分为nsP1区域片段(SEQ ID NO.3)、nsP2区域片段(SEQ ID NO.4)、nsP3区域片段(SEQ ID NO.5)、nsP4区域片段(SEQ ID NO.6)四个DNA片段,四个DNA片段均为经过修饰后的高GC含量片段。四个DNA片段以gblock形式直接订购于美国IDT公司。
具体包括如下步骤:按照表1组装Gibson反应,在PCR仪器中50℃反应60分钟,获得PCR产物。
表1 Gibson反应体系
Figure BDA0003263775910000121
1.2将PCR产物转化One ShotTM TOP10化学感受态大肠杆菌细胞,具体包括如下步骤:
用无核酸酶水按照1:5稀释上述Gibson反应体系(PCR产物),12μL无核酸酶水和3μLGibson反应体系,混匀,冰上反应;
将1μL稀释液加入One ShotTM TOP10化学感受态大肠杆菌细胞中并混合,转化混合物在冰上孵育20~30分钟;
将细胞在42℃孵育30秒,不要摇晃;
立即将反应管转移到冰上并在冰上孵育2分钟;
加入450μL室温S.O.C.培养液(美国Life Technology);
37℃下以300rpm摇动1小时;
取100μL,涂细菌培养板(100μg/mL ampicillin or 50μg/mL kanamycin.);
37℃度过夜,挑选细菌克隆,37℃摇菌,一代测序挑选含正确序列的双突变复制酶序列质粒。
步骤二、通过PCR添加mRNA的poly-(a)尾巴得到第一mRNA的DNA合成模版
其中,poly-(a)尾巴包括120个腺苷酸。
按照表2制备PCR预混液(总体积为200μL,八个反应各25μL);
表2 PCR预混液的组成
组分 用量 终浓度
Kapa PRC mix(2X) 100μL 1X
加尾引物-F1 10um(SEQ ID NO.12) 6μL 0.3uM
加尾引物-T120 10um(SEQ ID NO.13) 6μL 0.3uM
80μL
双突变复制酶线性化质粒10ug/μL 8μL 40-400pg/μL
按照表3所示反应条件进行PCR反应;
表3 PCR反应条件
循环次数 变性 退火 扩展
1 95℃,2–3min
2-31 98℃,20s 60℃,15s 72℃,60s
32 72℃,3min
通过凝胶电泳检查PCR产物的质量;
切胶回收PCR产物(QIAquick PCR purification kit,Qiagen,cat.no.28106),将尾模板的最终浓度调整为100ng/μL,作为体外转录合成第一mRNA的DNA合成模版。
步骤三、体外转录合成第一mRNA
1、按照表4组装mRNA帽结构和核苷酸混合物:
帽子结构3′-O-Me-m7G(5′)ppp(5′)G RNA cap analog(New England Biolabs,cat.no.S1411S),-Methylcytidine-5′-triphosphate(Me-CTP;Trilink,cat.no.N1014),N1-methyl-pseudo-UTP(Trilink,cat.no.N1019),其他组分均来自MEGAscript T7试剂盒(Ambion,cat.no.AM1334)。
表4 mRNA帽结构和核苷酸混合物
Figure BDA0003263775910000141
2、按照表5组装第一mRNA体外转录体系:
表5 第一mRNA体外转录体系
组分 用量(ml) 终浓度
DNase/RNase-free water 1.2
Custom NTP(from last step) 14.8
Tailed PCR product,100ug/μL 16 40ng/μL
T7 buffer,10X((from MEGAscript T7 kit) 4.0 1X
T7 enzyme mix,10×(from MEGAscript T7 kit) 4.0 1X
3、将反应置于PCR仪器在37℃孵育3~6h。
4、向每个样品中添加2μL Turbo DNase(来自MEGAscript T7试剂盒,Ambion,cat.no.AM1334)。
5、轻轻混合并在37℃下孵育15min。
6、使用MEGAclear试剂盒(Ambion,cat.no.AM1908),纯化经过DNase和RNAa seIII处理的反应;用总共100μL的洗脱缓冲液洗脱修饰的mRNA(50μL的洗脱缓冲液洗脱两次)。
7、使用磷酸酶(Antarctic phosphatase(New England Biolabs,cat.no.M0289S)处理纯化的修饰mRNA。
8、向每个样品(~100μL)中,添加11μL 10×磷酸酶缓冲液,然后添加2μL磷酸酶;轻轻混合样品并在37℃下孵育0.5~1h。
9、洗脱后,在NanoDrop分光光度计中测量修饰的第一mRNA的浓度。预期的总产量应为~50ug(30~70ug范围;一次40μL IVT反应的100μL洗脱体积为300~700ng μL)。通过添加洗脱缓冲液或TE缓冲液(pH 7.0),将浓度调节至100ng/μL,或者FPLC提纯。
实施例2:第二mRNA的合成
第二mRNA的合成步骤与第一mRNA类似,包括如下步骤:
步骤一、利用GeneArtTM Gibson
Figure BDA0003263775910000151
HiFi reaction(美国ThermoFisher,A46624)合成特异性修饰的目标蛋白DNA编码序列(编码第二mRNA的核酸分子不含多聚腺苷酸序列);
其中,特异性修饰的目标蛋白DNA编码序列:5’非翻译区DNA序列(SEQ ID NO.9)、复制酶5’端特异性DNA序列(SEQ ID NO.7)、目标蛋白DNA编码序列(请参见表6)、复制酶3’端特异性DNA序列(SEQ ID NO.8)、3’非翻译区DNA序列(SEQ ID NO.10)。
步骤二、通过PCR在特异性修饰的目标蛋白DNA编码序列上添加mRNA的poly-(a)尾巴得到第二mRNA的DNA合成模版;
步骤三、体外转录合成第二mRNA。
按照上述方法分别合成表6所示的26种第二mRNA。
表6 不同第二mRNA的DNA合成模版
Figure BDA0003263775910000161
Figure BDA0003263775910000171
上述的SEQ ID NO.14至SEQ ID NO.39以及SEQ ID NO.47均在不改变原始氨基酸序列的前提下,在对应的原始序列的基础上进行了高GC修饰。
实施例3:
本实施例提供一种药物组合物,多重分子信使RNA和递送载体,其中,多重分子信使RNA包括实施例1制备的第一mRNA以及实施例2制备的第二mRNA-1,递送载体为鱼精蛋白。本实施例中目标蛋白为Taffazin蛋白。
实施例3应用-小鼠Barth综合症模型治疗实验
3.1小鼠Barth综合症模型及诱导:
小鼠基因组引入强力霉素诱导Taffazin蛋白Knock down,建立小鼠Barth综合症模型,通过PCR分析确定进行基因分型DNA,引物:
5’CCATGGAATTCGAACGCTGACGTC 3’(SEQ ID NO.45);
3’TATGGGCTATGAACTAATGACCC 5’(SEQ ID NO.46);
本案例只使用雄性,强力霉素以2mg/L浓度置于小鼠饮用水中,同时含有10%蔗糖。
3.2多重分子信使RNA治疗:
在280μL水中稀释10μL的鱼精蛋白(MEDA制药公司的Protamine Ipex5000)5000IU/ml,按280μL+10μL鱼精蛋白5000,制备0.5mg/ml的鱼精蛋白溶液,多重分子信使RNA(多重分子摩尔比为1:1溶液)0.5mg/ml,在RNA溶液中加入等量的鱼精蛋白溶液,并快速上下吹洗至少10次,室温放置10分钟,制成130纳米鱼精蛋白-RNA纳米颗粒,并置于小鼠皮下泵(ALZET pump,https://www.alzet.com/guide-to-use/scid/)持续给药。
将Barth综合症小鼠(TG)小鼠分为6组:TG1、TG2、TG3、TG4、TG5、TG6;
步骤1:将TG1、TG2、TG3、TG4、TG5、TG6采用强力霉素诱导8周,检测心脏射血份数FS%;
步骤2:将TG1、TG2、TG3、TG4、TG5、TG6采用强力霉素诱导10周(在步骤1的基础上继续诱导),检测心脏射血份数FS%;
步骤3:将TG1、TG2、TG3、TG4采用实施例3的药物组合物治疗2周后,TG5、TG6无治疗,检测心脏射血份数FS%;
步骤4:将TG1、TG2、TG3、TG4采用实施例3的药物组合物治疗3周后(在步骤3的基础上继续治疗1周),TG5、TG6无治疗,检测心脏射血份数FS%;
步骤5:将TG1、TG2、TG3、TG4采用实施例3的药物组合物治疗6周后(在步骤4的基础上继续治疗1周),检测小鼠运动能力。
3.3小鼠强制运动能力评价:
老鼠是在封闭的电动跑步机上进行的可调节速度和倾角,并配备了电击传送网,电冲击强度1毫安。最初在跑步机上休息30分钟让动物适应环境,测试以10%的坡度和5米/分钟的速度开始。每5分钟逐步增加5米/分钟到最终速度25m/min。
3.4 Barth模型鼠心脏功能用超声评价和心脏纤维化用天狼星红染色病理评价
试验分组
A组:野生型小鼠强力霉素诱导8周;
B组:Barth综合症小鼠(TG)强力霉素诱导8周,普通药物组合物(普通信使RNA系统+递送系统)治疗6周,其中,普通信使RNA系统编码Taffazin蛋白;其中,普通信使RNA系统按照现有技术CN201910014953.6中记载的方法制备。
C组:Barth综合症小鼠(TG)强力霉素诱导8周,实施例3的药物组合物治疗6周;
分别对A组、B组和C组进行心脏纤维化用天狼星红染色病理评价。
3.5实验结果及分析:
3.5.1心脏功能指标检测结果
多重分子信使RNA治疗Barth综合症心脏射血份数超声波结果提示多重分子信使RNA治疗Barth综合症可以提高其心脏功能。
图1所示,有限复制多重分子信使RNA系统编码Taffazin蛋白治疗提高先天性心肌病Barth综合症小鼠心脏功能,具体地,Barth综合症小鼠(TG)在强力霉素诱导下Taffazin蛋白功能缺失,出现Barth综合症的症状出现心肌病疾病表型,心脏功能指标-射血份数下降,无治疗的TG5,TG6心脏功能下降,相比之下多重分子信使RNA治疗2周(TG1、2、3、4),治疗2~3周,心功能好转。
3.5.2小鼠运动能力试验结果
多重分子信使RNA治疗Barth综合症强制运动结果提示多重分子信使RNA治疗Barth综合症可以提高其运动能力。动物最初在跑步机上休息30分钟让动物适应环境,测试以10%的坡度和5米/分钟的速度开始。每5分钟逐步增加5米/分钟到最终速度,25m/min。因此,运动的持续时间为36.8分钟并且行进的距离是507.4m,结果提示模型鼠未能在皮带上保持15m/min和10%的倾斜度,并且没有一个模型鼠能够维持运行,跑步机速度超过20米/分钟,而多重分子信使RNA治疗治疗6周后模型鼠均能够维持运,说明多重分子信使RNA治疗可以明显提高模型鼠运动能力。
3.5.3病理分析结果
图2所示,有限复制多重分子信使RNA系统编码Taffazin蛋白治疗先天性心肌病Barth综合症病理分析。
Barth综合症小鼠(TG)在强力霉素诱导下Taffazin蛋白功能缺失,出现Barth综合症的症状出现心肌病疾病表型,心脏病理提示心脏纤维化,多重分子信使RNA治疗8周明显改善心脏纤维化的程度,且优于普通信使RNA治疗效果。
实施例4:
本实施例提供一种有限自我复制mRNA分子系统,包括实施例1制备的第一mRNA以及实施例2制备的第二mRNA-2,目标蛋白为水解GFP蛋白。
实施例4的应用:分别采用编码水解GFP蛋白的普通mRNA(第一组)、实施例4的双分子mRNA(第二组)以及编码水解GFP的全长自我复制mRNA(第三组)转染细胞,步骤见i-vii,下述表达报告基因水解GFP(表达的GFP会被自带的水解酶迅速降解,可以即时反应多重信使RNA分子的持续时间和表达水平)。
实施例4的有限自我复制mRNA分子系统转染细胞步骤如下:
(i)解冻10μl实施例4的有限自我复制mRNA分子系统(第一mRNA和第二mRNA-2的摩尔比例为6:4),加入40μl OPTI-MEM,轻轻混合。
(ii)在另外一个试管中,加入45μlOPTI-MEM,加5μl Lipofectamine RNAiMax,轻轻混合。
重复移液。
(iii)将稀释后的Lipofectamine RNAiMax加入稀释后的实施例4的有限自我复制mRNA分子系统中,反复轻轻混匀。
(iv)将混合物在室温下孵育15分钟。
(v)用100μl实施例4的有限自我复制mRNA分子系统/转染试剂复合物均匀加入六孔板的一个孔。
(vi)轻轻地左右摇动板子,以确保转染复合物的均匀扩散。
(vii)放回37℃、5%CO2、5%O2细胞培养箱。
通过检测GFP蛋白荧光强度,分别检测第一组细胞中mRNA半衰期、第二组细胞中mRNA半衰期以及第三组细胞中mRNA半衰期,并对第一组、第二组和第三组进行细胞先天性免疫反应。
检测第一组、第二组和第三组转染后的细胞数。
实验结果及分析:
请参阅图3所示,实施例4的有限自我复制mRNA分子系统编码报告基因水解GFP相比全链自我复制信使RNA半衰期无差异,但是细胞毒性弱,免疫原性少,比普通信使RNA半衰期长。
请继续参阅图3所示,实施例4的有限自我复制mRNA分子系统有较长的功能半衰期和低的细胞先天性免疫排斥,实施例4的有限自我复制mRNA分子系统的半衰期明显高于普通信使RNA,同全长自我复制信使RNA相似,但细胞先天性免疫反应(INFA,干扰素A)显著低于同全长自我复制信使RNA。
请参阅图4所示,实施例4的有限自我复制mRNA分子系统(有限复制多重信使RNA分子系统)具备低细胞毒性效应,实施例4的有限自我复制mRNA分子系统产生的信使RNA的细胞毒性同普通信使RNA相似,但明显低于同全长自我复制信使RNA。
实施例5:
本实施例提供一种有限自我复制mRNA分子系统,包括实施例1制备的第一mRNA以及实施例2制备的第二mRNA-22、第二mRNA-23、第二mRNA-24、第二mRNA-25、第二mRNA-26,目标蛋白分别为c-Myc蛋白、Klf4蛋白、Sox2蛋白、OCT4蛋白和Lin28蛋白。
实施例5的应用-细胞重编程试验
细胞重编程步骤:
1,用0.1%(wt/vol)明胶,于六孔板每孔加入1ml;
在室温下至少放置1小时。或者,4摄氏度下过夜,接种人类NuFF饲养细胞前1天,通过吸去除明胶并让板在室温下干燥。
2,NuFF饲养细胞(Newborn human foreskin fibroblasts(GlobalStem,cat.no.GSC-3001G),解冻一瓶有丝分裂灭活的NuFFs并将细胞接种在明胶细胞板上。
3,接种重编程目标成纤维细胞后6-12小时,用Pluriton(stemgent)完全重编程培养基替换成纤维细胞培养基(Pluriton含B18R(eBioscience,cat.no.34-8185-85,200ng/ml)),每孔使用2ml然后,在37℃,5%CO2、5%O2培养基中孵育细胞过夜。
4,使用Lipofectamine RNAiMax(Invitrogen,cat.no.56532))进行转染;
(i)解冻10μl修饰的mRNA混合物(双突变复制酶,OCT4,KLF4,c-MYC,SOX2,LIN28A摩尔比例6:1:1:1:1:1,respectively.100ng/μl),加入40μl OPTI-MEM,轻轻混合。
(ii)在另外一个试管中,加入45μl OPTI-MEM,加5μlLipofectamine RNAiMax,轻轻混合。
重复移液。
(iii)将稀释后的Lipofectamine RNAiMax加入稀释后的修饰mRNA中,反复轻轻混匀。
(iv)将混合物在室温下孵育15分钟。
(v)用100μl修饰的mRNA/转染试剂复合物均匀加入六孔板的一个孔
(vi)轻轻地左右摇动板子,以确保转染复合物的均匀扩散。
(vii)放回37℃、5%CO2、5%O2细胞培养箱。
5,每72小时重复上述i-vii步骤,直到重编程细胞克隆出现。
请参阅图5和图6所示,有限复制多重信使RNA分子系统同时放大5个编码细胞重编程因子Otc4,Sox2,Klf4,c-Myc,Lin28(OSKML)重高效完成细胞重编程;对比普通信使RNA该系统有更长蛋白表达,和更高的细胞重编程(iPS克隆数为指标);实施例5的有限自我复制mRNA分子系统(有限复制多重信使RNA分子系统)产生的细胞重编程产物-iPS细胞显示典型多潜能;实施例5的有限自我复制mRNA分子系统(有限复制多重信使RNA分子系统)编码5重编程因子OSKML完成细胞重编程后产物-iPS细胞显示经典多潜能干细胞克隆外形,多潜能标志物Oct4染色阳性,可以在体内形成畸胎瘤。
实施例6:
本实施例提供一种有限自我复制mRNA分子系统,包括实施例1制备的第一mRNA以及实施例2制备的第二mRNA-3,目标蛋白为Cas9蛋白。
实施例6的应用:基因编辑试验
实施步骤:
实施例6的有限自我复制mRNA分子系统(多重分子信使RNA)在人诱导性干细胞(Induced Pluripotent Stem Cells)中进行DNAJC19基因编辑或Taffazin基因编辑。
1、人诱导性干细胞电转染:按下表7组装基因编辑反应体系,Taffazin基因gRNA序列(SEQ ID NO.40,直接订购于IDT公司),DNAJC19 gRNA序列(SEQ ID NO.17,直接订购于IDT公司)。
表7 基因编辑反应体系
Figure BDA0003263775910000231
2、按引物
F:TAAGCTAACCTGTCACCCCA(SEQ ID NO.41);
R:AGAGCACAGAGGCGAGGCTT(SEQ ID NO.42);
PCR扩增Taffazin基因片段;
或者,按引物
F:CTCAAAAGACTTCTGTTCTTGAGC(SEQ ID NO.43);
R:CACTGAACACTGTGATAATCTGCT(SEQ ID NO.44);
PCR扩增DNAJC19基因片段。
3、Surveyor酶评价人诱导干细胞Taffazin基因编辑或DNAJC19基因编辑((IDT,cat.no.706025),按下表8组装反应体系,
表8 反应体系
组分 体积(μL)
0.15M MgCl2 4
Surveyor enhancer S 1
Surveyor nuclease S 2
4、混合均匀并在42℃孵育60分钟。
5、加入Surveyor Mutation Detection Kit的1/10体积终止溶液以终止反应和1/6体积DNA。
6、通过4–20%TBE凝胶在200V下电泳约60分钟,分析的Surveyor核酸酶消化产物。
7、在1×TBE中用0.5g/ml溴化乙锭染色凝胶10分钟。在水中清洗凝胶10分钟。
8、使用紫外线透射仪对凝胶进行成像。
实验结果及分析:
请参阅图7所示,实施例6的有限自我复制mRNA分子系统(有限复制多重信使RNA分子系统)编码CRISPR蛋白Cas9,高效编辑DNAJC19和人Taffazin基因。具体地,请参阅图7左,DNAJC19基因成功被基因编辑产生基因突变,并被Surveyor识别剪切,出现3条典型条带,说明高效基因编辑完成,请参阅图7右,Taffazin基因成功被基因编辑产生基因突变,并被Surveyor识别剪切,出现3条典型条带,说明高效基因编辑完成。
实施例7:
本实施例提供一种mRNA疫苗,包括实施例1的第一mRNA、实施例2的第二mRNA-5以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为SARS-CoV-2的抗原性多肽(野生型的刺突蛋白S)。
本实施例还提供一种mRNA疫苗,包括实施例1的第一mRNA、实施例2的第二mRNA-28以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为SARS-CoV-2的抗原性多肽(德尔塔株的刺突蛋白S)。
实施例8:
本实施例提供一种mRNA疫苗,包括实施例1的第一mRNA、实施例2的第二mRNA-8、第二mRNA-9、第二mRNA-10、第二mRNA-11、第二mRNA-12以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为HPV6的L1蛋白、HPV11的L1蛋白、HPV16的L1蛋白、HPV18的L1蛋白和HPV的E6蛋白。
实施例9:
本实施例提供一种mRNA疫苗,包括实施例1的第一mRNA、实施例2的第二mRNA-13、第二mRNA-14以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为HSV的包膜糖蛋白E和HSV的包膜糖蛋白D。
实施例10:
本实施例提供一种mRNA疫苗,包括实施例1的第一mRNA、实施例2的第二mRNA-15以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为流感病毒HA抗原。
实施例11:
本实施例提供一种mRNA疫苗,包括实施例1的第一mRNA、实施例2的第二mRNA-16、第二mRNA-17、第二mRNA-18以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为HIV的Gag抗原、HIV的EnV抗原和HIV的CD40L。
实施例12:
本实施例提供一种mRNA疫苗,包括实施例1的第一mRNA、实施例2的第二mRNA-19、第二mRNA-20、第二mRNA-21以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为非洲猪瘟病毒的NL-S蛋白、非洲猪瘟病毒的cd2v ep402r蛋白和非洲猪瘟病毒的TK蛋白。
实施例13:
本实施例提供一种药物组合物,用于治疗结肠癌,包括实施例1的第一mRNA、实施例2的第二mRNA-6、第二mRNA-7以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为白细胞介素-2和不含氨基的甲胎蛋白。
实施例14:
本实施例提供一种mRNA疫苗,包括实施例1的第一mRNA、实施例2的第二mRNA-27以及鱼精蛋白,形成130纳米鱼精蛋白RNA粒子进行递送。目标蛋白为狂犬病抗原(狂犬病糖蛋白)。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。
序列表
<110> 臻赫医药(杭州)有限公司
<120> 一种有限自我复制mRNA分子系统、制备方法及应用
<160> 48
<170> SIPOSequenceListing 1.0
<210> 1
<211> 3071
<212> PRT
<213> Artificially Synthesized
<400> 1
Met Ala Ala Lys Val His Val Asp Ile Glu Ala Asp Ser Pro Phe Ile
1 5 10 15
Lys Ser Leu Gln Lys Ala Phe Pro Ser Phe Glu Val Glu Ser Leu Gln
20 25 30
Val Thr Pro Asn Asp His Ala Asn Ala Arg Ala Phe Ser His Leu Ala
35 40 45
Thr Lys Leu Ile Glu Gln Glu Thr Asp Lys Asp Thr Leu Ile Leu Asp
50 55 60
Ile Gly Ser Ala Pro Ser Arg Arg Met Met Ser Thr His Lys Tyr His
65 70 75 80
Cys Val Cys Pro Met Arg Ser Ala Glu Asp Pro Glu Arg Leu Val Cys
85 90 95
Tyr Ala Lys Lys Leu Ala Ala Ala Ser Gly Lys Val Leu Asp Arg Glu
100 105 110
Ile Ala Gly Lys Ile Thr Asp Leu Gln Thr Val Met Ala Thr Pro Asp
115 120 125
Ala Glu Ser Pro Thr Phe Cys Leu His Thr Asp Val Thr Cys Arg Thr
130 135 140
Ala Ala Glu Val Ala Val Tyr Gln Asp Val Tyr Ala Val His Ala Pro
145 150 155 160
Thr Ser Leu Tyr His Gln Ala Met Lys Gly Val Arg Thr Ala Tyr Trp
165 170 175
Ile Gly Phe Asp Thr Thr Pro Phe Met Phe Asp Ala Leu Ala Gly Ala
180 185 190
Tyr Pro Thr Tyr Ala Thr Asn Trp Ala Asp Glu Gln Val Leu Gln Ala
195 200 205
Arg Asn Ile Gly Leu Cys Ala Ala Ser Leu Thr Glu Gly Arg Leu Gly
210 215 220
Lys Leu Ser Ile Leu Arg Lys Lys Gln Leu Lys Pro Cys Asp Thr Val
225 230 235 240
Met Phe Ser Val Gly Ser Thr Leu Tyr Thr Glu Ser Arg Lys Leu Leu
245 250 255
Arg Ser Trp His Leu Pro Ser Val Phe His Leu Lys Gly Lys Gln Ser
260 265 270
Phe Thr Cys Arg Cys Asp Thr Ile Val Ser Cys Glu Gly Tyr Val Val
275 280 285
Lys Lys Ile Thr Met Cys Pro Gly Leu Tyr Gly Lys Thr Val Gly Tyr
290 295 300
Ala Val Thr Tyr His Ala Glu Gly Phe Leu Val Cys Lys Thr Thr Asp
305 310 315 320
Thr Val Lys Gly Glu Arg Val Ser Phe Pro Val Cys Thr Tyr Val Pro
325 330 335
Ser Thr Ile Cys Asp Gln Met Thr Gly Ile Leu Ala Thr Asp Val Thr
340 345 350
Pro Glu Asp Ala Gln Lys Leu Leu Val Gly Leu Asn Gln Arg Ile Val
355 360 365
Val Asn Gly Arg Thr Gln Arg Asn Thr Asn Thr Met Lys Asn Tyr Leu
370 375 380
Leu Pro Ile Val Ala Val Ala Phe Ser Lys Trp Ala Arg Glu Tyr Lys
385 390 395 400
Ala Asp Leu Asp Asp Glu Lys Pro Leu Gly Val Arg Glu Arg Ser Leu
405 410 415
Thr Cys Cys Cys Leu Trp Ala Phe Lys Thr Arg Lys Met His Thr Met
420 425 430
Tyr Lys Lys Pro Asp Thr Gln Thr Ile Val Lys Val Pro Ser Glu Phe
435 440 445
Asn Ser Phe Val Ile Pro Ser Leu Trp Ser Thr Gly Leu Ala Ile Pro
450 455 460
Val Arg Ser Arg Ile Lys Met Leu Leu Ala Lys Lys Thr Lys Arg Glu
465 470 475 480
Leu Ile Pro Val Leu Asp Ala Ser Ser Ala Arg Asp Ala Glu Gln Glu
485 490 495
Glu Lys Glu Arg Leu Glu Ala Glu Leu Thr Arg Glu Ala Leu Pro Pro
500 505 510
Leu Val Pro Ile Ala Pro Ala Glu Thr Gly Val Val Asp Val Asp Val
515 520 525
Glu Glu Leu Glu Tyr His Ala Gly Ala Gly Val Val Glu Thr Pro Arg
530 535 540
Ser Ala Leu Lys Val Thr Ala Gln Pro Asn Asp Val Leu Leu Gly Asn
545 550 555 560
Tyr Val Val Leu Ser Pro Gln Thr Val Leu Lys Ser Ser Lys Leu Ala
565 570 575
Pro Val His Pro Leu Ala Glu Gln Val Lys Ile Ile Thr His Asn Gly
580 585 590
Arg Ala Gly Arg Tyr Gln Val Asp Gly Tyr Asp Gly Arg Val Leu Leu
595 600 605
Pro Cys Gly Ser Ala Ile Pro Val Pro Glu Phe Gln Ala Leu Ser Glu
610 615 620
Ser Ala Thr Met Val Tyr Asn Glu Arg Glu Phe Val Asn Arg Lys Leu
625 630 635 640
Tyr His Ile Ala Val His Gly Pro Ser Leu Asn Thr Asp Glu Glu Asn
645 650 655
Tyr Glu Lys Val Arg Ala Glu Arg Thr Asp Ala Glu Tyr Val Phe Asp
660 665 670
Val Asp Lys Lys Cys Cys Val Lys Arg Glu Glu Ala Ser Gly Leu Val
675 680 685
Leu Val Gly Glu Leu Thr Asn Pro Pro Phe His Glu Phe Ala Tyr Glu
690 695 700
Gly Leu Lys Ile Arg Pro Ser Ala Pro Tyr Lys Thr Thr Val Val Gly
705 710 715 720
Val Phe Gly Val Pro Gly Ser Gly Lys Ser Ala Ile Ile Lys Ser Leu
725 730 735
Val Thr Lys His Asp Leu Val Thr Ser Gly Lys Lys Glu Asn Cys Gln
740 745 750
Glu Ile Val Asn Asp Val Lys Lys His Arg Gly Leu Asp Ile Gln Ala
755 760 765
Lys Thr Val Asp Ser Ile Leu Leu Asn Gly Cys Arg Arg Ala Val Asp
770 775 780
Ile Leu Tyr Val Asp Glu Ala Phe Ala Cys His Pro Gly Thr Leu Leu
785 790 795 800
Ala Leu Ile Ala Leu Val Lys Pro Arg Ser Lys Val Val Leu Cys Gly
805 810 815
Asp Pro Lys Gln Cys Gly Phe Phe Asn Met Met Gln Leu Lys Val Asn
820 825 830
Phe Asn His Asn Ile Cys Thr Glu Val Cys His Lys Ser Ile Ser Arg
835 840 845
Arg Cys Thr Arg Pro Val Thr Ala Ile Val Ser Thr Leu His Tyr Gly
850 855 860
Gly Lys Met Arg Thr Thr Asn Pro Cys Asn Lys Pro Ile Ile Ile Asp
865 870 875 880
Thr Thr Gly Gln Thr Lys Pro Lys Pro Gly Asp Ile Val Leu Thr Cys
885 890 895
Phe Arg Gly Trp Val Lys Gln Leu Gln Leu Asp Tyr Arg Gly His Glu
900 905 910
Val Met Thr Ala Ala Ala Ser Gln Gly Leu Thr Arg Lys Gly Val Tyr
915 920 925
Ala Val Arg Gln Lys Val Asn Glu Asn Pro Leu Tyr Ala Pro Ala Ser
930 935 940
Glu His Val Asn Val Leu Leu Thr Arg Thr Glu Asp Arg Leu Val Trp
945 950 955 960
Lys Thr Leu Ala Gly Asp Pro Trp Ile Lys Val Leu Ser Asn Ile Pro
965 970 975
Gln Gly Asn Phe Thr Ala Thr Leu Glu Glu Trp Gln Glu Glu His Asp
980 985 990
Lys Ile Met Lys Val Ile Glu Gly Pro Ala Ala Pro Val Asp Ala Phe
995 1000 1005
Gln Asn Lys Ala Asn Val Cys Trp Ala Lys Ser Leu Val Pro Val Leu
1010 1015 1020
Asp Thr Ala Gly Ile Arg Leu Thr Ala Glu Glu Trp Ser Thr Ile Ile
1025 1030 1035 1040
Thr Ala Phe Lys Glu Asp Arg Ala Tyr Ser Pro Val Val Ala Leu Asn
1045 1050 1055
Glu Ile Cys Thr Lys Tyr Tyr Gly Val Asp Leu Asp Ser Gly Leu Phe
1060 1065 1070
Ser Ala Pro Lys Val Ser Leu Tyr Tyr Glu Asn Asn His Trp Asp Asn
1075 1080 1085
Arg Pro Gly Gly Arg Met Tyr Gly Phe Asn Ala Ala Thr Ala Ala Arg
1090 1095 1100
Leu Glu Ala Arg His Thr Phe Leu Lys Gly Gln Trp His Thr Gly Lys
1105 1110 1115 1120
Gln Ala Val Ile Ala Glu Arg Lys Ile Gln Pro Leu Ser Val Leu Asp
1125 1130 1135
Asn Val Ile Pro Ile Asn Arg Arg Leu Pro His Ala Leu Val Ala Glu
1140 1145 1150
Tyr Lys Thr Val Lys Gly Ser Arg Val Glu Trp Leu Val Asn Lys Val
1155 1160 1165
Arg Gly Tyr His Val Leu Leu Val Ser Glu Tyr Asn Leu Ala Leu Pro
1170 1175 1180
Arg Arg Asp Val Thr Trp Leu Ser Pro Leu Asn Val Thr Gly Ala Asp
1185 1190 1195 1200
Arg Cys Tyr Asp Leu Ser Leu Gly Leu Pro Ala Asp Ala Gly Arg Phe
1205 1210 1215
Asp Leu Val Phe Val Asn Ile His Thr Glu Phe Arg Ile His His Tyr
1220 1225 1230
Gln Gln Cys Val Asp His Ala Met Lys Leu Gln Met Leu Gly Gly Asp
1235 1240 1245
Ala Leu Arg Leu Leu Lys Pro Gly Gly Ser Leu Leu Met Arg Ala Tyr
1250 1255 1260
Gly Tyr Ala Asp Lys Ile Ser Glu Ala Val Val Ser Ser Leu Ser Arg
1265 1270 1275 1280
Lys Phe Ser Ser Ala Arg Val Leu Arg Pro Asp Cys Val Thr Ser Asn
1285 1290 1295
Thr Glu Val Phe Leu Leu Phe Ser Asn Phe Asp Asn Gly Lys Arg Pro
1300 1305 1310
Ser Thr Leu His Gln Met Asn Thr Lys Leu Ser Ala Val Tyr Ala Gly
1315 1320 1325
Glu Ala Met His Thr Ala Gly Cys Ala Pro Ser Tyr Arg Val Lys Arg
1330 1335 1340
Ala Asp Ile Ala Thr Cys Thr Glu Ala Ala Val Val Asn Ala Ala Asn
1345 1350 1355 1360
Ala Arg Gly Thr Val Gly Asp Gly Val Cys Arg Ala Val Ala Lys Lys
1365 1370 1375
Trp Pro Ser Ala Phe Lys Gly Glu Ala Thr Pro Val Gly Thr Ile Lys
1380 1385 1390
Thr Val Met Cys Gly Ser Tyr Pro Val Ile His Ala Val Ala Pro Asn
1395 1400 1405
Phe Ser Ala Thr Thr Glu Ala Glu Gly Asp Arg Glu Leu Ala Ala Val
1410 1415 1420
Tyr Arg Ala Val Ala Ala Glu Val Asn Arg Leu Ser Leu Ser Ser Val
1425 1430 1435 1440
Ala Ile Pro Leu Leu Ser Thr Gly Val Phe Ser Gly Gly Arg Asp Arg
1445 1450 1455
Leu Gln Gln Ser Leu Asn His Leu Phe Thr Ala Met Asp Ala Thr Asp
1460 1465 1470
Ala Asp Val Thr Ile Tyr Cys Arg Asp Lys Ser Trp Glu Lys Lys Ile
1475 1480 1485
Gln Glu Ala Ile Asp Met Arg Thr Ala Val Glu Leu Leu Asn Asp Asp
1490 1495 1500
Val Glu Leu Thr Thr Asp Leu Val Arg Val His Pro Asp Ser Ser Leu
1505 1510 1515 1520
Val Gly Arg Lys Gly Tyr Ser Thr Thr Asp Gly Ser Leu Tyr Ser Tyr
1525 1530 1535
Phe Glu Gly Thr Lys Phe Asn Gln Ala Ala Ile Asp Met Ala Glu Ile
1540 1545 1550
Leu Thr Leu Trp Pro Arg Leu Gln Glu Ala Asn Glu Gln Ile Cys Leu
1555 1560 1565
Tyr Ala Leu Gly Glu Thr Met Asp Asn Ile Arg Ser Lys Cys Pro Val
1570 1575 1580
Asn Asp Ser Asp Ser Ser Thr Pro Pro Arg Thr Val Pro Cys Leu Cys
1585 1590 1595 1600
Arg Tyr Ala Met Thr Ala Glu Arg Ile Ala Arg Leu Arg Ser His Gln
1605 1610 1615
Val Lys Ser Met Val Val Cys Ser Ser Phe Pro Leu Pro Lys Tyr His
1620 1625 1630
Val Asp Gly Val Gln Lys Val Lys Cys Glu Lys Val Leu Leu Phe Asp
1635 1640 1645
Pro Thr Val Pro Ser Val Val Ser Pro Arg Lys Tyr Ala Ala Ser Thr
1650 1655 1660
Thr Asp His Ser Asp Arg Ser Leu Arg Gly Phe Asp Leu Asp Trp Thr
1665 1670 1675 1680
Thr Asp Ser Ser Ser Thr Ala Ser Asp Thr Met Ser Leu Pro Ser Leu
1685 1690 1695
Gln Ser Cys Asp Ile Asp Ser Ile Tyr Glu Pro Met Ala Pro Ile Val
1700 1705 1710
Val Thr Ala Asp Val His Pro Glu Pro Ala Gly Ile Ala Asp Leu Ala
1715 1720 1725
Ala Asp Val His Pro Glu Pro Ala Asp His Val Asp Leu Glu Asn Pro
1730 1735 1740
Ile Pro Pro Pro Arg Pro Lys Arg Ala Ala Tyr Leu Ala Ser Arg Ala
1745 1750 1755 1760
Ala Glu Arg Pro Val Pro Ala Pro Arg Lys Pro Thr Pro Ala Pro Arg
1765 1770 1775
Thr Ala Phe Arg Asn Lys Leu Pro Leu Thr Phe Gly Asp Phe Asp Glu
1780 1785 1790
His Glu Val Asp Ala Leu Ala Ser Gly Ile Thr Phe Gly Asp Phe Asp
1795 1800 1805
Asp Val Leu Arg Leu Gly Arg Ala Gly Ala Met Asn Tyr Ile Pro Thr
1810 1815 1820
Gln Thr Phe Tyr Gly Arg Arg Trp Arg Pro Arg Pro Ala Ala Arg Pro
1825 1830 1835 1840
Trp Pro Leu Gln Ala Thr Pro Val Ala Pro Val Val Pro Asp Phe Gln
1845 1850 1855
Ala Gln Gln Met Gln Gln Leu Ile Ser Ala Val Asn Ala Leu Thr Met
1860 1865 1870
Arg Gln Asn Ala Ile Ala Pro Ala Arg Pro Pro Lys Pro Lys Lys Lys
1875 1880 1885
Lys Thr Thr Lys Pro Lys Pro Lys Thr Gln Pro Lys Lys Ile Asn Gly
1890 1895 1900
Lys Thr Gln Gln Gln Lys Lys Lys Asp Lys Gln Ala Asp Lys Lys Lys
1905 1910 1915 1920
Lys Lys Pro Gly Lys Arg Glu Arg Met Cys Met Lys Ile Glu Asn Asp
1925 1930 1935
Cys Ile Phe Glu Val Lys His Glu Gly Lys Val Thr Gly Tyr Ala Cys
1940 1945 1950
Leu Val Gly Asp Lys Val Met Lys Pro Ala His Val Lys Gly Val Ile
1955 1960 1965
Asp Asn Ala Asp Leu Ala Lys Leu Ala Phe Lys Lys Ser Ser Lys Tyr
1970 1975 1980
Asp Leu Glu Cys Ala Gln Ile Pro Val His Met Arg Ser Asp Ala Ser
1985 1990 1995 2000
Lys Tyr Thr His Glu Lys Pro Glu Gly His Tyr Asn Trp His His Gly
2005 2010 2015
Ala Val Gln Tyr Ser Gly Gly Arg Phe Thr Ile Pro Thr Gly Ala Gly
2020 2025 2030
Lys Pro Gly Asp Ser Gly Arg Pro Ile Phe Asp Asn Lys Gly Arg Val
2035 2040 2045
Val Ala Ile Val Leu Gly Gly Ala Asn Glu Gly Ser Arg Thr Ala Leu
2050 2055 2060
Ser Val Val Thr Trp Asn Lys Asp Met Val Thr Arg Val Thr Pro Glu
2065 2070 2075 2080
Gly Ser Glu Glu Trp Ser Ala Pro Leu Ile Thr Ala Met Cys Val Leu
2085 2090 2095
Ala Asn Ala Thr Phe Pro Cys Phe Gln Pro Pro Cys Val Pro Cys Cys
2100 2105 2110
Tyr Glu Asn Asn Ala Glu Ala Thr Leu Arg Met Leu Glu Asp Asn Val
2115 2120 2125
Asp Arg Pro Gly Tyr Tyr Asp Leu Leu Gln Ala Ala Leu Thr Cys Arg
2130 2135 2140
Asn Gly Thr Arg His Arg Arg Ser Val Ser Gln His Phe Asn Val Tyr
2145 2150 2155 2160
Lys Ala Thr Arg Pro Tyr Ile Ala Tyr Cys Ala Asp Cys Gly Ala Gly
2165 2170 2175
His Ser Cys His Ser Pro Val Ala Ile Glu Ala Val Arg Ser Glu Ala
2180 2185 2190
Thr Asp Gly Met Leu Lys Ile Gln Phe Ser Ala Gln Ile Gly Ile Asp
2195 2200 2205
Lys Ser Asp Asn His Asp Tyr Thr Lys Ile Arg Tyr Ala Asp Gly His
2210 2215 2220
Ala Ile Glu Asn Ala Val Arg Ser Ser Leu Lys Val Ala Thr Ser Gly
2225 2230 2235 2240
Asp Cys Phe Val His Gly Thr Met Gly His Phe Ile Leu Ala Lys Cys
2245 2250 2255
Pro Pro Gly Glu Phe Leu Gln Val Ser Ile Gln Asp Thr Arg Asn Ala
2260 2265 2270
Val Arg Ala Cys Arg Ile Gln Tyr His His Asp Pro Gln Pro Val Gly
2275 2280 2285
Arg Glu Lys Phe Thr Ile Arg Pro His Tyr Gly Lys Glu Ile Pro Cys
2290 2295 2300
Thr Thr Tyr Gln Gln Thr Thr Ala Lys Thr Val Glu Glu Ile Asp Met
2305 2310 2315 2320
His Met Pro Pro Asp Thr Pro Asp Arg Thr Leu Leu Ser Gln Gln Ser
2325 2330 2335
Gly Asn Val Lys Ile Thr Val Gly Gly Lys Lys Val Lys Tyr Asn Cys
2340 2345 2350
Thr Cys Gly Thr Gly Asn Val Gly Thr Thr Asn Ser Asp Met Thr Ile
2355 2360 2365
Asn Thr Cys Leu Ile Glu Gln Cys His Val Ser Val Thr Asp His Lys
2370 2375 2380
Lys Trp Gln Phe Asn Ser Pro Phe Val Pro Arg Ala Asp Glu Pro Ala
2385 2390 2395 2400
Arg Lys Gly Lys Val His Ile Pro Phe Pro Leu Asp Asn Ile Thr Cys
2405 2410 2415
Arg Val Pro Met Ala Arg Glu Pro Thr Val Ile His Gly Lys Arg Glu
2420 2425 2430
Val Thr Leu His Leu His Pro Asp His Pro Thr Leu Phe Ser Tyr Arg
2435 2440 2445
Thr Leu Gly Glu Asp Pro Gln Tyr His Glu Glu Trp Val Thr Ala Ala
2450 2455 2460
Val Glu Arg Thr Ile Pro Val Pro Val Asp Gly Met Glu Tyr His Trp
2465 2470 2475 2480
Gly Asn Asn Asp Pro Val Arg Leu Trp Ser Gln Leu Thr Thr Glu Gly
2485 2490 2495
Lys Pro His Gly Trp Pro His Gln Ile Val Gln Tyr Tyr Tyr Gly Leu
2500 2505 2510
Tyr Pro Ala Ala Thr Val Ser Ala Val Val Gly Met Ser Leu Leu Ala
2515 2520 2525
Leu Ile Ser Ile Phe Ala Ser Cys Tyr Met Leu Val Ala Ala Arg Ser
2530 2535 2540
Lys Cys Leu Thr Pro Tyr Ala Leu Thr Pro Gly Ala Ala Val Pro Trp
2545 2550 2555 2560
Thr Leu Gly Ile Leu Cys Cys Ala Pro Arg Ala His Ala Ala Ser Val
2565 2570 2575
Ala Glu Thr Met Ala Tyr Leu Trp Asp Gln Asn Gln Ala Leu Phe Trp
2580 2585 2590
Leu Glu Phe Ala Ala Pro Val Ala Cys Ile Leu Ile Ile Thr Tyr Cys
2595 2600 2605
Leu Arg Asn Val Leu Cys Cys Cys Lys Ser Leu Ser Phe Leu Val Leu
2610 2615 2620
Leu Ser Leu Gly Ala Thr Ala Arg Ala Tyr Glu His Ser Thr Val Met
2625 2630 2635 2640
Pro Asn Val Val Gly Phe Pro Tyr Lys Ala His Ile Glu Arg Pro Gly
2645 2650 2655
Tyr Ser Pro Leu Thr Leu Gln Met Gln Val Val Glu Thr Ser Leu Glu
2660 2665 2670
Pro Thr Leu Asn Leu Glu Tyr Ile Thr Cys Glu Tyr Lys Thr Val Val
2675 2680 2685
Pro Ser Pro Tyr Val Lys Cys Cys Gly Ala Ser Glu Cys Ser Thr Lys
2690 2695 2700
Glu Lys Pro Asp Tyr Gln Cys Lys Val Tyr Thr Gly Val Tyr Pro Phe
2705 2710 2715 2720
Met Trp Gly Gly Ala Tyr Cys Phe Cys Asp Ser Glu Asn Thr Gln Leu
2725 2730 2735
Ser Glu Ala Tyr Val Asp Arg Ser Asp Val Cys Arg His Asp His Ala
2740 2745 2750
Ser Ala Tyr Lys Ala His Thr Ala Ser Leu Lys Ala Lys Val Arg Val
2755 2760 2765
Met Tyr Gly Asn Val Asn Gln Thr Val Asp Val Tyr Val Asn Gly Asp
2770 2775 2780
His Ala Val Thr Ile Gly Gly Thr Gln Phe Ile Phe Gly Pro Leu Ser
2785 2790 2795 2800
Ser Ala Trp Thr Pro Phe Asp Asn Lys Ile Val Val Tyr Lys Asp Glu
2805 2810 2815
Val Phe Asn Gln Asp Phe Pro Pro Tyr Gly Ser Gly Gln Pro Gly Arg
2820 2825 2830
Phe Gly Asp Ile Gln Ser Arg Thr Val Glu Ser Asn Asp Leu Tyr Ala
2835 2840 2845
Asn Thr Ala Leu Lys Leu Ala Arg Pro Ser Pro Gly Met Val His Val
2850 2855 2860
Pro Tyr Thr Gln Thr Pro Ser Gly Phe Lys Tyr Trp Leu Lys Glu Lys
2865 2870 2875 2880
Gly Thr Ala Leu Asn Thr Lys Ala Pro Phe Gly Cys Gln Ile Lys Thr
2885 2890 2895
Asn Pro Val Arg Ala Met Asn Cys Ala Val Gly Asn Ile Pro Val Ser
2900 2905 2910
Met Asn Leu Pro Asp Ser Ala Phe Thr Arg Ile Val Glu Ala Pro Thr
2915 2920 2925
Ile Ile Asp Leu Thr Cys Thr Val Ala Thr Cys Thr His Ser Ser Asp
2930 2935 2940
Phe Gly Gly Val Leu Thr Leu Thr Tyr Lys Thr Asp Lys Asn Gly Asp
2945 2950 2955 2960
Cys Ser Val His Ser His Ser Asn Val Ala Thr Leu Gln Glu Ala Thr
2965 2970 2975
Ala Lys Val Lys Thr Ala Gly Lys Val Thr Leu His Phe Ser Thr Ala
2980 2985 2990
Ser Ala Ser Pro Ser Phe Val Val Ser Leu Cys Ser Ala Arg Ala Thr
2995 3000 3005
Cys Ser Ala Ser Cys Glu Pro Pro Lys Asp His Ile Val Pro Tyr Ala
3010 3015 3020
Ala Ser His Ser Asn Val Val Phe Pro Asp Met Ser Gly Thr Ala Leu
3025 3030 3035 3040
Ser Trp Val Gln Lys Ile Ser Gly Gly Leu Gly Ala Phe Ala Ile Gly
3045 3050 3055
Ala Ile Leu Val Leu Val Val Val Thr Cys Ile Gly Leu Arg Arg
3060 3065 3070
<210> 2
<211> 9216
<212> DNA
<213> Artificially Synthesized
<400> 2
atggccgcca aggtgcacgt ggacatcgag gccgacagcc ccttcatcaa gagcctgcag 60
aaggccttcc ccagcttcga ggtggagagc ctgcaggtga cccccaacga ccacgccaac 120
gcccgggcct tcagccacct ggccaccaag ctgatcgagc aggagaccga caaggacacc 180
ctgatcctgg acatcggcag cgcccccagc cggcggatga tgagcaccca caagtaccac 240
tgcgtgtgcc ccatgcggag cgccgaggac cccgagcggc tggtgtgcta cgccaagaag 300
ctggccgccg ccagcggcaa ggtgctggac cgggagatcg ccggcaagat caccgacctg 360
cagaccgtga tggccacccc cgacgccgag agccccacct tctgcctgca caccgacgtg 420
acctgccgga ccgccgccga ggtggccgtg taccaggacg tgtacgccgt gcacgccccc 480
accagcctgt accaccaggc catgaagggc gtgcggaccg cctactggat cggcttcgac 540
accaccccct tcatgttcga cgccctggcc ggcgcctacc ccacctacgc caccaactgg 600
gccgacgagc aggtgctgca ggcccggaac atcggcctgt gcgccgccag cctgaccgag 660
ggccggctgg gcaagctgag catcctgcgg aagaagcagc tgaagccctg cgacaccgtg 720
atgttcagcg tgggcagcac cctgtacacc gagagccgga agctgctgcg gagctggcac 780
ctgcccagcg tgttccacct gaagggcaag cagagcttca cctgccggtg cgacaccatc 840
gtgagctgcg agggctacgt ggtgaagaag atcaccatgt gccccggcct gtacggcaag 900
accgtgggct acgccgtgac ctaccacgcc gagggcttcc tggtgtgcaa gaccaccgac 960
accgtgaagg gcgagcgggt gagcttcccc gtgtgcacct acgtgcccag caccatctgc 1020
gaccagatga ccggcatcct ggccaccgac gtgacccccg aggacgccca gaagctgctg 1080
gtgggcctga accagcggat cgtggtgaac ggccggaccc agcggaacac caacaccatg 1140
aagaactacc tgctgcccat cgtggccgtg gccttcagca agtgggcccg ggagtacaag 1200
gccgacctgg acgacgagaa gcccctgggc gtgcgggagc ggagcctgac ctgctgctgc 1260
ctgtgggcct tcaagacccg gaagatgcac accatgtaca agaagcccga cacccagacc 1320
atcgtgaagg tgcccagcga gttcaacagc ttcgtgatcc ccagcctgtg gagcaccggc 1380
ctggccatcc ccgtgcggag ccggatcaag atgctgctgg ccaagaagac caagcgggag 1440
ctgatccccg tgctggacgc cagcagcgcc cgggacgccg agcaggagga gaaggagcgg 1500
ctggaggccg agctgacccg ggaggccctg ccccccctgg tgcccatcgc ccccgccgag 1560
accggcgtgg tggacgtgga cgtggaggag ctggagtacc acgccggcgc cggcgtggtg 1620
gagacccccc ggagcgccct gaaggtgacc gcccagccca acgacgtgct gctgggcaac 1680
tacgtggtgc tgagccccca gaccgtgctg aagagcagca agctggcccc cgtgcacccc 1740
ctggccgagc aggtgaagat catcacccac aacggccggg ccggccggta ccaggtggac 1800
ggctacgacg gccgggtgct gctgccctgc ggcagcgcca tccccgtgcc cgagttccag 1860
gccctgagcg agagcgccac catggtgtac aacgagcggg agttcgtgaa ccggaagctg 1920
taccacatcg ccgtgcacgg ccccagcctg aacaccgacg aggagaacta cgagaaggtg 1980
cgggccgagc ggaccgacgc cgagtacgtg ttcgacgtgg acaagaagtg ctgcgtgaag 2040
cgggaggagg ccagcggcct ggtgctggtg ggcgagctga ccaacccccc cttccacgag 2100
ttcgcctacg agggcctgaa gatccggccc agcgccccct acaagaccac cgtggtgggc 2160
gtgttcggcg tgcccggcag cggcaagagc gccatcatca agagcctggt gaccaagcac 2220
gacctggtga ccagcggcaa gaaggagaac tgccaggaga tcgtgaacga cgtgaagaag 2280
caccggggcc tggacatcca ggccaagacc gtggacagca tcctgctgaa cggctgccgg 2340
cgggccgtgg acatcctgta cgtggacgag gccttcgcct gccaccccgg caccctgctg 2400
gccctgatcg ccctggtgaa gccccggagc aaggtggtgc tgtgcggcga ccccaagcag 2460
tgcggcttct tcaacatgat gcagctgaag gtgaacttca accacaacat ctgcaccgag 2520
gtgtgccaca agagcatcag ccggcggtgc acccggcccg tgaccgccat cgtgagcacc 2580
ctgcactacg gcggcaagat gcggaccacc aacccctgca acaagcccat catcatcgac 2640
accaccggcc agaccaagcc caagcccggc gacatcgtgc tgacctgctt ccggggctgg 2700
gtgaagcagc tgcagctgga ctaccggggc cacgaggtga tgaccgccgc cgccagccag 2760
ggcctgaccc ggaagggcgt gtacgccgtg cggcagaagg tgaacgagaa ccccctgtac 2820
gcccccgcca gcgagcacgt gaacgtgctg ctgacccgga ccgaggaccg gctggtgtgg 2880
aagaccctgg ccggcgaccc ctggatcaag gtgctgagca acatccccca gggcaacttc 2940
accgccaccc tggaggagtg gcaggaggag cacgacaaga tcatgaaggt gatcgagggc 3000
cccgccgccc ccgtggacgc cttccagaac aaggccaacg tgtgctgggc caagagcctg 3060
gtgcccgtgc tggacaccgc cggcatccgg ctgaccgccg aggagtggag caccatcatc 3120
accgccttca aggaggaccg ggcctacagc cccgtggtgg ccctgaacga gatctgcacc 3180
aagtactacg gcgtggacct ggacagcggc ctgttcagcg cccccaaggt gagcctgtac 3240
tacgagaaca accactggga caaccggccc ggcggccgga tgtacggctt caacgccgcc 3300
accgccgccc ggctggaggc ccggcacacc ttcctgaagg gccagtggca caccggcaag 3360
caggccgtga tcgccgagcg gaagatccag cccctgagcg tgctggacaa cgtgatcccc 3420
atcaaccggc ggctgcccca cgccctggtg gccgagtaca agaccgtgaa gggcagccgg 3480
gtggagtggc tggtgaacaa ggtgcggggc taccacgtgc tgctggtgag cgagtacaac 3540
ctggccctgc cccggcggga cgtgacctgg ctgagccccc tgaacgtgac cggcgccgac 3600
cggtgctacg acctgagcct gggcctgccc gccgacgccg gccggttcga cctggtgttc 3660
gtgaacatcc acaccgagtt ccggatccac cactaccagc agtgcgtgga ccacgccatg 3720
aagctgcaga tgctgggcgg cgacgccctg cggctgctga agcccggcgg cagcctgctg 3780
atgcgggcct acggctacgc cgacaagatc agcgaggccg tggtgagcag cctgagccgg 3840
aagttcagca gcgcccgggt gctgcggccc gactgcgtga ccagcaacac cgaggtgttc 3900
ctgctgttca gcaacttcga caacggcaag cggcccagca ccctgcacca gatgaacacc 3960
aagctgagcg ccgtgtacgc cggcgaggcc atgcacaccg ccggctgcgc ccccagctac 4020
cgggtgaagc gggccgacat cgccacctgc accgaggccg ccgtggtgaa cgccgccaac 4080
gcccggggca ccgtgggcga cggcgtgtgc cgggccgtgg ccaagaagtg gcccagcgcc 4140
ttcaagggcg aggccacccc cgtgggcacc atcaagaccg tgatgtgcgg cagctacccc 4200
gtgatccacg ccgtggcccc caacttcagc gccaccaccg aggccgaggg cgaccgggag 4260
ctggccgccg tgtaccgggc cgtggccgcc gaggtgaacc ggctgagcct gagcagcgtg 4320
gccatccccc tgctgagcac cggcgtgttc agcggcggcc gggaccggct gcagcagagc 4380
ctgaaccacc tgttcaccgc catggacgcc accgacgccg acgtgaccat ctactgccgg 4440
gacaagagct gggagaagaa gatccaggag gccatcgaca tgcggaccgc cgtggagctg 4500
ctgaacgacg acgtggagct gaccaccgac ctggtgcggg tgcaccccga cagcagcctg 4560
gtgggccgga agggctacag caccaccgac ggcagcctgt acagctactt cgagggcacc 4620
aagttcaacc aggccgccat cgacatggcc gagatcctga ccctgtggcc ccggctgcag 4680
gaggccaacg agcagatctg cctgtacgcc ctgggcgaga ccatggacaa catccggagc 4740
aagtgccccg tgaacgacag cgacagcagc accccccccc ggaccgtgcc ctgcctgtgc 4800
cggtacgcca tgaccgccga gcggatcgcc cggctgcgga gccaccaggt gaagagcatg 4860
gtggtgtgca gcagcttccc cctgcccaag taccacgtgg acggcgtgca gaaggtgaag 4920
tgcgagaagg tgctgctgtt cgaccccacc gtgcccagcg tggtgagccc ccggaagtac 4980
gccgccagca ccaccgacca cagcgaccgg agcctgcggg gcttcgacct ggactggacc 5040
accgacagca gcagcaccgc cagcgacacc atgagcctgc ccagcctgca gagctgcgac 5100
atcgacagca tctacgagcc catggccccc atcgtggtga ccgccgacgt gcaccccgag 5160
cccgccggca tcgccgacct ggccgccgac gtgcaccccg agcccgccga ccacgtggac 5220
ctggagaacc ccatcccccc cccccggccc aagcgggccg cctacctggc cagccgggcc 5280
gccgagcggc ccgtgcccgc cccccggaag cccacccccg ccccccggac cgccttccgg 5340
aacaagctgc ccctgacctt cggcgacttc gacgagcacg aggtggacgc cctggccagc 5400
ggcatcacct tcggcgactt cgacgacgtg ctgcggctgg gccgggccgg cgccatgaac 5460
tacatcccca cccagacctt ctacggccgg cggtggcggc cccggcccgc cgcccggccc 5520
tggcccctgc aggccacccc cgtggccccc gtggtgcccg acttccaggc ccagcagatg 5580
cagcagctga tcagcgccgt gaacgccctg accatgcggc agaacgccat cgcccccgcc 5640
cggcccccca agcccaagaa gaagaagacc accaagccca agcccaagac ccagcccaag 5700
aagatcaacg gcaagaccca gcagcagaag aagaaggaca agcaggccga caagaagaag 5760
aagaagcccg gcaagcggga gcggatgtgc atgaagatcg agaacgactg catcttcgag 5820
gtgaagcacg agggcaaggt gaccggctac gcctgcctgg tgggcgacaa ggtgatgaag 5880
cccgcccacg tgaagggcgt gatcgacaac gccgacctgg ccaagctggc cttcaagaag 5940
agcagcaagt acgacctgga gtgcgcccag atccccgtgc acatgcggag cgacgccagc 6000
aagtacaccc acgagaagcc cgagggccac tacaactggc accacggcgc cgtgcagtac 6060
agcggcggcc ggttcaccat ccccaccggc gccggcaagc ccggcgacag cggccggccc 6120
atcttcgaca acaagggccg ggtggtggcc atcgtgctgg gcggcgccaa cgagggcagc 6180
cggaccgccc tgagcgtggt gacctggaac aaggacatgg tgacccgggt gacccccgag 6240
ggcagcgagg agtggagcgc ccccctgatc accgccatgt gcgtgctggc caacgccacc 6300
ttcccctgct tccagccccc ctgcgtgccc tgctgctacg agaacaacgc cgaggccacc 6360
ctgcggatgc tggaggacaa cgtggaccgg cccggctact acgacctgct gcaggccgcc 6420
ctgacctgcc ggaacggcac ccggcaccgg cggagcgtga gccagcactt caacgtgtac 6480
aaggccaccc ggccctacat cgcctactgc gccgactgcg gcgccggcca cagctgccac 6540
agccccgtgg ccatcgaggc cgtgcggagc gaggccaccg acggcatgct gaagatccag 6600
ttcagcgccc agatcggcat cgacaagagc gacaaccacg actacaccaa gatccggtac 6660
gccgacggcc acgccatcga gaacgccgtg cggagcagcc tgaaggtggc caccagcggc 6720
gactgcttcg tgcacggcac catgggccac ttcatcctgg ccaagtgccc ccccggcgag 6780
ttcctgcagg tgagcatcca ggacacccgg aacgccgtgc gggcctgccg gatccagtac 6840
caccacgacc cccagcccgt gggccgggag aagttcacca tccggcccca ctacggcaag 6900
gagatcccct gcaccaccta ccagcagacc accgccaaga ccgtggagga gatcgacatg 6960
cacatgcccc ccgacacccc cgaccggacc ctgctgagcc agcagagcgg caacgtgaag 7020
atcaccgtgg gcggcaagaa ggtgaagtac aactgcacct gcggcaccgg caacgtgggc 7080
accaccaaca gcgacatgac catcaacacc tgcctgatcg agcagtgcca cgtgagcgtg 7140
accgaccaca agaagtggca gttcaacagc cccttcgtgc cccgggccga cgagcccgcc 7200
cggaagggca aggtgcacat ccccttcccc ctggacaaca tcacctgccg ggtgcccatg 7260
gcccgggagc ccaccgtgat ccacggcaag cgggaggtga ccctgcacct gcaccccgac 7320
caccccaccc tgttcagcta ccggaccctg ggcgaggacc cccagtacca cgaggagtgg 7380
gtgaccgccg ccgtggagcg gaccatcccc gtgcccgtgg acggcatgga gtaccactgg 7440
ggcaacaacg accccgtgcg gctgtggagc cagctgacca ccgagggcaa gccccacggc 7500
tggccccacc agatcgtgca gtactactac ggcctgtacc ccgccgccac cgtgagcgcc 7560
gtggtgggca tgagcctgct ggccctgatc agcatcttcg ccagctgcta catgctggtg 7620
gccgcccgga gcaagtgcct gaccccctac gccctgaccc ccggcgccgc cgtgccctgg 7680
accctgggca tcctgtgctg cgccccccgg gcccacgccg ccagcgtggc cgagaccatg 7740
gcctacctgt gggaccagaa ccaggccctg ttctggctgg agttcgccgc ccccgtggcc 7800
tgcatcctga tcatcaccta ctgcctgcgg aacgtgctgt gctgctgcaa gagcctgagc 7860
ttcctggtgc tgctgagcct gggcgccacc gcccgggcct acgagcacag caccgtgatg 7920
cccaacgtgg tgggcttccc ctacaaggcc cacatcgagc ggcccggcta cagccccctg 7980
accctgcaga tgcaggtggt ggagaccagc ctggagccca ccctgaacct ggagtacatc 8040
acctgcgagt acaagaccgt ggtgcccagc ccctacgtga agtgctgcgg cgccagcgag 8100
tgcagcacca aggagaagcc cgactaccag tgcaaggtgt acaccggcgt gtaccccttc 8160
atgtggggcg gcgcctactg cttctgcgac agcgagaaca cccagctgag cgaggcctac 8220
gtggaccgga gcgacgtgtg ccggcacgac cacgccagcg cctacaaggc ccacaccgcc 8280
agcctgaagg ccaaggtgcg ggtgatgtac ggcaacgtga accagaccgt ggacgtgtac 8340
gtgaacggcg accacgccgt gaccatcggc ggcacccagt tcatcttcgg ccccctgagc 8400
agcgcctgga cccccttcga caacaagatc gtggtgtaca aggacgaggt gttcaaccag 8460
gacttccccc cctacggcag cggccagccc ggccggttcg gcgacatcca gagccggacc 8520
gtggagagca acgacctgta cgccaacacc gccctgaagc tggcccggcc cagccccggc 8580
atggtgcacg tgccctacac ccagaccccc agcggcttca agtactggct gaaggagaag 8640
ggcaccgccc tgaacaccaa ggcccccttc ggctgccaga tcaagaccaa ccccgtgcgg 8700
gccatgaact gcgccgtggg caacatcccc gtgagcatga acctgcccga cagcgccttc 8760
acccggatcg tggaggcccc caccatcatc gacctgacct gcaccgtggc cacctgcacc 8820
cacagcagcg acttcggcgg cgtgctgacc ctgacctaca agaccgacaa gaacggcgac 8880
tgcagcgtgc acagccacag caacgtggcc accctgcagg aggccaccgc caaggtgaag 8940
accgccggca aggtgaccct gcacttcagc accgccagcg ccagccccag cttcgtggtg 9000
agcctgtgca gcgcccgggc cacctgcagc gccagctgcg agccccccaa ggaccacatc 9060
gtgccctacg ccgccagcca cagcaacgtg gtgttccccg acatgagcgg caccgccctg 9120
agctgggtgc agaagatcag cggcggcctg ggcgccttcg ccatcggcgc catcctggtg 9180
ctggtggtgg tgacctgcat cggcctgcgg cggtga 9216
<210> 3
<211> 1611
<212> DNA
<213> Artificially Synthesized
<400> 3
atggccgcca aggtgcacgt ggacatcgag gccgacagcc ccttcatcaa gagcctgcag 60
aaggccttcc ccagcttcga ggtggagagc ctgcaggtga cccccaacga ccacgccaac 120
gcccgggcct tcagccacct ggccaccaag ctgatcgagc aggagaccga caaggacacc 180
ctgatcctgg acatcggcag cgcccccagc cggcggatga tgagcaccca caagtaccac 240
tgcgtgtgcc ccatgcggag cgccgaggac cccgagcggc tggtgtgcta cgccaagaag 300
ctggccgccg ccagcggcaa ggtgctggac cgggagatcg ccggcaagat caccgacctg 360
cagaccgtga tggccacccc cgacgccgag agccccacct tctgcctgca caccgacgtg 420
acctgccgga ccgccgccga ggtggccgtg taccaggacg tgtacgccgt gcacgccccc 480
accagcctgt accaccaggc catgaagggc gtgcggaccg cctactggat cggcttcgac 540
accaccccct tcatgttcga cgccctggcc ggcgcctacc ccacctacgc caccaactgg 600
gccgacgagc aggtgctgca ggcccggaac atcggcctgt gcgccgccag cctgaccgag 660
ggccggctgg gcaagctgag catcctgcgg aagaagcagc tgaagccctg cgacaccgtg 720
atgttcagcg tgggcagcac cctgtacacc gagagccgga agctgctgcg gagctggcac 780
ctgcccagcg tgttccacct gaagggcaag cagagcttca cctgccggtg cgacaccatc 840
gtgagctgcg agggctacgt ggtgaagaag atcaccatgt gccccggcct gtacggcaag 900
accgtgggct acgccgtgac ctaccacgcc gagggcttcc tggtgtgcaa gaccaccgac 960
accgtgaagg gcgagcgggt gagcttcccc gtgtgcacct acgtgcccag caccatctgc 1020
gaccagatga ccggcatcct ggccaccgac gtgacccccg aggacgccca gaagctgctg 1080
gtgggcctga accagcggat cgtggtgaac ggccggaccc agcggaacac caacaccatg 1140
aagaactacc tgctgcccat cgtggccgtg gccttcagca agtgggcccg ggagtacaag 1200
gccgacctgg acgacgagaa gcccctgggc gtgcgggagc ggagcctgac ctgctgctgc 1260
ctgtgggcct tcaagacccg gaagatgcac accatgtaca agaagcccga cacccagacc 1320
atcgtgaagg tgcccagcga gttcaacagc ttcgtgatcc ccagcctgtg gagcaccggc 1380
ctggccatcc ccgtgcggag ccggatcaag atgctgctgg ccaagaagac caagcgggag 1440
ctgatccccg tgctggacgc cagcagcgcc cgggacgccg agcaggagga gaaggagcgg 1500
ctggaggccg agctgacccg ggaggccctg ccccccctgg tgcccatcgc ccccgccgag 1560
accggcgtgg tggacgtgga cgtggaggag ctggagtacc acgccggcgc c 1611
<210> 4
<211> 2397
<212> DNA
<213> Artificially Synthesized
<400> 4
ggcgtggtgg agaccccccg gagcgccctg aaggtgaccg cccagcccaa cgacgtgctg 60
ctgggcaact acgtggtgct gagcccccag accgtgctga agagcagcaa gctggccccc 120
gtgcaccccc tggccgagca ggtgaagatc atcacccaca acggccgggc cggccggtac 180
caggtggacg gctacgacgg ccgggtgctg ctgccctgcg gcagcgccat ccccgtgccc 240
gagttccagg ccctgagcga gagcgccacc atggtgtaca acgagcggga gttcgtgaac 300
cggaagctgt accacatcgc cgtgcacggc cccagcctga acaccgacga ggagaactac 360
gagaaggtgc gggccgagcg gaccgacgcc gagtacgtgt tcgacgtgga caagaagtgc 420
tgcgtgaagc gggaggaggc cagcggcctg gtgctggtgg gcgagctgac caaccccccc 480
ttccacgagt tcgcctacga gggcctgaag atccggccca gcgcccccta caagaccacc 540
gtggtgggcg tgttcggcgt gcccggcagc ggcaagagcg ccatcatcaa gagcctggtg 600
accaagcacg acctggtgac cagcggcaag aaggagaact gccaggagat cgtgaacgac 660
gtgaagaagc accggggcct ggacatccag gccaagaccg tggacagcat cctgctgaac 720
ggctgccggc gggccgtgga catcctgtac gtggacgagg ccttcgcctg ccaccccggc 780
accctgctgg ccctgatcgc cctggtgaag ccccggagca aggtggtgct gtgcggcgac 840
cccaagcagt gcggcttctt caacatgatg cagctgaagg tgaacttcaa ccacaacatc 900
tgcaccgagg tgtgccacaa gagcatcagc cggcggtgca cccggcccgt gaccgccatc 960
gtgagcaccc tgcactacgg cggcaagatg cggaccacca acccctgcaa caagcccatc 1020
atcatcgaca ccaccggcca gaccaagccc aagcccggcg acatcgtgct gacctgcttc 1080
cggggctggg tgaagcagct gcagctggac taccggggcc acgaggtgat gaccgccgcc 1140
gccagccagg gcctgacccg gaagggcgtg tacgccgtgc ggcagaaggt gaacgagaac 1200
cccctgtacg cccccgccag cgagcacgtg aacgtgctgc tgacccggac cgaggaccgg 1260
ctggtgtgga agaccctggc cggcgacccc tggatcaagg tgctgagcaa catcccccag 1320
ggcaacttca ccgccaccct ggaggagtgg caggaggagc acgacaagat catgaaggtg 1380
atcgagggcc ccgccgcccc cgtggacgcc ttccagaaca aggccaacgt gtgctgggcc 1440
aagagcctgg tgcccgtgct ggacaccgcc ggcatccggc tgaccgccga ggagtggagc 1500
accatcatca ccgccttcaa ggaggaccgg gcctacagcc ccgtggtggc cctgaacgag 1560
atctgcacca agtactacgg cgtggacctg gacagcggcc tgttcagcgc ccccaaggtg 1620
agcctgtact acgagaacaa ccactgggac aaccggcccg gcggccggat gtacggcttc 1680
aacgccgcca ccgccgcccg gctggaggcc cggcacacct tcctgaaggg ccagtggcac 1740
accggcaagc aggccgtgat cgccgagcgg aagatccagc ccctgagcgt gctggacaac 1800
gtgatcccca tcaaccggcg gctgccccac gccctggtgg ccgagtacaa gaccgtgaag 1860
ggcagccggg tggagtggct ggtgaacaag gtgcggggct accacgtgct gctggtgagc 1920
gagtacaacc tggccctgcc ccggcgggac gtgacctggc tgagccccct gaacgtgacc 1980
ggcgccgacc ggtgctacga cctgagcctg ggcctgcccg ccgacgccgg ccggttcgac 2040
ctggtgttcg tgaacatcca caccgagttc cggatccacc actaccagca gtgcgtggac 2100
cacgccatga agctgcagat gctgggcggc gacgccctgc ggctgctgaa gcccggcggc 2160
agcctgctga tgcgggccta cggctacgcc gacaagatca gcgaggccgt ggtgagcagc 2220
ctgagccgga agttcagcag cgcccgggtg ctgcggcccg actgcgtgac cagcaacacc 2280
gaggtgttcc tgctgttcag caacttcgac aacggcaagc ggcccagcac cctgcaccag 2340
atgaacacca agctgagcgc cgtgtacgcc ggcgaggcca tgcacaccgc cggctgc 2397
<210> 5
<211> 1446
<212> DNA
<213> Artificially Synthesized
<400> 5
gcccccagct accgggtgaa gcgggccgac atcgccacct gcaccgaggc cgccgtggtg 60
aacgccgcca acgcccgggg caccgtgggc gacggcgtgt gccgggccgt ggccaagaag 120
tggcccagcg ccttcaaggg cgaggccacc cccgtgggca ccatcaagac cgtgatgtgc 180
ggcagctacc ccgtgatcca cgccgtggcc cccaacttca gcgccaccac cgaggccgag 240
ggcgaccggg agctggccgc cgtgtaccgg gccgtggccg ccgaggtgaa ccggctgagc 300
ctgagcagcg tggccatccc cctgctgagc accggcgtgt tcagcggcgg ccgggaccgg 360
ctgcagcaga gcctgaacca cctgttcacc gccatggacg ccaccgacgc cgacgtgacc 420
atctactgcc gggacaagag ctgggagaag aagatccagg aggccatcga catgcggacc 480
gccgtggagc tgctgaacga cgacgtggag ctgaccaccg acctggtgcg ggtgcacccc 540
gacagcagcc tggtgggccg gaagggctac agcaccaccg acggcagcct gtacagctac 600
ttcgagggca ccaagttcaa ccaggccgcc atcgacatgg ccgagatcct gaccctgtgg 660
ccccggctgc aggaggccaa cgagcagatc tgcctgtacg ccctgggcga gaccatggac 720
aacatccgga gcaagtgccc cgtgaacgac agcgacagca gcaccccccc ccggaccgtg 780
ccctgcctgt gccggtacgc catgaccgcc gagcggatcg cccggctgcg gagccaccag 840
gtgaagagca tggtggtgtg cagcagcttc cccctgccca agtaccacgt ggacggcgtg 900
cagaaggtga agtgcgagaa ggtgctgctg ttcgacccca ccgtgcccag cgtggtgagc 960
ccccggaagt acgccgccag caccaccgac cacagcgacc ggagcctgcg gggcttcgac 1020
ctggactgga ccaccgacag cagcagcacc gccagcgaca ccatgagcct gcccagcctg 1080
cagagctgcg acatcgacag catctacgag cccatggccc ccatcgtggt gaccgccgac 1140
gtgcaccccg agcccgccgg catcgccgac ctggccgccg acgtgcaccc cgagcccgcc 1200
gaccacgtgg acctggagaa ccccatcccc cccccccggc ccaagcgggc cgcctacctg 1260
gccagccggg ccgccgagcg gcccgtgccc gccccccgga agcccacccc cgccccccgg 1320
accgccttcc ggaacaagct gcccctgacc ttcggcgact tcgacgagca cgaggtggac 1380
gccctggcca gcggcatcac cttcggcgac ttcgacgacg tgctgcggct gggccgggcc 1440
ggcgcc 1446
<210> 6
<211> 3762
<212> DNA
<213> Artificially Synthesized
<400> 6
atgaactaca tccccaccca gaccttctac ggccggcggt ggcggccccg gcccgccgcc 60
cggccctggc ccctgcaggc cacccccgtg gcccccgtgg tgcccgactt ccaggcccag 120
cagatgcagc agctgatcag cgccgtgaac gccctgacca tgcggcagaa cgccatcgcc 180
cccgcccggc cccccaagcc caagaagaag aagaccacca agcccaagcc caagacccag 240
cccaagaaga tcaacggcaa gacccagcag cagaagaaga aggacaagca ggccgacaag 300
aagaagaaga agcccggcaa gcgggagcgg atgtgcatga agatcgagaa cgactgcatc 360
ttcgaggtga agcacgaggg caaggtgacc ggctacgcct gcctggtggg cgacaaggtg 420
atgaagcccg cccacgtgaa gggcgtgatc gacaacgccg acctggccaa gctggccttc 480
aagaagagca gcaagtacga cctggagtgc gcccagatcc ccgtgcacat gcggagcgac 540
gccagcaagt acacccacga gaagcccgag ggccactaca actggcacca cggcgccgtg 600
cagtacagcg gcggccggtt caccatcccc accggcgccg gcaagcccgg cgacagcggc 660
cggcccatct tcgacaacaa gggccgggtg gtggccatcg tgctgggcgg cgccaacgag 720
ggcagccgga ccgccctgag cgtggtgacc tggaacaagg acatggtgac ccgggtgacc 780
cccgagggca gcgaggagtg gagcgccccc ctgatcaccg ccatgtgcgt gctggccaac 840
gccaccttcc cctgcttcca gcccccctgc gtgccctgct gctacgagaa caacgccgag 900
gccaccctgc ggatgctgga ggacaacgtg gaccggcccg gctactacga cctgctgcag 960
gccgccctga cctgccggaa cggcacccgg caccggcgga gcgtgagcca gcacttcaac 1020
gtgtacaagg ccacccggcc ctacatcgcc tactgcgccg actgcggcgc cggccacagc 1080
tgccacagcc ccgtggccat cgaggccgtg cggagcgagg ccaccgacgg catgctgaag 1140
atccagttca gcgcccagat cggcatcgac aagagcgaca accacgacta caccaagatc 1200
cggtacgccg acggccacgc catcgagaac gccgtgcgga gcagcctgaa ggtggccacc 1260
agcggcgact gcttcgtgca cggcaccatg ggccacttca tcctggccaa gtgccccccc 1320
ggcgagttcc tgcaggtgag catccaggac acccggaacg ccgtgcgggc ctgccggatc 1380
cagtaccacc acgaccccca gcccgtgggc cgggagaagt tcaccatccg gccccactac 1440
ggcaaggaga tcccctgcac cacctaccag cagaccaccg ccaagaccgt ggaggagatc 1500
gacatgcaca tgccccccga cacccccgac cggaccctgc tgagccagca gagcggcaac 1560
gtgaagatca ccgtgggcgg caagaaggtg aagtacaact gcacctgcgg caccggcaac 1620
gtgggcacca ccaacagcga catgaccatc aacacctgcc tgatcgagca gtgccacgtg 1680
agcgtgaccg accacaagaa gtggcagttc aacagcccct tcgtgccccg ggccgacgag 1740
cccgcccgga agggcaaggt gcacatcccc ttccccctgg acaacatcac ctgccgggtg 1800
cccatggccc gggagcccac cgtgatccac ggcaagcggg aggtgaccct gcacctgcac 1860
cccgaccacc ccaccctgtt cagctaccgg accctgggcg aggaccccca gtaccacgag 1920
gagtgggtga ccgccgccgt ggagcggacc atccccgtgc ccgtggacgg catggagtac 1980
cactggggca acaacgaccc cgtgcggctg tggagccagc tgaccaccga gggcaagccc 2040
cacggctggc cccaccagat cgtgcagtac tactacggcc tgtaccccgc cgccaccgtg 2100
agcgccgtgg tgggcatgag cctgctggcc ctgatcagca tcttcgccag ctgctacatg 2160
ctggtggccg cccggagcaa gtgcctgacc ccctacgccc tgacccccgg cgccgccgtg 2220
ccctggaccc tgggcatcct gtgctgcgcc ccccgggccc acgccgccag cgtggccgag 2280
accatggcct acctgtggga ccagaaccag gccctgttct ggctggagtt cgccgccccc 2340
gtggcctgca tcctgatcat cacctactgc ctgcggaacg tgctgtgctg ctgcaagagc 2400
ctgagcttcc tggtgctgct gagcctgggc gccaccgccc gggcctacga gcacagcacc 2460
gtgatgccca acgtggtggg cttcccctac aaggcccaca tcgagcggcc cggctacagc 2520
cccctgaccc tgcagatgca ggtggtggag accagcctgg agcccaccct gaacctggag 2580
tacatcacct gcgagtacaa gaccgtggtg cccagcccct acgtgaagtg ctgcggcgcc 2640
agcgagtgca gcaccaagga gaagcccgac taccagtgca aggtgtacac cggcgtgtac 2700
cccttcatgt ggggcggcgc ctactgcttc tgcgacagcg agaacaccca gctgagcgag 2760
gcctacgtgg accggagcga cgtgtgccgg cacgaccacg ccagcgccta caaggcccac 2820
accgccagcc tgaaggccaa ggtgcgggtg atgtacggca acgtgaacca gaccgtggac 2880
gtgtacgtga acggcgacca cgccgtgacc atcggcggca cccagttcat cttcggcccc 2940
ctgagcagcg cctggacccc cttcgacaac aagatcgtgg tgtacaagga cgaggtgttc 3000
aaccaggact tcccccccta cggcagcggc cagcccggcc ggttcggcga catccagagc 3060
cggaccgtgg agagcaacga cctgtacgcc aacaccgccc tgaagctggc ccggcccagc 3120
cccggcatgg tgcacgtgcc ctacacccag acccccagcg gcttcaagta ctggctgaag 3180
gagaagggca ccgccctgaa caccaaggcc cccttcggct gccagatcaa gaccaacccc 3240
gtgcgggcca tgaactgcgc cgtgggcaac atccccgtga gcatgaacct gcccgacagc 3300
gccttcaccc ggatcgtgga ggcccccacc atcatcgacc tgacctgcac cgtggccacc 3360
tgcacccaca gcagcgactt cggcggcgtg ctgaccctga cctacaagac cgacaagaac 3420
ggcgactgca gcgtgcacag ccacagcaac gtggccaccc tgcaggaggc caccgccaag 3480
gtgaagaccg ccggcaaggt gaccctgcac ttcagcaccg ccagcgccag ccccagcttc 3540
gtggtgagcc tgtgcagcgc ccgggccacc tgcagcgcca gctgcgagcc ccccaaggac 3600
cacatcgtgc cctacgccgc cagccacagc aacgtggtgt tccccgacat gagcggcacc 3660
gccctgagct gggtgcagaa gatcagcggc ggcctgggcg ccttcgccat cggcgccatc 3720
ctggtgctgg tggtggtgac ctgcatcggc ctgcggcggt ga 3762
<210> 7
<211> 221
<212> DNA
<213> Alphavirus
<400> 7
atggccgcca aagtgcatgt tgatattgag gctgacagcc cattcatcaa gtctttgcag 60
aaggcatttc cgtcgttcga ggtggagtca ttgcaggtca caccaaatga ccatgcaaat 120
gccagagcat tttcgcacct ggctaccaaa ttgatcgagc aggagactga caaagacaca 180
ctcatcttgg atatcggcag tgcgccttcc aggagaatga t 221
<210> 8
<211> 984
<212> DNA
<213> Alphavirus
<400> 8
ggacgtatgc aggcatgatc acgcatctgc ttacaaagcc catacagcat cgctgaaggc 60
caaagtgagg gttatgtacg gcaacgtaaa ccagactgtg gatgtttacg tgaacggaga 120
ccatgccgtc acgatagggg gtactcagtt catattcggg ccgctgtcat cggcctggac 180
cccgttcgac aacaagatag tcgtgtacaa agacgaagtg ttcaatcagg acttcccgcc 240
gtacggatct gggcaaccag ggcgcttcgg cgacatccaa agcagaacag tggagagtaa 300
cgacctgtac gcgaacacgg cactgaagct ggcacgccct tcacccggca tggtccatgt 360
accgtacaca cagacacctt cagggttcaa atattggcta aaggaaaaag ggacagccct 420
aaatacgaag gctccttttg gctgccaaat caaaacgaac cctgtcaggg ccatgaactg 480
cgccgtggga aacatccctg tctccatgaa tttgcctgac agcgccttta cccgcattgt 540
cgaggcgccg accatcattg acctgacttg cacagtggct acctgtacgc actcctcgga 600
tttcggcggc gtcttgacac tgacgtacaa gaccgacaag aacggggact gctctgtaca 660
ctcgcactct aacgtagcta ctctacagga ggccacagca aaagtgaaga cagcaggtaa 720
ggtgacctta cacttctcca cggcaagcgc atcaccttct tttgtggtgt cgctatgcag 780
tgctagggcc acctgttcag cgtcgtgtga gcccccgaaa gaccacatag tcccatatgc 840
ggctagccac agtaacgtag tgtttccaga catgtcgggc accgcactat catgggtgca 900
gaaaatctcg ggtggtctgg gggccttcgc aatcggcgct atcctggtgc tggttgtggt 960
cacttgcatt gggctccgca gata 984
<210> 9
<211> 64
<212> DNA
<213> Artificially Synthesized
<400> 9
taatacgact cactataggg aaataagaga gaaaagaaga gtaagaagaa atataagagc 60
cacc 64
<210> 10
<211> 389
<212> DNA
<213> Artificially Synthesized
<400> 10
ctcgagctgg tactgcatgc acgcaatgct agctgcccct ttcccgtcct gggtaccccg 60
agtctccccc gacctcgggt cccaggtatg ctcccacctc cacctgcccc actcaccacc 120
tctgctagtt ccagacacct cccaagcacg cagcaatgca gctcaaaacg cttagcctag 180
ccacaccccc acgggaaaca gcagtgatta acctttagca ataaacgaaa gtttaactaa 240
gctatactaa ccccagggtt ggtcaatttc gtgccagcca caccctggag ctagcgctgc 300
cttctgcggg gcttgccttc tggccatgcc cttcttctct cccttgcacc tgtacctctt 360
ggtctttgaa taaagcctga gtaggaagt 389
<210> 11
<211> 9216
<212> DNA
<213> Alphavirus
<400> 11
atggccgcca aagtgcatgt tgatattgag gctgacagcc cattcatcaa gtctttgcag 60
aaggcatttc cgtcgttcga ggtggagtca ttgcaggtca caccaaatga ccatgcaaat 120
gccagagcat tttcgcacct ggctaccaaa ttgatcgagc aggagactga caaagacaca 180
ctcatcttgg atatcggcag tgcgccttcc aggagaatga tgtctacgca caaataccac 240
tgcgtatgcc ctatgcgcag cgcagaagac cccgaaaggc tcgtatgcta cgcaaagaaa 300
ctggcagcgg cctccgggaa ggtgctggat agagagatcg caggaaaaat caccgacctg 360
cagaccgtca tggctacgcc agacgctgaa tctcctacct tttgcctgca tacagacgtc 420
acgtgtcgta cggcagccga agtggccgta taccaggacg tgtatgctgt acatgcacca 480
acatcgctgt accatcaggc gatgaaaggt gtcagaacgg cgtattggat tgggtttgac 540
accaccccgt ttatgtttga cgcgctagca ggcgcgtatc caacctacgc cacaaactgg 600
gccgacgagc aggtgttaca ggccaggaac ataggactgt gtgcagcatc cttgactgag 660
ggaagactcg gcaaactgtc cattctccgc aagaagcaat tgaaaccttg cgacacagtc 720
atgttctcgg taggatctac attgtacact gagagcagaa agctactgag gagctggcac 780
ttaccctccg tattccacct gaaaggtaaa caatccttta cctgtaggtg cgataccatc 840
gtatcatgtg aagggtacgt agttaagaaa atcactatgt gccccggcct gtacggtaaa 900
acggtagggt acgccgtgac gtatcacgcg gagggattcc tagtgtgcaa gaccacagac 960
actgtcaaag gagaaagagt ctcattccct gtatgcacct acgtcccctc aaccatctgt 1020
gatcaaatga ctggcatact agcgaccgac gtcacaccgg aggacgcaca gaagttgtta 1080
gtgggattga atcagaggat agttgtgaac ggaagaacac agcgaaacac taacacgatg 1140
aagaactatc tgcttccgat tgtggccgtc gcatttagca agtgggcgag ggaatacaag 1200
gcagaccttg atgatgaaaa acctctgggt gtccgagaga ggtcacttac ttgctgctgc 1260
ttgtgggcat ttaaaacgag gaagatgcac accatgtaca agaaaccaga cacccagaca 1320
atagtgaagg tgccttcaga gtttaactcg ttcgtcatcc cgagcctatg gtctacaggc 1380
ctcgcaatcc cagtcagatc acgcattaag atgcttttgg ccaagaagac caagcgagag 1440
ttaatacctg ttctcgacgc gtcgtcagcc agggatgctg aacaagagga gaaggagagg 1500
ttggaggccg agctgactag agaagcctta ccacccctcg ttcccatcgc gccggcggag 1560
acgggagtcg tcgacgtcga cgttgaagaa ctagagtatc acgcaggtgc aggggtcgtg 1620
gaaacacctc gcagcgcgtt gaaagtcacc gcacagccga acgacgtact actaggaaat 1680
tacgtagttc tgtccccgca gaccgtgctc aagagctcca agttggcccc cgtgcaccct 1740
ctagcagagc aggtgaaaat aataacacat aacgggaggg ccggccgtta ccaggtcgac 1800
ggatatgacg gcagggtcct actaccatgt ggatcggcca ttccggtccc tgagtttcaa 1860
gctttgagcg agagcgccac tatggtgtac aacgaaaggg agttcgtcaa caggaaacta 1920
taccatattg ccgttcacgg accgtcgctg aacaccgacg aggagaacta cgagaaagtc 1980
agagctgaaa gaactgacgc cgagtacgtg ttcgacgtag ataaaaaatg ctgcgtcaag 2040
agagaggaag cgtcgggttt ggtgttggtg ggagagctaa ccaacccccc gttccatgaa 2100
ttcgcctacg aagggctgaa gatcaggccg tcggcaccat ataagactac agtagtagga 2160
gtctttgggg ttccgggatc aggcaagtct gctattatta agagcctcgt gaccaaacac 2220
gatctggtca ccagcggcaa gaaggagaac tgccaggaaa tagtcaacga cgtgaagaag 2280
caccgcggac tggacatcca ggcaaaaaca gtggactcca tcctgctaaa cgggtgtcgt 2340
cgtgccgtgg acatcctata tgtggacgag gctttcgctt gccattccgg tactctgcta 2400
gccctaattg ctcttgttaa acctcggagc aaagtggtgt tatgcggaga ccccaagcaa 2460
tgcggattct tcaatatgat gcagcttaag gtgaacttca accacaacat ctgcactgaa 2520
gtatgtcata aaagtatatc cagacgttgc acgcgtccag tcacggccat cgtgtctacg 2580
ttgcactacg gaggcaagat gcgcacgacc aacccgtgca acaaacccat aatcatagac 2640
accacaggac agaccaagcc caagccagga gacatcgtgt taacatgctt ccgaggctgg 2700
gtaaagcagc tgcagttgga ctaccgtgga cacgaagtca tgacagcagc agcatctcag 2760
ggcctcaccc gcaaaggggt atacgccgta aggcagaagg tgaatgaaaa tcccttgtat 2820
gcccctgcgt cggagcacgt gaatgtactg ctgacgcgca ctgaggatag gctggtgtgg 2880
aaaacgctgg ccggcgatcc ctggattaag gtcctatcaa acattccaca gggtaacttt 2940
acggccacat tggaagaatg gcaagaagaa cacgacaaaa taatgaaggt gattgaagga 3000
ccggctgcgc ctgtggacgc gttccagaac aaagcgaacg tgtgttgggc gaaaagcctg 3060
gtgcctgtcc tggacactgc cggaatcaga ttgacagcag aggagtggag caccataatt 3120
acagcattta aggaggacag agcttactct ccagtggtgg ccttgaatga aatttgcacc 3180
aagtactatg gagttgacct ggacagtggc ctgttttctg ccccgaaggt gtccctgtat 3240
tacgagaaca accactggga taacagacct ggtggaagga tgtatggatt caatgccgca 3300
acagctgcca ggctggaagc tagacatacc ttcctgaagg ggcagtggca tacgggcaag 3360
caggcagtta tcgcagaaag aaaaatccaa ccgctttctg tgctggacaa tgtaattcct 3420
atcaaccgca ggctgccgca cgccctggtg gctgagtaca agacggttaa aggcagtagg 3480
gttgagtggc tggtcaataa agtaagaggg taccacgtcc tgctggtgag tgagtacaac 3540
ctggctttgc ctcgacgcag ggtcacttgg ttgtcaccgc tgaatgtcac aggcgccgat 3600
aggtgctacg acctaagttt aggactgccg gctgacgccg gcaggttcga cttggtcttt 3660
gtgaacattc acacggaatt cagaatccac cactaccagc agtgtgtcga ccacgccatg 3720
aagctgcaga tgcttggggg agatgcgcta cgactgctaa aacccggcgg cagcctcttg 3780
atgagagctt acggatacgc cgataaaatc agcgaagccg ttgtttcctc cttaagcaga 3840
aagttctcgt ctgcaagagt gttgcgcccg gattgtgtca ccagcaatac agaagtgttc 3900
ttgctgttct ccaactttga caacggaaag agaccctcta cgctacacca gatgaatacc 3960
aagctgagtg ccgtgtatgc cggagaagcc atgcacacgg ccgggtgtgc accatcctac 4020
agagttaaga gagcagacat agccacgtgc acagaagcgg ctgtggttaa cgcagctaac 4080
gcccgtggaa ctgtagggga tggcgtatgc agggccgtgg cgaagaaatg gccgtcagcc 4140
tttaagggag aagcaacacc agtgggcaca attaaaacag tcatgtgcgg ctcgtacccc 4200
gtcatccacg ctgtagcgcc taatttctct gccacgactg aagcggaagg ggaccgcgaa 4260
ttggccgctg tctaccgggc agtggccgcc gaagtaaaca gactgtcact gagcagcgta 4320
gccatcccgc tgctgtccac aggagtgttc agcggcggaa gagataggct gcagcaatcc 4380
ctcaaccatc tattcacagc aatggacgcc acggacgctg acgtgaccat ctactgcaga 4440
gacaaaagtt gggagaagaa aatccaggaa gccatagaca tgaggacggc tgtggagttg 4500
ctcaatgatg acgtggagct gaccacagac ttggtgagag tgcacccgga cagcagcctg 4560
gtgggtcgta agggctacag taccactgac gggtcgctgt actcgtactt tgaaggtacg 4620
aaattcaacc aggctgctat tgatatggca gagatactga cgttgtggcc cagactgcaa 4680
gaggcaaacg aacagatatg cctatacgcg ctgggcgaaa caatggacaa catcagatcc 4740
aaatgtccgg tgaacgattc cgattcatca acacctccca ggacagtgcc ctgcctgtgc 4800
cgctacgcaa tgacagcaga acggatcgcc cgccttaggt cacaccaagt taaaagcatg 4860
gtggtttgct catcttttcc cctcccgaaa taccatgtag atggggtgca gaaggtaaag 4920
tgcgagaagg ttctcctgtt cgacccgacg gtaccttcag tggttagtcc gcggaagtat 4980
gccgcatcta cgacggacca ctcagatcgg tcgttacgag ggtttgactt ggactggacc 5040
accgactcgt cttccactgc cagcgatacc atgtcgctac ccagtttgca gtcgtgtgac 5100
atcgactcga tctacgagcc aatggctccc atagtagtga cggctgacgt acaccctgaa 5160
cccgcaggca tcgcggacct ggcggcagat gtgcatcctg aacccgcaga ccatgtggac 5220
ctcgagaacc cgattcctcc accgcgcccg aagagagctg cataccttgc ctcccgcgcg 5280
gcggagcgac cggtgccggc gccgagaaag ccgacgcctg ccccaaggac tgcgtttagg 5340
aacaagctgc ctttgacgtt cggcgacttt gacgagcacg aggtcgatgc gttggcctcc 5400
gggattactt tcggagactt cgacgacgtc ctgcgactag gccgcgcggg tgcaatgaat 5460
tacatcccta cgcaaacgtt ttacggccgc cggtggcgcc cgcgcccggc ggcccgtcct 5520
tggccgttgc aggccactcc ggtggctccc gtcgtccccg acttccaggc ccagcagatg 5580
cagcaactca tcagcgccgt aaatgcgctg acaatgagac agaacgcaat tgctcctgct 5640
aggcctccca aaccaaagaa gaagaagaca accaaaccaa agccgaaaac gcagcccaag 5700
aagatcaacg gaaaaacgca gcagcaaaag aagaaagaca agcaagccga caagaagaag 5760
aagaaacccg gaaaaagaga aagaatgtgc atgaagattg aaaatgactg tatcttcgaa 5820
gtcaaacacg aaggaaaggt cactgggtac gcctgcctgg tgggcgacaa agtcatgaaa 5880
cctgcccacg tgaaaggagt catcgacaac gcggacctgg caaagctagc tttcaagaaa 5940
tcgagcaagt atgaccttga gtgtgcccag ataccagttc acatgaggtc ggatgcctca 6000
aagtacacgc atgagaagcc cgagggacac tataactggc accacggggc tgttcagtac 6060
agcggaggta ggttcactat accgacagga gcgggcaaac cgggagacag tggccggccc 6120
atctttgaca acaaggggag ggtagtcgct atcgtcctgg gcggggccaa cgagggctca 6180
cgcacagcac tgtcggtggt cacctggaac aaagatatgg tgactagagt gacccccgag 6240
gggtccgaag agtggtccgc cccgctgatt actgccatgt gtgtccttgc caatgctacc 6300
ttcccgtgct tccagccccc gtgtgtacct tgctgctatg aaaacaacgc agaggccaca 6360
ctacggatgc tcgaggataa cgtggatagg ccagggtact acgacctcct tcaggcagcc 6420
ttgacgtgcc gaaacggaac aagacaccgg cgcagcgtgt cgcaacactt caacgtgtat 6480
aaggctacac gcccttacat cgcgtactgc gccgactgcg gagcagggca ctcgtgtcat 6540
agccccgtag caattgaagc ggtcaggtcc gaagctaccg acgggatgct gaagattcag 6600
ttctcggcac aaattggcat agataagagt gacaatcatg actacacgaa gataaggtac 6660
gcagacgggc acgccattga gaatgccgtc cggtcatctt tgaaggtagc cacctccgga 6720
gactgtttcg tccatggcac aatgggacat ttcatactgg caaagtgccc accgggtgaa 6780
ttcctgcagg tctcgatcca ggacaccaga aacgcggtcc gtgcctgcag aatacaatat 6840
catcatgacc ctcaaccggt gggtagagaa aaatttacaa ttagaccaca ctatggaaaa 6900
gagatccctt gcaccactta tcaacagacc acagcgaaga ccgtggagga aatcgacatg 6960
catatgccgc cagatacgcc ggacaggacg ttgctatcac agcaatctgg caatgtaaag 7020
atcacagtcg gaggaaagaa ggtgaaatac aactgcacct gtggaaccgg aaacgttggc 7080
actactaatt cggacatgac gatcaacacg tgtctaatag agcagtgcca cgtctcagtg 7140
acggaccata agaaatggca gttcaactca cctttcgtcc cgagagccga cgaaccggct 7200
agaaaaggca aagtccatat cccattcccg ttggacaaca tcacatgcag agttccaatg 7260
gcgcgcgaac caaccgtcat ccacggcaaa agagaagtga cactgcacct tcacccagat 7320
catcccacgc tcttttccta ccgcacactg ggtgaggacc cgcagtatca cgaggaatgg 7380
gtgacagcgg cggtggaacg gaccataccc gtaccagtgg acgggatgga gtaccactgg 7440
ggaaacaacg acccagtgag gctttggtct caactcacca ctgaagggaa accgcacggc 7500
tggccgcatc agatcgtaca gtactactat gggctttacc cggccgctac agtatccgcg 7560
gtcgtcggga tgagcttact ggcgttgata tcgatcttcg cgtcgtgcta catgctggtt 7620
gcggcccgca gtaagtgctt gaccccttat gctttaacac caggagctgc agttccgtgg 7680
acgctgggga tactctgctg cgccccgcgg gcgcacgcag ctagtgtggc agagactatg 7740
gcctacttgt gggaccaaaa ccaagcgttg ttctggttgg agtttgcggc ccctgttgcc 7800
tgcatcctca tcatcacgta ttgcctcaga aacgtgctgt gttgctgtaa gagcctttct 7860
tttttagtgc tactgagcct cggggcaacc gccagagctt acgaacattc gacagtaatg 7920
ccgaacgtgg tggggttccc gtataaggct cacattgaaa ggccaggata tagccccctc 7980
actttgcaga tgcaggttgt tgaaaccagc ctcgaaccaa cccttaattt ggaatacata 8040
acctgtgagt acaagacggt cgtcccgtcg ccgtacgtga agtgctgcgg cgcctcagag 8100
tgctccacta aagagaagcc tgactaccaa tgcaaggttt acacaggcgt gtacccgttc 8160
atgtggggag gggcatattg cttctgcgac tcagaaaaca cgcaactcag cgaggcgtac 8220
gtcgatcgat cggacgtatg caggcatgat cacgcatctg cttacaaagc ccatacagca 8280
tcgctgaagg ccaaagtgag ggttatgtac ggcaacgtaa accagactgt ggatgtttac 8340
gtgaacggag accatgccgt cacgataggg ggtactcagt tcatattcgg gccgctgtca 8400
tcggcctgga ccccgttcga caacaagata gtcgtgtaca aagacgaagt gttcaatcag 8460
gacttcccgc cgtacggatc tgggcaacca gggcgcttcg gcgacatcca aagcagaaca 8520
gtggagagta acgacctgta cgcgaacacg gcactgaagc tggcacgccc ttcacccggc 8580
atggtccatg taccgtacac acagacacct tcagggttca aatattggct aaaggaaaaa 8640
gggacagccc taaatacgaa ggctcctttt ggctgccaaa tcaaaacgaa ccctgtcagg 8700
gccatgaact gcgccgtggg aaacatccct gtctccatga atttgcctga cagcgccttt 8760
acccgcattg tcgaggcgcc gaccatcatt gacctgactt gcacagtggc tacctgtacg 8820
cactcctcgg atttcggcgg cgtcttgaca ctgacgtaca agaccgacaa gaacggggac 8880
tgctctgtac actcgcactc taacgtagct actctacagg aggccacagc aaaagtgaag 8940
acagcaggta aggtgacctt acacttctcc acggcaagcg catcaccttc ttttgtggtg 9000
tcgctatgca gtgctagggc cacctgttca gcgtcgtgtg agcccccgaa agaccacata 9060
gtcccatatg cggctagcca cagtaacgta gtgtttccag acatgtcggg caccgcacta 9120
tcatgggtgc agaaaatctc gggtggtctg ggggccttcg caatcggcgc tatcctggtg 9180
ctggttgtgg tcacttgcat tgggctccgc agataa 9216
<210> 12
<211> 27
<212> DNA
<213> Artificially Synthesized
<400> 12
ttggaccctc gtacagaagc taatacg 27
<210> 13
<211> 149
<212> DNA
<213> Artificially Synthesized
<400> 13
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 60
tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 120
cttcctactc aggctttatt caaagacca 149
<210> 14
<211> 879
<212> DNA
<213> Artificially Synthesized
<400> 14
atgcccctgc acgtgaagtg gccgttcccc gcggtgccgc cgctcacctg gaccctggcc 60
agcagcgtcg tcatgggcct cgtgggcacc tacagctgct tctggaccaa gtacatgaac 120
cacctgaccg tgcacaaccg cgaggtgctg tacgagctca tcgagaagcg cggcccggcc 180
acgcccctca tcaccgtgtc caaccaccag tcctgcatgg acgaccccca cctctggggg 240
atcctgaagc tccgccacat ctggaacctg aagctcatgc gctggacccc cgccgccgcc 300
gacatctgct tcaccaagga gctccactcc cacttcttca gcctcggcaa gtgcgtgccc 360
gtgtgccgcg gcgccgagtt cttccaggcc gagaacgagg ggaagggcgt cctcgacacc 420
ggccgccaca tgcccggcgc cggcaagcgc cgcgagaagg gcgacggcgt ctaccagaag 480
gggatggact tcatcctcga gaagctcaac cacggggact gggtgcacat cttccccgag 540
gggaaggtga acatgtcctc cgagttcctg cgcttcaagt ggggcatcgg gcgcctgatc 600
gccgagtgcc acctcaaccc catcatcctg cccctgtggc acgtcggcat gaacgacgtc 660
ctccccaact ccccgcccta cttcccccgc ttcggccaga agatcaccgt gctgatcggg 720
aagcccttct ccgccctgcc cgtcctcgag cggctccggg cggagaacaa gtcggccgtg 780
gagatgcgga aggccctgac ggacttcatc caggaggagt tccagcacct gaagacccag 840
gccgagcagc tccacaacca cctccagccc gggcgctag 879
<210> 15
<211> 948
<212> DNA
<213> Artificially Synthesized
<400> 15
atggtgagca agggcgagga gctgttcacc ggcgtggtgc ccatcctggt ggagctggac 60
ggcgacgtga acggccacaa gttcagcgtg agcggcgagg gcgagggcga cgccacctac 120
ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180
ctggtgacca ccctgaccta cggcgtgcag tgcttcagcc ggtaccccga ccacatgaag 240
cagcacgact tcttcaagag cgccatgccc gagggctacg tgcaggagcg gaccatcttc 300
ttcaaggacg acggcaacta caagacccgg gccgaggtga agttcgaggg cgacaccctg 360
gtgaaccgga tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctgggccac 420
aagctggagt acaactacaa cagccacaac gtgtacatca tggccgacaa gcagaagaac 480
ggcatcaagg tgaacttcaa gatccggcac aacatcgagg acggcagcgt gcagctggcc 540
gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600
tacctgagca cccagagcgc cctgagcaag gaccccaacg agaagcggga ccacatggtg 660
ctgctggagt tcgtgaccgc cgccggcatc accctgggca tggacgagct gtacaagaag 720
ctgagccacg gcttcccccc cgaggtggag gagcaggacg acggcaccct gcccatgagc 780
tgcgcccagg agagcggcat ggaccggcac cccgccgcct gcgccagcgc ccggatcaac 840
gtgcggagcc gggccgaccc caagaagaag cggaaggtgg accccaagaa gaagcggaag 900
gtggacccca agaagaagcg gaaggtgggc agcaccggca gccggtga 948
<210> 16
<211> 4110
<212> DNA
<213> Artificially Synthesized
<400> 16
atggacaaga agtacagcat cggcctggac atcggcacca acagcgtggg ctgggccgtg 60
atcaccgacg agtacaaggt gcccagcaag aagttcaagg tgctgggcaa caccgaccgg 120
cacagcatca agaagaacct gatcggcgcc ctgctgttcg acagcggcga gaccgccgag 180
gccacccggc tgaagcggac cgcccggcgg cggtacaccc ggcggaagaa ccggatctgc 240
tacctgcagg agatcttcag caacgagatg gccaaggtgg acgacagctt cttccaccgg 300
ctggaggaga gcttcctggt ggaggaggac aagaagcacg agcggcaccc catcttcggc 360
aacatcgtgg acgaggtggc ctaccacgag aagtacccca ccatctacca cctgcggaag 420
aagctggtgg acagcaccga caaggccgac ctgcggctga tctacctggc cctggcccac 480
atgatcaagt tccggggcca cttcctgatc gagggcgacc tgaaccccga caacagcgac 540
gtggacaagc tgttcatcca gctggtgcag acctacaacc agctgttcga ggagaacccc 600
atcaacgcca gcggcgtgga cgccaaggcc atcctgagcg cccggctgag caagagccgg 660
cggctggaga acctgatcgc ccagctgccc ggcgagaaga agaacggcct gttcggcaac 720
ctgatcgccc tgagcctggg cctgaccccc aacttcaaga gcaacttcga cctggccgag 780
gacgccaagc tgcagctgag caaggacacc tacgacgacg acctggacaa cctgctggcc 840
cagatcggcg accagtacgc cgacctgttc ctggccgcca agaacctgag cgacgccatc 900
ctgctgagcg acatcctgcg ggtgaacacc gagatcacca aggcccccct gagcgccagc 960
atgatcaagc ggtacgacga gcaccaccag gacctgaccc tgctgaaggc cctggtgcgg 1020
cagcagctgc ccgagaagta caaggagatc ttcttcgacc agagcaagaa cggctacgcc 1080
ggctacatcg acggcggcgc cagccaggag gagttctaca agttcatcaa gcccatcctg 1140
gagaagatgg acggcaccga ggagctgctg gtgaagctga accgggagga cctgctgcgg 1200
aagcagcgga ccttcgacaa cggcagcatc ccccaccaga tccacctggg cgagctgcac 1260
gccatcctgc ggcggcagga ggacttctac cccttcctga aggacaaccg ggagaagatc 1320
gagaagatcc tgaccttccg gatcccctac tacgtgggcc ccctggcccg gggcaacagc 1380
cggttcgcct ggatgacccg gaagagcgag gagaccatca ccccctggaa cttcgaggag 1440
gtggtggaca agggcgccag cgcccagagc ttcatcgagc ggatgaccaa cttcgacaag 1500
aacctgccca acgagaaggt gctgcccaag cacagcctgc tgtacgagta cttcaccgtg 1560
tacaacgagc tgaccaaggt gaagtacgtg accgagggca tgcggaagcc cgccttcctg 1620
agcggcgagc agaagaaggc catcgtggac ctgctgttca agaccaaccg gaaggtgacc 1680
gtgaagcagc tgaaggagga ctacttcaag aagatcgagt gcttcgacag cgtggagatc 1740
agcggcgtgg aggaccggtt caacgccagc ctgggcacct accacgacct gctgaagatc 1800
atcaaggaca aggacttcct ggacaacgag gagaacgagg acatcctgga ggacatcgtg 1860
ctgaccctga ccctgttcga ggaccgggag atgatcgagg agcggctgaa gacctacgcc 1920
cacctgttcg acgacaaggt gatgaagcag ctgaagcggc ggcggtacac cggctggggc 1980
cggctgagcc ggaagctgat caacggcatc cgggacaagc agagcggcaa gaccatcctg 2040
gacttcctga agagcgacgg cttcgccaac cggaacttca tgcagctgat ccacgacgac 2100
agcctgacct tcaaggagga catccagaag gcccaggtga gcggccaggg cgacagcctg 2160
cacgagcaca tcgccaacct ggccggcagc cccgccatca agaagggcat cctgcagacc 2220
gtgaaggtgg tggacgagct ggtgaaggtg atgggccggc acaagcccga gaacatcgtg 2280
atcgagatgg cccgggagaa ccagaccacc cagaagggcc agaagaacag ccgggagcgg 2340
atgaagcgga tcgaggaggg catcaaggag ctgggcagcc agatcctgaa ggagcacccc 2400
gtggagaaca cccagctgca gaacgagaag ctgtacctgt actacctgca gaacggccgg 2460
gacatgtacg tggaccagga gctggacatc aaccggctga gcgactacga cgtggaccac 2520
atcgtgcccc agagcttcct gaaggacgac agcatcgaca acaaggtgct gacccggagc 2580
gacaagaacc ggggcaagag cgacaacgtg cccagcgagg aggtggtgaa gaagatgaag 2640
aactactggc ggcagctgct gaacgccaag ctgatcaccc agcggaagtt cgacaacctg 2700
accaaggccg agcggggcgg cctgagcgag ctggacaagg ccggcttcat caagcggcag 2760
ctggtggaga cccggcagat caccaagcac gtggcccaga tcctggacag ccggatgaac 2820
accaagtacg acgagaacga caagctgatc cgggaggtga aggtgatcac cctgaagagc 2880
aagctggtga gcgacttccg gaaggacttc cagttctaca aggtgcggga gatcaacaac 2940
taccaccacg cccacgacgc ctacctgaac gccgtggtgg gcaccgccct gatcaagaag 3000
taccccaagc tggagagcga gttcgtgtac ggcgactaca aggtgtacga cgtgcggaag 3060
atgatcgcca agagcgagca ggagatcggc aaggccaccg ccaagtactt cttctacagc 3120
aacatcatga acttcttcaa gaccgagatc accctggcca acggcgagat ccggaagcgg 3180
cccctgatcg agaccaacgg cgagaccggc gagatcgtgt gggacaaggg ccgggacttc 3240
gccaccgtgc ggaaggtgct gagcatgccc caggtgaaca tcgtgaagaa gaccgaggtg 3300
cagaccggcg gcttcagcaa ggagagcatc ctgcccaagc ggaacagcga caagctgatc 3360
gcccggaaga aggactggga ccccaagaag tacggcggct tcgacagccc caccgtggcc 3420
tacagcgtgc tggtggtggc caaggtggag aagggcaaga gcaagaagct gaagagcgtg 3480
aaggagctgc tgggcatcac catcatggag cggagcagct tcgagaagaa ccccatcgac 3540
ttcctggagg ccaagggcta caaggaggtg aagaaggacc tgatcatcaa gctgcccaag 3600
tacagcctgt tcgagctgga gaacggccgg aagcggatgc tggccagcgc cggcgagctg 3660
cagaagggca acgagctggc cctgcccagc aagtacgtga acttcctgta cctggccagc 3720
cactacgaga agctgaaggg cagccccgag gacaacgagc agaagcagct gttcgtggag 3780
cagcacaagc actacctgga cgagatcatc gagcagatca gcgagttcag caagcgggtg 3840
atcctggccg acgccaacct ggacaaggtg ctgagcgcct acaacaagca ccgggacaag 3900
cccatccggg agcaggccga gaacatcatc cacctgttca ccctgaccaa cctgggcgcc 3960
cccgccgcct tcaagtactt cgacaccacc atcgaccgga agcggtacac cagcaccaag 4020
gaggtgctgg acgccaccct gatccaccag agcatcaccg gcctgtacga gacccggatc 4080
gacctgagcc agctgggcgg cgacagctga 4110
<210> 17
<211> 456
<212> DNA
<213> Artificially Synthesized
<400> 17
tgtacaaaaa agcaggcttt aaaggaacca attcagtcga ctggatccgg taccaaggtc 60
gggcaggaag agggcctatt tcccatgatt ccttcatatt tgcatatacg atacaaggct 120
gttagagaga taattagaat taatttgact gtaaacacaa agatattagt acaaaatacg 180
tgacgtagaa agtaataatt tcttgggtag tttgcagttt taaaattatg ttttaaaatg 240
gactatcata tgcttaccgt aacttgaaag tatttcgagt ttcttggctt tatatatctt 300
gtggaaagga cgaaacaccg accactgaag gcctgaaagg ttttagagct agaaatagca 360
agttaaaata aggctagtcc gttatcaact tgaaaaagtg gcaccgagtc ggtgcttttt 420
ttctagaccc agctttcttg tacaaagttg gcatta 456
<210> 18
<211> 3822
<212> DNA
<213> Artificially Synthesized
<400> 18
atgttcgtgt tcctggtgct gctgcccctg gtgagcagcc agtgcgtgaa cctgaccacc 60
cggacccagc tgccccccgc ctacaccaac agcttcaccc ggggcgtgta ctaccccgac 120
aaggtgttcc ggagcagcgt gctgcacagc acccaggacc tgttcctgcc cttcttcagc 180
aacgtgacct ggttccacgc catccacgtg agcggcacca acggcaccaa gcggttcgac 240
aaccccgtgc tgcccttcaa cgacggcgtg tacttcgcca gcaccgagaa gagcaacatc 300
atccggggct ggatcttcgg caccaccctg gacagcaaga cccagagcct gctgatcgtg 360
aacaacgcca ccaacgtggt gatcaaggtg tgcgagttcc agttctgcaa cgaccccttc 420
ctgggcgtgt actaccacaa gaacaacaag agctggatgg agagcgagtt ccgggtgtac 480
agcagcgcca acaactgcac cttcgagtac gtgagccagc ccttcctgat ggacctggag 540
ggcaagcagg gcaacttcaa gaacctgcgg gagttcgtgt tcaagaacat cgacggctac 600
ttcaagatct acagcaagca cacccccatc aacctggtgc gggacctgcc ccagggcttc 660
agcgccctgg agcccctggt ggacctgccc atcggcatca acatcacccg gttccagacc 720
ctgctggccc tgcaccggag ctacctgacc cccggcgaca gcagcagcgg ctggaccgcc 780
ggcgccgccg cctactacgt gggctacctg cagccccgga ccttcctgct gaagtacaac 840
gagaacggca ccatcaccga cgccgtggac tgcgccctgg accccctgag cgagaccaag 900
tgcaccctga agagcttcac cgtggagaag ggcatctacc agaccagcaa cttccgggtg 960
cagcccaccg agagcatcgt gcggttcccc aacatcacca acctgtgccc cttcggcgag 1020
gtgttcaacg ccacccggtt cgccagcgtg tacgcctgga accggaagcg gatcagcaac 1080
tgcgtggccg actacagcgt gctgtacaac agcgccagct tcagcacctt caagtgctac 1140
ggcgtgagcc ccaccaagct gaacgacctg tgcttcacca acgtgtacgc cgacagcttc 1200
gtgatccggg gcgacgaggt gcggcagatc gcccccggcc agaccggcaa gatcgccgac 1260
tacaactaca agctgcccga cgacttcacc ggctgcgtga tcgcctggaa cagcaacaac 1320
ctggacagca aggtgggcgg caactacaac tacctgtacc ggctgttccg gaagagcaac 1380
ctgaagccct tcgagcggga catcagcacc gagatctacc aggccggcag caccccctgc 1440
aacggcgtgg agggcttcaa ctgctacttc cccctgcaga gctacggctt ccagcccacc 1500
aacggcgtgg gctaccagcc ctaccgggtg gtggtgctga gcttcgagct gctgcacgcc 1560
cccgccaccg tgtgcggccc caagaagagc accaacctgg tgaagaacaa gtgcgtgaac 1620
ttcaacttca acggcctgac cggcaccggc gtgctgaccg agagcaacaa gaagttcctg 1680
cccttccagc agttcggccg ggacatcgcc gacaccaccg acgccgtgcg ggacccccag 1740
accctggaga tcctggacat caccccctgc agcttcggcg gcgtgagcgt gatcaccccc 1800
ggcaccaaca ccagcaacca ggtggccgtg ctgtaccagg acgtgaactg caccgaggtg 1860
cccgtggcca tccacgccga ccagctgacc cccacctggc gggtgtacag caccggcagc 1920
aacgtgttcc agacccgggc cggctgcctg atcggcgccg agcacgtgaa caacagctac 1980
gagtgcgaca tccccatcgg cgccggcatc tgcgccagct accagaccca gaccaacagc 2040
ccccggcggg cccggagcgt ggccagccag agcatcatcg cctacaccat gagcctgggc 2100
gccgagaaca gcgtggccta cagcaacaac agcatcgcca tccccaccaa cttcaccatc 2160
agcgtgacca ccgagatcct gcccgtgagc atgaccaaga ccagcgtgga ctgcaccatg 2220
tacatctgcg gcgacagcac cgagtgcagc aacctgctgc tgcagtacgg cagcttctgc 2280
acccagctga accgggccct gaccggcatc gccgtggagc aggacaagaa cacccaggag 2340
gtgttcgccc aggtgaagca gatctacaag acccccccca tcaaggactt cggcggcttc 2400
aacttcagcc agatcctgcc cgaccccagc aagcccagca agcggagctt catcgaggac 2460
ctgctgttca acaaggtgac cctggccgac gccggcttca tcaagcagta cggcgactgc 2520
ctgggcgaca tcgccgcccg ggacctgatc tgcgcccaga agttcaacgg cctgaccgtg 2580
ctgccccccc tgctgaccga cgagatgatc gcccagtaca ccagcgccct gctggccggc 2640
accatcacca gcggctggac cttcggcgcc ggcgccgccc tgcagatccc cttcgccatg 2700
cagatggcct accggttcaa cggcatcggc gtgacccaga acgtgctgta cgagaaccag 2760
aagctgatcg ccaaccagtt caacagcgcc atcggcaaga tccaggacag cctgagcagc 2820
accgccagcg ccctgggcaa gctgcaggac gtggtgaacc agaacgccca ggccctgaac 2880
accctggtga agcagctgag cagcaacttc ggcgccatca gcagcgtgct gaacgacatc 2940
ctgagccggc tggacccccc cgaggccgag gtgcagatcg accggctgat caccggccgg 3000
ctgcagagcc tgcagaccta cgtgacccag cagctgatcc gggccgccga gatccgggcc 3060
agcgccaacc tggccgccac caagatgagc gagtgcgtgc tgggccagag caagcgggtg 3120
gacttctgcg gcaagggcta ccacctgatg agcttccccc agagcgcccc ccacggcgtg 3180
gtgttcctgc acgtgaccta cgtgcccgcc caggagaaga acttcaccac cgcccccgcc 3240
atctgccacg acggcaaggc ccacttcccc cgggagggcg tgttcgtgag caacggcacc 3300
cactggttcg tgacccagcg gaacttctac gagccccaga tcatcaccac cgacaacacc 3360
ttcgtgagcg gcaactgcga cgtggtgatc ggcatcgtga acaacaccgt gtacgacccc 3420
ctgcagcccg agctggacag cttcaaggag gagctggaca agtacttcaa gaaccacacc 3480
agccccgacg tggacctggg cgacatcagc ggcatcaacg ccagcgtggt gaacatccag 3540
aaggagatcg accggctgaa cgaggtggcc aagaacctga acgagagcct gatcgacctg 3600
caggagctgg gcaagtacga gcagtacatc aagtggccct ggtacatctg gctgggcttc 3660
atcgccggcc tgatcgccat cgtgatggtg accatcatgc tgtgctgcat gaccagctgc 3720
tgcagctgcc tgaagggctg ctgcagctgc ggcagctgct gcaagttcga cgaggacgac 3780
agcgagcccg tgctgaaggg cgtgaagctg cactacacct ga 3822
<210> 19
<211> 459
<212> DNA
<213> Artificially Synthesized
<400> 19
atgtaccgga tgcagctgct gagctgcatc gccctgagcc tggccctggt gaccaacagc 60
gcccccacca gcagcagcac caagaagacc cagctgcagc tggagcacct gctgctggac 120
ctgcagatga tcctgaacgg catcaacaac tacaagaacc ccaagctgac ccggatgctg 180
accttcaagt tctacatgcc caagaaggcc accgagctga agcacctgca gtgcctggag 240
gaggagctga agcccctgga ggaggtgctg aacctggccc agagcaagaa cttccacctg 300
cggccccggg acctgatcag caacatcaac gtgatcgtgc tggagctgaa gggcagcgag 360
accaccttca tgtgcgagta cgccgacgag accgccacca tcgtggagtt cctgaaccgg 420
tggatcacct tctgccagag catcatcagc accctgacc 459
<210> 20
<211> 783
<212> DNA
<213> Artificially Synthesized
<400> 20
atgtggctgt tcatcgccag cgcccccttc gaggtggccg agggcgagaa cgtgcacctg 60
agcgtggtgt acctgcccga gaacctgtac agctacggct ggtacaaggg caagaccgtg 120
gagcccaacc agctgatcgc cgcctacgtg atcgacaccc acgtgcggac ccccggcccc 180
gcctacagcg gccgggagac catcagcccc agcggcgacc tgcacttcca gaacgtgacc 240
ctggaggaca ccggctacta caacctgcag gtgacctacc ggaacagcca gatcgagcag 300
gccagccacc acctgcgggt gtacgagagc gtggcccagc ccagcatcca ggccagcagc 360
accaccgtga ccgagaaggg cagcgtggtg ctgacctgcc acaccaacaa caccggcacc 420
agcttccagt ggatcttcaa caaccagcgg ctgcaggtga ccaagcggat gaagctgagc 480
tggttcaacc acgtgctgac catcgacccc atccggcagg aggacgccgg cgagtaccag 540
tgcgaggtga gcaaccccgt gagcagcaac cggagcgacc ccctgaagct gaccgtgaag 600
agcgacgaca acaccctggg catcctgatc ggcgtgctgg tgggcagcct gctggtggcc 660
gccctggtgt gcttcctgct gctgcggaag accggccggg ccagcgacca gagcgacttc 720
cgggagcagc agccccccgc cagcaccccc ggccacggcc ccagcgacag cagcatcagc 780
tga 783
<210> 21
<211> 1500
<212> DNA
<213> Artificially Synthesized
<400> 21
atgtggcggc ccagcgacag caccgtgtac gtgccccccc ccaaccccgt gagcaaggtg 60
gtggccaccg acgcctacgt gacccggacc aacatcttct accacgccag cagcagccgg 120
ctgctggccg tgggccaccc ctacttcagc atcaagcggg ccaacaagac cgtggtgccc 180
aaggtgagcg gctaccagta ccgggtgttc aaggtggtgc tgcccgaccc caacaagttc 240
gccctgcccg acagcagcct gttcgacccc accacccagc ggctggtgtg ggcctgcacc 300
ggcctggagg tgggccgggg ccagcccctg ggcgtgggcg tgagcggcca ccccttcctg 360
aacaagtacg acgacgtgga gaacagcggc agcggcggca accccggcca ggacaaccgg 420
gtgaacgtgg gcatggacta caagcagacc cagctgtgca tggtgggctg cgcccccccc 480
ctgggcgagc actggggcaa gggcaagcag tgcaccaaca cccccgtgca ggccggcgac 540
tgcccccccc tggagctgat caccagcgtg atccaggacg gcgacatggt ggacaccggc 600
ttcggcgcca tgaacttcgc cgacctgcag accaacaaga gcgacgtgcc catcgacatc 660
tgcggcacca cctgcaagta ccccgactac ctgcagatgg ccgccgaccc ctacggcgac 720
cggctgttct tcttcctgcg gaaggagcag atgttcgccc ggcacttctt caaccgggcc 780
ggcgaggtgg gcgagcccgt gcccgacacc ctgatcatca agggcagcgg caaccggacc 840
agcgtgggca gcagcatcta cgtgaacacc cccagcggca gcctggtgag cagcgaggcc 900
cagctgttca acaagcccta ctggctgcag aaggcccagg gccacaacaa cggcatctgc 960
tggggcaacc agctgttcgt gaccgtggtg gacaccaccc ggagcaccaa catgaccctg 1020
tgcgccagcg tggccaccag cagcacctac accaacagcg actacaagga gtacatgcgg 1080
cacgtggagg agtacgacct gcagttcatc ttccagctgt gcagcatcac cctgagcgcc 1140
gaggtgatgg cctacatcca caccatgaac cccagcgtgc tggaggactg gaacttcggc 1200
ctgagccccc cccccaacgg caccctggag gacacctacc ggtacgtgca gagccaggcc 1260
atcacctgcc agaagcccac ccccgagaag gagaagcccg acccctacaa gaacctgagc 1320
ttctgggagg tgaacctgaa ggagaagttc agcagcgagc tggaccagta ccccctgggc 1380
cggaagttcc tgctgcagag cggctaccgg ggccggagca gcatccggac cggcgtgaag 1440
cggcccgccg tgagcaaggc cagcgccgcc cccaagcgga agcgggccaa gaccaagcgg 1500
<210> 22
<211> 1506
<212> DNA
<213> Artificially Synthesized
<400> 22
atgtggcggc ccagcgacag caccgtgtac gtgccccccc ccaaccccgt gagcaaggtg 60
gtggccaccg acgcctacgt gaagcggacc aacatcttct accacgccag cagcagccgg 120
ctgctggccg tgggccaccc ctactacagc atcaagaagg tgaacaagac cgtggtgccc 180
aaggtgagcg gctaccagta ccgggtgttc aaggtggtgc tgcccgaccc caacaagttc 240
gccctgcccg acagcagcct gttcgacccc accacccagc ggctggtgtg ggcctgcacc 300
ggcctggagg tgggccgggg ccagcccctg ggcgtgggcg tgagcggcca ccccctgctg 360
aacaagtacg acgacgtgga gaacagcggc ggctacggcg gcaaccccgg ccaggacaac 420
cgggtgaacg tgggcatgga ctacaagcag acccagctgt gcatggtggg ctgcgccccc 480
cccctgggcg agcactgggg caagggcacc cagtgcagca acaccagcgt gcagaacggc 540
gactgccccc ccctggagct gatcaccagc gtgatccagg acggcgacat ggtggacacc 600
ggcttcggcg ccatgaactt cgccgacctg cagaccaaca agagcgacgt gcccctggac 660
atctgcggca ccgtgtgcaa gtaccccgac tacctgcaga tggccgccga cccctacggc 720
gaccggctgt tcttctacct gcggaaggag cagatgttcg cccggcactt cttcaaccgg 780
gccggcaccg tgggcgagcc cgtgcccgac gacctgctgg tgaagggcgg caacaaccgg 840
agcagcgtgg ccagcagcat ctacgtgcac acccccagcg gcagcctggt gagcagcgag 900
gcccagctgt tcaacaagcc ctactggctg cagaaggccc agggccacaa caacggcatc 960
tgctggggca accacctgtt cgtgaccgtg gtggacacca cccggagcac caacatgacc 1020
ctgtgcgcca gcgtgagcaa gagcgccacc tacaccaaca gcgactacaa ggagtacatg 1080
cggcacgtgg aggagttcga cctgcagttc atcttccagc tgtgcagcat caccctgagc 1140
gccgaggtga tggcctacat ccacaccatg aaccccagcg tgctggagga ctggaacttc 1200
ggcctgagcc ccccccccaa cggcaccctg gaggacacct accggtacgt gcagagccag 1260
gccatcacct gccagaagcc cacccccgag aaggagaagc aggaccccta caaggacatg 1320
agcttctggg aggtgaacct gaaggagaag ttcagcagcg agctggacca gttccccctg 1380
ggccggaagt tcctgctgca gagcggctac cggggccgga ccagcgcccg gaccggcatc 1440
aagcggcccg ccgtgagcaa gcccagcacc gcccccaagc ggaagcggac caagaccaag 1500
aagtga 1506
<210> 23
<211> 1518
<212> DNA
<213> Artificially Synthesized
<400> 23
atgagcctgt ggctgcccag cgaggccacc gtgtacctgc cccccgtgcc cgtgagcaag 60
gtggtgagca ccgacgagta cgtggcccgg accaacatct actaccacgc cggcaccagc 120
cggctgctgg ccgtgggcca cccctacttc cccatcaaga agcccaacaa caacaagatc 180
ctggtgccca aggtgagcgg cctgcagtac cgggtgttcc ggatccacct gcccgacccc 240
aacaagttcg gcttccccga caccagcttc tacaaccccg acacccagcg gctggtgtgg 300
gcctgcgtgg gcgtggaggt gggccggggc cagcccctgg gcgtgggcat cagcggccac 360
cccctgctga acaagctgga cgacaccgag aacgccagcg cctacgccgc caacgccggc 420
gtggacaacc gggagtgcat cagcatggac tacaagcaga cccagctgtg cctgatcggc 480
tgcaagcccc ccatcggcga gcactggggc aagggcagcc cctgcaccaa cgtggccgtg 540
aaccccggcg actgcccccc cctggagctg atcaacaccg tgatccagga cggcgacatg 600
gtggacaccg gcttcggcgc catggacttc accaccctgc aggccaacaa gagcgaggtg 660
cccctggaca tctgcaccag catctgcaag taccccgact acatcaagat ggtgagcgag 720
ccctacggcg acagcctgtt cttctacctg cggcgggagc agatgttcgt gcggcacctg 780
ttcaaccggg ccggcgccgt gggcgagaac gtgcccgacg acctgtacat caagggcagc 840
ggcagcaccg ccaacctggc cagcagcaac tacttcccca cccccagcgg cagcatggtg 900
accagcgacg cccagatctt caacaagccc tactggctgc agcgggccca gggccacaac 960
aacggcatct gctggggcaa ccagctgttc gtgaccgtgg tggacaccac ccggagcacc 1020
aacatgagcc tgtgcgccgc catcagcacc agcgagacca cctacaagaa caccaacttc 1080
aaggagtacc tgcggcacgg cgaggagtac gacctgcagt tcatcttcca gctgtgcaag 1140
atcaccctga ccgccgacgt gatgacctac atccacagca tgaacagcac catcctggag 1200
gactggaact tcggcctgca gccccccccc ggcggcaccc tggaggacac ctaccggttc 1260
gtgaccagcc aggccatcgc ctgccagaag cacacccccc ccgcccccaa ggaggacccc 1320
ctgaagaagt acaccttctg ggaggtgaac ctgaaggaga agttcagcgc cgacctggac 1380
cagttccccc tgggccggaa gttcctgctg caggccggcc tgaaggccaa gcccaagttc 1440
accctgggca agcggaaggc cacccccacc accagcagca ccagcaccac cgccaagcgg 1500
aagaagcgga agctgtga 1518
<210> 24
<211> 1707
<212> DNA
<213> Artificially Synthesized
<400> 24
atgtgcctgt acacccgggt gctgatcctg cactaccacc tgctgcccct gtacggcccc 60
ctgtaccacc cccggcccct gcccctgcac agcatcctgg tgtacatggt gcacatcatc 120
atctgcggcc actacatcat cctgttcctg cggaacgtga acgtgttccc catcttcctg 180
cagatggccc tgtggcggcc cagcgacaac accgtgtacc tgcccccccc cagcgtggcc 240
cgggtggtga acaccgacga ctacgtgacc cccaccagca tcttctacca cgccggcagc 300
agccggctgc tgaccgtggg caacccctac ttccgggtgc ccgccggcgg cggcaacaag 360
caggacatcc ccaaggtgag cgcctaccag taccgggtgt tccgggtgca gctgcccgac 420
cccaacaagt tcggcctgcc cgacaccagc atctacaacc ccgagaccca gcggctggtg 480
tgggcctgcg ccggcgtgga gatcggccgg ggccagcccc tgggcgtggg cctgagcggc 540
caccccttct acaacaagct ggacgacacc gagagcagcc acgccgccac cagcaacgtg 600
agcgaggacg tgcgggacaa cgtgagcgtg gactacaagc agacccagct gtgcatcctg 660
ggctgcgccc ccgccatcgg cgagcactgg gccaagggca ccgcctgcaa gagccggccc 720
ctgagccagg gcgactgccc ccccctggag ctgaagaaca ccgtgctgga ggacggcgac 780
atggtggaca ccggctacgg cgccatggac ttcagcaccc tgcaggacac caagtgcgag 840
gtgcccctgg acatctgcca gagcatctgc aagtaccccg actacctgca gatgagcgcc 900
gacccctacg gcgacagcat gttcttctgc ctgcggcggg agcagctgtt cgcccggcac 960
ttctggaacc gggccggcac catgggcgac accgtgcccc agagcctgta catcaagggc 1020
accggcatgc ccgccagccc cggcagctgc gtgtacagcc ccagccccag cggcagcatc 1080
gtgaccagcg acagccagct gttcaacaag ccctactggc tgcacaaggc ccagggccac 1140
aacaacggcg tgtgctggca caaccagctg ttcgtgaccg tggtggacac cacccccagc 1200
accaacctga ccatctgcgc cagcacccag agccccgtgc ccggccagta cgacgccacc 1260
aagttcaagc agtacagccg gcacgtggag gagtacgacc tgcagttcat cttccagctg 1320
tgcaccatca ccctgaccgc cgacgtgatg agctacatcc acagcatgaa cagcagcatc 1380
ctggaggact ggaacttcgg cgtgcccccc ccccccacca ccagcctggt ggacacctac 1440
cggttcgtgc agagcgtggc catcacctgc cagaaggacg ccgcccccgc cgagaacaag 1500
gacccctacg acaagctgaa gttctggaac gtggacctga aggagaagtt cagcctggac 1560
ctggaccagt accccctggg ccggaagttc ctggtgcagg ccggcctgcg gcggaagccc 1620
accatcggcc cccggaagcg gagcgccccc agcgccacca ccagcagcaa gcccgccaag 1680
cgggtgcggg tgcgggcccg gaagtga 1707
<210> 25
<211> 477
<212> DNA
<213> Artificially Synthesized
<400> 25
atgcaccaga agcggaccgc catgttccag gacccccagg agcggccccg gaagctgccc 60
cagctgtgca ccgagctgca gaccaccatc cacgacatca tcctggagtg cgtgtactgc 120
aagcagcagc tgctgcggcg ggaggtgtac gacttcgcct tccgggacct gtgcatcgtg 180
taccgggacg gcaaccccta cgccgtgtgc gacaagtgcc tgaagttcta cagcaagatc 240
agcgagtacc ggcactactg ctacagcctg tacggcacca ccctggagca gcagtacaac 300
aagcccctgt gcgacctgct gatccggtgc atcaactgcc agaagcccct gtgccccgag 360
gagaagcagc ggcacctgga caagaagcag cggttccaca acatccgggg ccggtggacc 420
ggccggtgca tgagctgctg ccggagcagc cggacccggc gggagaccca gctgatg 477
<210> 26
<211> 1638
<212> DNA
<213> Artificially Synthesized
<400> 26
atggcccggg gcgccggcct ggtgttcttc gtgggcgtgt gggtggtgag ctgcctggcc 60
gccgcccccc ggaccagctg gaagcgggtg accagcggcg aggacgtggt gctgctgccc 120
gcccccgccg agcggacccg ggcccacaag ctgctgtggg ccgccgagcc cctggacgcc 180
tgcggccccc tgcggcccag ctgggtggcc ctgtggcccc cccggcgggt gctggagacc 240
gtggtggacg ccgcctgcat gcgggccccc gagcccctgg ccatcgccta cagccccccc 300
ttccccgccg gcgacgaggg cctgtacagc gagctggcct ggcgggaccg ggtggccgtg 360
gtgaacgaga gcctggtgat ctacggcgcc ctggagaccg acagcggcct gtacaccctg 420
agcgtggtgg gcctgagcga cgaggcccgg caggtggcca gcgtggtgct ggtggtggag 480
cccgcccccg tgcccacccc cacccccgac gactacgacg aggaggacga cgccggcgtg 540
accaacgccc ggcggagcgc cttccccccc cagccccccc cccggcggcc ccccgtggcc 600
ccccccaccc acccccgggt gatccccgag gtgagccacg tgcggggcgt gaccgtgcac 660
atggagaccc tggaggccat cctgttcgcc cccggcgaga ccttcggcac caacgtgagc 720
atccacgcca tcgcccacga cgacggcccc tacgccatgg acgtggtgtg gatgcggttc 780
gacgtgccca gcagctgcgc cgacatgcgg atctacgagg cctgcctgta ccacccccag 840
ctgcccgagt gcctgagccc cgccgacgcc ccctgcgccg tgagcagctg ggcctaccgg 900
ctggccgtgc ggagctacgc cggctgcagc cggaccaccc cccccccccg gtgcttcgcc 960
gaggcccgga tggagcccgt gcccggcctg gcctggctgg ccagcaccgt gaacctggag 1020
ttccagcacg ccagccccca gcacgccggc ctgtacctgt gcgtggtgta cgtggacgac 1080
cacatccacg cctggggcca catgaccatc agcaccgccg cccagtaccg gaacgccgtg 1140
gtggagcagc acctgcccca gcggcagccc gagcccgtgg agcccacccg gccccacgtg 1200
cgggcccccc accccgcccc cagcgcccgg ggccccctgc ggctgggcgc cgtgctgggc 1260
gccgccctgc tgctggccgc cctgggcctg agcgcctggg cctgcatgac ctgctggcgg 1320
cggcggagct ggcgggccgt gaagagccgg gccagcgcca ccggccccac ctacatccgg 1380
gtggccgaca gcgagctgta cgccgactgg agcagcgaca gcgagggcga gcgggacggc 1440
agcctgtggc aggacccccc cgagcggccc gacagcccca gcaccaacgg cagcggcttc 1500
gagatcctga gccccaccgc ccccagcgtg tacccccaca gcgagggccg gaagagccgg 1560
cggcccctga ccaccttcgg cagcggcagc cccggccggc ggcacagcca ggccagctac 1620
cccagcgtgc tgtggtga 1638
<210> 27
<211> 1185
<212> DNA
<213> Artificially Synthesized
<400> 27
atgggcggcg ccgccgcccg gctgggcgcc gtgatcctgt tcgtggtgat cgtgggcctg 60
cacggcgtgc ggagcaagta cgccctggtg gacgccagcc tgaagatggc cgaccccaac 120
cggttccggg gcaaggacct gcccgtgctg gaccagctga ccgacccccc cggcgtgcgg 180
cgggtgtacc acatccaggc cggcctgccc gaccccttcc agccccccag cctgcccatc 240
accgtgtact acgccgtgct ggagcgggcc tgccggagcg tgctgctgaa cgcccccagc 300
gaggcccccc agatcgtgcg gggcgccagc gaggacgtgc ggaagcagcc ctacaacctg 360
accatcgcct ggttccggat gggcggcaac tgcgccatcc ccatcaccgt gatggagtac 420
accgagtgca gctacaacaa gagcctgggc gcctgcccca tccggaccca gccccggtgg 480
aactactacg acagcttcag cgccgtgagc gaggacaacc tgggcttcct gatgcacgcc 540
cccgccttcg agaccgccgg cacctacctg cggctggtga agatcaacga ctggaccgag 600
atcacccagt tcatcctgga gcaccgggcc aagggcagct gcaagtacgc cctgcccctg 660
cggatccccc ccagcgcctg cctgagcccc caggcctacc agcagggcgt gaccgtggac 720
agcatcggca tgctgccccg gttcatcccc gagaaccagc ggaccgtggc cgtgtacagc 780
ctgaagatcg ccggctggca cggccccaag gccccctaca ccagcaccct gctgcccccc 840
gagctgagcg agacccccaa cgccacccag cccgagctgg cccccgagga ccccgaggac 900
agcgccctgc tggaggaccc cgtgggcacc gtggcccccc agatcccccc caactggcac 960
atccccagca tccaggacgc cgccaccccc taccaccccc ccgccacccc caacaacatg 1020
ggcctgatcg ccggcgccgt gggcggcagc ctgctggccg ccctggtgat ctgcggcatc 1080
gtgtactgga tgcggcggca cacccagaag gcccccaagc ggatccggct gccccacatc 1140
cgggaggacg accagcccag cagccaccag cccctgttct actag 1185
<210> 28
<211> 1698
<212> DNA
<213> Artificially Synthesized
<400> 28
atgaaggcca acctgctggt gctgctgtgc gccctggccg ccgccgacgc cgacaccatc 60
tgcatcggct accacgccaa caacagcacc gacaccgtgg acaccgtgct ggagaagaac 120
gtgaccgtga cccacagcgt gaacctgctg gaggacagcc acaacggcaa gctgtgccgg 180
ctgaagggca tcgcccccct gcagctgggc aagtgcaaca tcgccggctg gctgctgggc 240
aaccccgagt gcgaccccct gctgcccgtg cggagctgga gctacatcgt ggagaccccc 300
aacagcgaga acggcatctg ctaccccggc gacttcatcg actacgagga gctgcgggag 360
cagctgagca gcgtgagcag cttcgagcgg ttcgagatct tccccaagga gagcagctgg 420
cccaaccaca acaccaacgg cgtgaccgcc gcctgcagcc acgagggcaa gagcagcttc 480
taccggaacc tgctgtggct gaccgagaag gagggcagct accccaagct gaagaacagc 540
tacgtgaaca agaagggcaa ggaggtgctg gtgctgtggg gcatccacca cccccccaac 600
agcaaggagc agcagaacct gtaccagaac gagaacgcct acgtgagcgt ggtgaccagc 660
aactacaacc ggcggttcac ccccgagatc gccgagcggc ccaaggtgcg ggaccaggcc 720
ggccggatga actactactg gaccctgctg aagcccggcg acaccatcat cttcgaggcc 780
aacggcaacc tgatcgcccc catgtacgcc ttcgccctga gccggggctt cggcagcggc 840
atcatcacca gcaacgccag catgcacgag tgcaacacca agtgccagac ccccctgggc 900
gccatcaaca gcagcctgcc ctaccagaac atccaccccg tgaccatcgg cgagtgcccc 960
aagtacgtgc ggagcgccaa gctgcggatg gtgaccggcc tgcggaacat ccccagcatc 1020
cagagccggg gcctgttcgg cgccatcgcc ggcttcatcg agggcggctg gaccggcatg 1080
atcgacggct ggtacggcta ccaccaccag aacgagcagg gcagcggcta cgccgccgac 1140
cagaagagca cccagaacgc catcaacggc atcaccaaca aggtgaacac cgtgatcgag 1200
aagatgaaca tccagttcac cgccgtgggc aaggagttca acaagctgga gaagcggatg 1260
gagaacctga acaagaaggt ggacgacggc ttcctggaca tctggaccta caacgccgag 1320
ctgctggtgc tgctggagaa cgagcggacc ctggacttcc acgacagcaa cgtgaagaac 1380
ctgtacgaga aggtgaagag ccagctgaag aacaacgcca aggagatcgg caacggctgc 1440
ttcgagttct accacaagtg cgacaacgag tgcatggaga gcgtgcggaa cggcacctac 1500
gactacccca agtacagcga ggagagcaag ctgaaccggg agaaggtgga cggcgtgaag 1560
ctggagagca tgggcatcta ccagatcctg gccatctaca gcaccgtggc cagcagcctg 1620
gtgctgctgg tgagcctggg cgccatcagc ttctggatgt gcagcaacgg cagcctgcag 1680
tgccggatct gcatcatg 1698
<210> 29
<211> 1503
<212> DNA
<213> Artificially Synthesized
<400> 29
atgggcgccc gggccagcgt gctgagcggc ggcaagctgg acgcctggga gaagatccgg 60
ctgcggcccg gcggcaagaa gaagtaccgg ctgaagcacc tggtgtgggc cagccgggag 120
ctggagcggt tcgccctgaa ccccggcctg ctggagaccc ccgagggctg cctgcagatc 180
atcgagcaga tccagcccgc catcaagacc ggcaccgagg agctgaagag cctgttcaac 240
ctggtggccg tgctgtactg cgtgcaccgg aagatcgacg tgaaggacac caaggaggcc 300
ctggacaaga tcgaggagat ccagaacaag agccagcaga agacccagca ggccgccgcc 360
gacaaggaga aggacaacaa ggtgagccag aactacccca tcgtgcagaa cgcccagggc 420
cagatggtgc accaggccat cagcccccgg accctgaacg cctgggtgaa ggtggtggag 480
gagaaggcct tcagccccga ggtgatcccc atgttcagcg ccctgagcga gggcgccacc 540
ccccaggacc tgaacgccat gctgaacacc gtgggcggcc accaggccgc catgcagatg 600
ctgaaggaca ccatcaacga ggaggccgcc gagtgggacc gggtgcaccc cgtgcacgcc 660
ggccccatcc cccccggcca gatgcgggag ccccggggca gcgacatcgc cggcaccacc 720
agcaccctgc aggagcagat cgcctggatg accggcaacc ccgccatccc cgtgggcgac 780
atctacaagc ggtggatcat cctgggcctg aacaagatcg tgcggatgta cagccccgtg 840
agcatcctgg acatcaagca gggccccaag gagcccttcc gggactacgt ggaccggttc 900
ttcaagaccc tgcgggccga gcaggccacc caggacgtga agaactggat gaccgagacc 960
ctgctggtgc agaacgccaa ccccgactgc aagaccatcc tgcgggccct gggccagggc 1020
gccagcatcg aggagatgat gaccgcctgc cagggcgtgg gcggccccag ccacaaggcc 1080
cgggtgctgg ccgaggccat gagccaggtg accaacacca acaccgccat catgatgcag 1140
aagggcaact tcaagggcca gcggaagttc gtgaagtgct tcaactgcgg caaggagggc 1200
cacatcgccc ggaactgccg ggccccccgg aagaagggct gctggaagtg cggccgggag 1260
ggccaccaga tgaaggactg caccgagcgg caggccaact tcctgggcaa gatctggccc 1320
agcagcaagg gccggcccgg caacttcctg cagagccggc ccgagcccac cgcccccccc 1380
gccgagagct tcggcttcgg cgaggagatg acccccagcc ccaagcagga gcagctgaag 1440
gacaaggagc cccccctggc cagcctgcgg agcctgttcg gcagcgaccc cctgctgcag 1500
tga 1503
<210> 30
<211> 2586
<212> DNA
<213> Artificially Synthesized
<400> 30
atgcgggtga aggagatcca gatgagctgg cccaacctgt ggaagtgggg cgtgctgatc 60
ctgggcctgg tgatcatgtg cagcgccagc aacaagctgt gggtgaccgt gtactacggc 120
gtgcccgtgt ggcgggacgc cgagaccacc ctgttctgcg ccagcgacgc caaggcccac 180
gagaccgaga agcacaacgt gtgggccacc cacgcctgcg tgcccaccga ccccaacccc 240
caggagatct acctggccaa cgtgaccgag aacttcaaca tgtggaagaa ctacatggtg 300
gagcagatgc aggaggacgt gatcagcctg tgggaccaga gcctgaagcc ctgcgtgaag 360
ctgacccccc tgtgcgtgac cctgaactgc accaacgaga tcaacgtgaa cgtgaccaac 420
atgaacgcca ccaccggcct gcccaccgtg ggcaacatca ccgacgagat gaagaactgc 480
agcttcaacg tgaccaccga gatccgggac aagaagcaga aggtgtacgc cctgttctac 540
aagctggaca tcgtgcccat cgacaaccgg aacaacagca acaacagcga gtacatgctg 600
atcaactgca acaccagcgt gatcaagcag gcctgcccca aggtgagctt cgaccccatc 660
cccatccact actgcacccc cgccggctac gtgatcctga agtgcaacga caagaagttc 720
gacggcaccg gcccctgcaa gaacgtgagc agcgtgcagt gcacccacgg catcaagccc 780
gtggtgagca cccagctgct gctgaacggc agcctggccg aggaggagat catcatccgg 840
agcgagaacc tgaccaacaa cgccaagacc atcatcgtgc acctgaacga gagcgtggag 900
atcaactgca cccggcccaa caacaacacc cggaagggca cccacatcgg ccccggccag 960
gtgttctacc ggaccggcga gatcgtgggc gacatccgga aggccttctg cgagatcaac 1020
ggcaccaagt ggaacaacac cctggcccgg gtggccaaga agctgaagaa ctacttcaac 1080
aagaccatcg agttccagcc ccccagcggc ggcgacctgg agatcaccat gcaccacttc 1140
aactgccggg gcgagttctt ctactgcaac accagcaagc tgttcaacgg cacctacgag 1200
ggcaacgaca ccatggagaa caacggcacc accatcatca tcccctgccg gatcaagcag 1260
atcatcaaca tgtggcaggg cgccggccag gccatgtacg ccccccccgt ggagggcaag 1320
atcaactgcg tgagcaacat caccggcatc ctgctgaccc gggacggcgg caacaacaac 1380
agcaccaccg agatcttccg gcccggcggc ggcaacatca aggacaactg gcggagcgag 1440
ctgtacaagt acaaggtggt ggagatcgag cccctgggca tcgcccccac ccgggccgag 1500
cggaaggtgg tgcagcggga gaagcgggcc gtgggcatcg gcgccatgat cttcggcttc 1560
ctgggcgccg ccggcagcac catgggcgcc gccagcatca ccctgaccgt gcaggcccgg 1620
cagctgctga gcggcatcgt gcagcagcag agcaacctgc tgcgggccat cgaggcccag 1680
cagcacctgc tgcagctgac cgtgtggggc atcaagcagc tgcaggcccg ggtgctggcc 1740
gtggagcggt acctgaagga ccagcggctg ctgggcctgt ggggctgcag cggcaagatc 1800
atctgcacca ccgccgtgcc ctggaacagc agctggagca acaagagcta cgaggagatc 1860
tggaacaaca tgacctggat cgagtgggag cgggagatca gcaactacac cggccagatc 1920
tacgccatcc tggccgagag ccagaaccag caggacaaga acgagaagga gctgctggag 1980
ctggacaagt gggccagcct gtggaactgg ttcgacatca ccaactggct gtggtacatc 2040
aagatcttca tcatgatcgt gggcggcctg atcggcctgc ggatcgtgtt cgccgtgctg 2100
agcatcgtga accgggtgcg gcagggctac agccccctga gcttccagac cctgacccac 2160
caccagcggg agcccgaccg gcccgagcgg atcgaggagg gcggcggcga gcaggaccgg 2220
gaccggagcg tgcggctggt gagcggcttc ctggccctgg tgtgggacga cctgcggagc 2280
ctgtgcctgt tcagctacca ccggctgcgg gacttcatcc tgatcgccac ccggaccgtg 2340
gagctgctgg gccacagcag cctgaagggc ctgaagcggg gctgggaggg cctgaagtac 2400
ctgggcaacc tgctggtgta ctggggccag gagctgaaga tcagcgccat cagcctgctg 2460
aacgccaccg ccatcgccgt gggcggctgg accgaccggc tgatcgaggt gatccagcgg 2520
gcctggcggg ccatcctgca catcccccgg cggatccggc agggcgccga gcgggccctg 2580
ctgtga 2586
<210> 31
<211> 786
<212> DNA
<213> Artificially Synthesized
<400> 31
atgatcgaga cctacaacca gaccagcccc cggagcgccg ccaccggcct gcccatcagc 60
atgaagatct tcatgtacct gctgaccgtg ttcctgatca cccagatgat cggcagcgcc 120
ctgttcgccg tgtacctgca ccggcggctg gacaagatcg aggacgagcg gaacctgcac 180
gaggacttcg tgttcatgaa gaccatccag cggtgcaaca ccggcgagcg gagcctgagc 240
ctgctgaact gcgaggagat caagagccag ttcgagggct tcgtgaagga catcatgctg 300
aacaaggagg agaccaagaa ggagaacagc ttcgagatgc agaagggcga ccagaacccc 360
cagatcgccg cccacgtgat cagcgaggcc agcagcaaga ccaccagcgt gctgcagtgg 420
gccgagaagg gctactacac catgagcaac aacctggtga ccctggagaa cggcaagcag 480
ctgaccgtga agcggcaggg cctgtactac atctacgccc aggtgacctt ctgcagcaac 540
cgggaggcca gcagccaggc ccccttcatc gccagcctgt gcctgaagag ccccggccgg 600
ttcgagcgga tcctgctgcg ggccgccaac acccacagca gcgccaagcc ctgcggccag 660
cagagcatcc acctgggcgg cgtgttcgag ctgcagcccg gcgccagcgt gttcgtgaac 720
gtgaccgacc ccagccaggt gagccacggc accggcttca ccagcttcgg cctgctgaag 780
ctgtga 786
<210> 32
<211> 213
<212> DNA
<213> Artificially Synthesized
<400> 32
atgggcggcc ggcggcggaa gaagcggacc aacgacacca agcacgtgcg gttcgccgcc 60
gccgtggagg tgtgggaggc cgacgacatc gagcggaagg gcccctggga gcaggtggcc 120
gtggaccggt tccggttcca gcggcggatc gccagcgtgg aggagctgct gagcaccgtg 180
ctgctgcggc agaagaagct gctggagcag cag 213
<210> 33
<211> 1206
<212> DNA
<213> Artificially Synthesized
<400> 33
atgatcatca tcgtgatctt cctgatgtgc ctgaagatcg tgctgaacaa catcatcatc 60
tggagcaccc tgaaccagac cgtgttcctg aacaacatct tcaccatcaa cgacacctac 120
ggcggcctgt tctggaacac ctactacgac aacaaccgga gcaacttcac ctactgcggc 180
atcgccggca actactgcag ctgctgcggc cacaacatca gcctgtacaa caccaccaac 240
aactgcagcc tgatcatctt ccccaacaac accgagatct tcaaccggac ctacgagctg 300
gtgtacctgg acaagaagat caactacacc gtgaagctgc tgaagagcgt ggacagcccc 360
accatcacct acaactgcac caacagcctg atcacctgca agaacaacaa cggcaccaac 420
gtgaacatct acctgatcat caacaacacc atcgtgaacg acaccaacgg cgacatcctg 480
aactactact ggaacggcaa caacaacttc accgccacct gcatgatcaa caacaccatc 540
agcagcctga acgagaccga gaacatcaac tgcaccaacc ccatcctgaa gtaccagaac 600
tacctgagca ccctgttcta catcatcatc ttcatcgtga gcggcctgat catcggcatc 660
ttcatcagca tcatcagcgt gctgagcatc cggcggaagc ggaagaagca cgtggaggag 720
atcgagagcc ccccccccag cgagagcaac gaggaggaca tcagccacga cgacaccacc 780
agcatccacg agcccagccc ccgggagccc ctgctgccca agccctacag ccggtaccag 840
tacaacaccc ccatctacta catgcggccc agcacccagc ccctgaaccc cttccccctg 900
cccaagccct gccccccccc caagccctgc ccccccccca agccctgccc cccccccaag 960
ccctgccccc cccccaagcc ctgcagcccc cccaagccct gccggccccc caagccctgc 1020
ccccccccca agccctgccc cccccccaag ccctgccccc cccccaagcc ctgccccccc 1080
agcaagccct gccccagccc cgagagctac agccccccca agcccctgcc cagcatcccc 1140
ctgctgccca acatcccccc cctgagcacc cagaacatca gcctgatcca cgtggaccgg 1200
atcatc 1206
<210> 34
<211> 705
<212> DNA
<213> Artificially Synthesized
<400> 34
atgcggggca tcctgatcgc catcgagggc atcaacggcg tgggcaagag cacccaggcc 60
atccggctga agaacgccct ggagaacaag cggtacgacg tgatctacat gcacttcccc 120
agccccaaca ccgacaccgg caagctgatc ctggacgtgc tgaacaagat cgtgaagatg 180
cccagcgagc agctgcacga gctgttcacc aagcaccggt gcgagttcac cgccgagatc 240
gccgccctgc tgaagctgaa cttcatcgtg atcgtggacc ggtacatctg gagcggcctg 300
gcctacgccc aggccgaccg gatcatgatc gacaccaaga acaccttcaa ccccgactac 360
accttcttcc tgagcagcaa caagcccctg aacgagaagc ccctgcacct gcagcggctg 420
tacgagaccg aggagaagca ggagatcatc ttcacccagt tcatcaacat catcaacgag 480
gtgcccaagg acaagttctg cgccatcccc gccaacctga acaaggagat catcgacaag 540
atcatcttca gcaagaccat caaggtgttc gagaagaacc tgaacctgga ctacatcaag 600
atgtacgacg gcatgtactt caacatccac gacctggacc tgatccggtt cgactggcag 660
aagtgcatcg aggaggacga cggcatcgac gaggagtacg gcctg 705
<210> 35
<211> 1771
<212> DNA
<213> Artificially Synthesized
<400> 35
atggcccctg aacgtgagct tcaccaaccg gaactacgac ctggactacg acagcgtgca 60
gccctacttc tactgcgacg aggaggagaa cttctaccag cagcagcagc agagcgagct 120
gcagcccccc gcccccagcg aggacatctg gaagaagttc gagctgctgc ccgccccccc 180
cctgagcccc agccggcgga gcggcctgtg cagccccagc tacgtggccg tgaccccctt 240
cagcctgcgg ggcgacaacg acggcggcgg cggcagcttc agcaccgccg accagctgga 300
gatggtgacc gagctgctgg gcggcgacat ggtgaaccag agcttcatct gcgaccccga 360
cgacgagacc ttcatcaaga acatcatcat ccaggactgc atgtggagcg gcttcagcgc 420
cgccgccaag ctggtgagcg agaagctggc cagctaccag gccgcccgga aggacagcgg 480
cagccccaac cccgcccggg gccacagcgt gtgcagcacc agcagcctgt acctgcagga 540
cctgagcgcc gccgccagcg agtgcatcga ccccagcgtg gtgttcccct accccctgaa 600
cgacagcagc agccccaaga gctgcgccag ccaggacagc agcgccttca gccccagcag 660
cgacagcctg ctgagcagca ccgagagcag cccccagggc agccccgagc ccctggtgct 720
gcacgaggag acccccccca ccaccagcag cgacagcgag gaggagcagg aggacgagga 780
ggagatcgac gtggtgagcg tggagaagcg gcaggccccc ggcaagcgga gcgagagcgg 840
cagccccagc gcctgctgca cctgctgcgg cggcaccggc acctgcggca ccaccaccgg 900
cggcgccggc ggcgccggca ccggcacctg cggcggcggc accggcgcct gctgcgccgg 960
cggcgccggc accacctgca cctgctgcgc ctgcggcggc accggctgcg ccggcgccgg 1020
cggcaccggc accggcaccg ccggcacctg cggcaccggc accaccggcg ccaccggctg 1080
cggcacctgc ggctgcggcg gcgccggcgg cggcgccggc ggcaccggcg ccggctgctg 1140
caccacctgc tgcaccggcg ccaccgccgg cggcgcctgc ggcgcctgcg gcggcaccac 1200
ctgcacctgc tgctgcgccg gcaccacctg cgccgcctgc tgcaccggca cctgcgcctg 1260
cgccggcacc tgcacctgcg ccggcggcgc ctgcacctgc accggcggcc acagcaagcc 1320
cccccacagc cccctggtgc tgaagcggtg ccacgtgagc acccaccagc acaactacgc 1380
cgcccccccc agcacccgga aggactaccc cgccgccaag cgggtgaagc tggacagcgt 1440
gcgggtgctg cggcagatca gcaacaaccg gaagtgcacc agcccccgga gcagcgacac 1500
cgaggagaac gtgaagcggc ggacccacaa cgtgctggag cggcagcggc ggaacgagct 1560
gaagcggagc ttcttcgccc tgcgggacca gatccccgag ctggagaaca acgagaaggc 1620
ccccaaggtg gtgatcctga agaaggccac cgcctacatc ctgagcgtgc aggccgagga 1680
gcagaagctg atcagcgagg aggacctgct gcggaagcgg cgggagcagc tgaagcacaa 1740
gctggagcag ctgcggaaca gctgcgcctg a 1771
<210> 36
<211> 1644
<212> DNA
<213> Artificially Synthesized
<400> 36
atggccgtga gcgacgccct gctgcccagc ttcagcacct tcgccagcgg ccccgccggc 60
cgggagaaga ccctgcggca ggccggcgcc cccaacaacc ggtggcggga ggagctgagc 120
cacatgaagc ggctgccccc cgtgctgccc ggccggccct acgacctggc cgccgccacc 180
gtggccaccg acctggagag cggcggcgcc ggcgccgcct gcggcggcag caacctggcc 240
cccctgcccc ggcgggagac cgaggagttc aacgacctgc tggacctgga cttcatcctg 300
agcaacagcc tgacccaccc ccccgagagc gtggccgcca ccgtgagcag cagcgccagc 360
gccagcagca gcagcagccc cagcagcagc ggccccgcca gcgcccccag cacctgcagc 420
ttcacctacc ccatccgggc cggcaacgac cccggcgtgg cccccggcgg caccggcggc 480
ggcctgctgt acggccggga gagcgccccc ccccccaccg cccccttcaa cctggccgac 540
atcaacgacg tgagccccag cggcggcttc gtggccgagc tgctgcggcc cgagctggac 600
cccgtgtaca tcccccccca gcagccccag ccccccggcg gcggcctgat gggcaagttc 660
gtgctgaagg ccagcctgag cgcccccggc agcgagtacg gcagccccag cgtgatcagc 720
gtgagcaagg gcagccccga cggcagccac cccgtggtgg tggcccccta caacggcggc 780
cccccccgga cctgccccaa gatcaagcag gaggccgtga gcagctgcac ccacctgggc 840
gccggccccc ccctgagcaa cggccaccgg cccgccgccc acgacttccc cctgggccgg 900
cagctgccca gccggaccac ccccaccctg ggcctggagg aggtgctgag cagccgggac 960
tgccaccccg ccctgcccct gccccccggc ttccaccccc accccggccc caactacccc 1020
agcttcctgc ccgaccagat gcagccccag gtgccccccc tgcactacca ggagctgatg 1080
ccccccggca gctgcatgcc cgaggagccc aagcccaagc ggggccggcg gagctggccc 1140
cggaagcgga ccggccccgg cctgatgggc cggaaggacg gcctggtgta cgtgggcgtg 1200
cagggcggcg aggtgatggt gctggagtac ggcggccccc ggacctacgg cctgctgggc 1260
ttcggcttca gccccagcgc cagcaccggc gccttcagct gggccaccca cacctgcgac 1320
tacgccggct gcggcaagac ctacaccaag agcagccacc tgaaggccca cctgcggacc 1380
cacaccggcg agaagcccta ccactgcgac tgggacggct gcggctggaa gttcgcccgg 1440
agcgacgagc tgacccggca ctaccggaag cacaccggcc accggccctt ccagtgccag 1500
aagtgcgacc gggccttcag ccggagcgac cacctggccc tgcacatgaa gcggcacttc 1560
tgaagcagcg tgcccttccc cgagggcgag gccttccccc ccgtgagcgt gaccaccctg 1620
ggcagcccca tgcacagcaa ctga 1644
<210> 37
<211> 954
<212> DNA
<213> Artificially Synthesized
<400> 37
atgtacaaca tgatggagac cgagctgaag ccccccggcc cccagcagac cagcggcggc 60
ggcggcggca acagcaccgc cgccgccgcc ggcggcaacc agaagaacag ccccgaccgg 120
gtgaagcggc ccatgaacgc cttcatggtg tggagccggg gccagcggcg gaagatggcc 180
caggagaacc ccaagatgca caacagcgag atcagcaagc ggctgggcgc cgagtggaag 240
ctgctgagcg agaccgagaa gcggcccttc atcgacgagg ccaagcggct gcgggccctg 300
cacatgaagg agcaccccga ctacaagtac cggccccggc ggaagaccaa gaccctgatg 360
aagaaggaca agtacaccct gcccggcggc ctgctggccc ccggcggcaa cagcatggcc 420
agcggcgtgg gcgtgggcgc cggcctgggc gccggcgtga accagcggat ggacagctac 480
gcccacatga acggctggag caacggcagc tacagcatga tgcaggacca gctgggctac 540
ccccagcacc ccggcctgaa cgcccacggc gccgcccaga tgcagcccat gcaccggtac 600
gacgtgagcg ccctgcagta caacagcatg accagcagcc agacctacat gaacggcagc 660
cccacctaca gcatgagcta cagccagcag ggcacccccg gcatggccct gggcagcatg 720
ggcagcgtgg tgaagagcga ggccagcagc agcccccccg tggtgaccag cagcagccac 780
agccgggccc cctgccaggc cggcgacctg cgggacatga tcagcatgta cctgcccggc 840
gccgaggtgc ccgagcccgc cgcccccagc cggctgcaca tgagccagca ctaccagagc 900
ggccccgtgc ccggcaccgc catcaacggc accctgcccc tgagccacat gtga 954
<210> 38
<211> 1083
<212> DNA
<213> Artificially Synthesized
<400> 38
atggccggcc acctggccag cgacttcgcc ttcagccccc cccccggcgg cggcggcgac 60
ggccccggcg gccccgagcc cggctgggtg gacccccgga cctggctgag cttccagggc 120
ccccccggcg gccccggcat cggccccggc gtgggccccg gcagcgaggt gtggggcatc 180
cccccctgcc ccccccccta cgagttctgc ggcggcatgg cctactgcgg cccccaggtg 240
ggcgtgggcc tggtgcccca gggcggcctg gagaccagcc agcccgaggg cgaggccggc 300
gtgggcgtgg agagcaacag cgacggcgcc agccccgagc cctgcaccgt gacccccggc 360
gccgtgaagc tggagaagga gaagctggag cagaaccccg aggagagcca ggacatcaag 420
gccctgcaga aggagctgga gcagttcgcc aagctgctga agcagaagcg gatcaccctg 480
ggctacaccc aggccgacgt gggcctgacc ctgggcgtgc tgttcggcaa ggtgttcagc 540
cagaccacca tctgccggtt cgaggccctg cagctgagct tcaagaacat gtgcaagctg 600
cggcccctgc tgcagaagtg ggtggaggag gccgacaaca acgagaacct gcaggagatc 660
tgcaaggccg agaccctggt gcaggcccgg aagcggaagc ggaccagcat cgagaaccgg 720
gtgcggggca acctggagaa cctgttcctg cagtgcccca agcccaccct gcagcagatc 780
agccacatcg cccagcagct gggcctggag aaggacgtgg tgcgggtgtg gttctgcaac 840
cggcggcaga agggcaagcg gagcagcagc gactacgccc agcgggagga cttcgaggcc 900
gccggcagcc ccttcagcgg cggccccgtg agcttccccc tggcccccgg cccccacttc 960
ggcacccccg gctacggcag cccccacttc accgccctgt acagcagcgt gcccttcccc 1020
gagggcgagg ccttcccccc cgtgagcgtg accaccctgg gcagccccat gcacagcaac 1080
tga 1083
<210> 39
<211> 630
<212> DNA
<213> Artificially Synthesized
<400> 39
atgggcagcg tgagcaacca gcagttcgcc ggcggctgcg ccaaggccgc cgaggaggcc 60
cccgaggagg cccccgagga cgccgcccgg gccgccgacg agccccagct gctgcacggc 120
gccggcatct gcaagtggtt caacgtgcgg atgggcttcg gcttcctgag catgaccgcc 180
cgggccggcg tggccctgga cccccccgtg gacgtgttcg tgcaccagag caagctgcac 240
atggagggct tccggagcct gaaggagggc gaggccgtgg agttcacctt caagaagagc 300
gccaagggcc tggagagcat ccgggtgacc ggccccggcg gcgtgttctg catcggcagc 360
gagcggcggc ccaagggcaa gagcatgcag aagcggcgga gcaagggcga ccggtgctac 420
aactgcggcg gcctggacca ccacgccaag gagtgcaagc tgccccccca gcccaagaag 480
tgccacttct gccagagcat cagccacatg gtggccagct gccccctgaa ggcccagcag 540
ggccccagcg cccagggcaa gcccacctac ttccgggagg aggaggagga gatccacagc 600
cccaccctgc tgcccgaggc ccagaactga 630
<210> 40
<211> 455
<212> DNA
<213> Artificially Synthesized
<400> 40
tgtacaaaaa agcaggcttt aaaggaacca attcagtcga ctggatccgg taccaaggtc 60
gggcaggaag agggcctatt tcccatgatt ccttcatatt tgcatatacg atacaaggct 120
gttagagaga taattagaat taatttgact gtaaacacaa agatattagt acaaaatacg 180
tgacgtagaa agtaataatt tcttgggtag tttgcagttt taaaattatg ttttaaaatg 240
gactatcata tgcttaccgt aacttgaaag tatttcgatt tcttggcttt atatatcttg 300
tggaaaggac gaaacaccga agctcaacca tggggactgt tttagagcta gaaatagcaa 360
gttaaaataa ggctagtccg ttatcaactt gaaaaagtgg caccgagtcg gtgctttttt 420
tctagaccca gctttcttgt acaaagttgg catta 455
<210> 41
<211> 20
<212> DNA
<213> Artificially Synthesized
<400> 41
taagctaacc tgtcacccca 20
<210> 42
<211> 20
<212> DNA
<213> Artificially Synthesized
<400> 42
agagcacaga ggcgaggctt 20
<210> 43
<211> 24
<212> DNA
<213> Artificially Synthesized
<400> 43
ctcaaaagac ttctgttctt gagc 24
<210> 44
<211> 24
<212> DNA
<213> Artificially Synthesized
<400> 44
cactgaacac tgtgataatc tgct 24
<210> 45
<211> 24
<212> DNA
<213> Artificially Synthesized
<400> 45
ccatggaatt cgaacgctga cgtc 24
<210> 46
<211> 23
<212> DNA
<213> Artificially Synthesized
<400> 46
tatgggctat gaactaatga ccc 23
<210> 47
<211> 1584
<212> DNA
<213> Artificially Synthesized
<400> 47
atggtgcccc aggccctgct gttcgtgccc ctgctggtgt tccccctgtg cttcggcaag 60
ttccccatct acaccatccc cgacaagctg ggcccctgga gccccatcga catccaccac 120
ctgagctgcc ccaacaacct ggtggtggag gacgagggct gcaccaacct gagcggcttc 180
agctacatgg agctgaaggt gggctacatc agcgccatca agatgaacgg cttcacctgc 240
accggcgtgg tgaccgaggc cgagacctac accaacttcg tgggctacgt gaccaccacc 300
ttcaagcgga agcacttccg gcccaccccc gacgcctgcc gggccgccta caactggaag 360
atggccggcg acccccggta cgaggagagc ctgcacaacc cctaccccga ctaccactgg 420
ctgcggaccg tgaagaccac caaggagagc ctggtgatca tcagccccag cgtggccgac 480
ctggacccct acgaccggag cctgcacagc cgggtgttcc ccggcggcaa ctgcagcggc 540
gtggccgtga gcagcaccta ctgcagcacc aaccacgact acaccatctg gatgcccgag 600
aacccccggc tgggcatgag ctgcgacatc ttcaccaaca gccggggcaa gcgggccagc 660
aagggcagcg agacctgcgg cttcgtggac gagcggggcc tgtacaagag cctgaagggc 720
gcctgcaagc tgaagctgtg cggcgtgctg ggcctgcggc tgatggacgg cacctgggtg 780
gccatgcaga ccagcaacga gaccaagtgg tgcccccccg gccagctggt gaacctgcac 840
gacttccgga gcgacgagat cgagcacctg gtggtggagg agctggtgaa gaagcgggag 900
gagtgcctgg acgccctgga gagcatcatg accaccaaga gcgtgagctt ccggcggctg 960
agccacctgc ggaagctggt gcccggcttc ggcaaggcct acaccatctt caacaagacc 1020
ctgatggagg ccgacgccca ctacaagagc gtgcggacct ggaacgagat catccccagc 1080
aagggctgcc tgcgggtggg cggccggtgc cacccccacg tgaacggcgt gttcttcaac 1140
ggcatcatcc tgggccccga cggcaacgtg ctgatccccg agatgcagag cagcctgctg 1200
cagcagcaca tggagctgct ggtgagcagc gtgatccccc tgatgcaccc cctggccgac 1260
cccagcaccg tgttcaagaa cggcgacgag gccgaggact tcgtggaggt gcacctgccc 1320
gacgtgcacg agcggatcag cggcgtggac ctgggcctgc ccaactgggg caagtacgtg 1380
ctgctgagcg ccggcgccct gaccgccctg atgctgatca tcttcctgat gacctgctgg 1440
cggcgggtga accggagcga gcccacccag cacaacctgc ggggcaccgg ccgggaggtg 1500
agcgtgaccc cccagagcgg caagatcatc agcagctggg agagctacaa gagcggcggc 1560
gagaccggcc tgtgaggcct gtga 1584
<210> 48
<211> 3813
<212> DNA
<213> Artificially Synthesized
<400> 48
atgttcgtgt tcctggtgct gctgcccctg gtgagcagcc agtgcgtgaa cctgcggacc 60
cggacccagc tgccccccgc ctacaccaac agcttcaccc ggggcgtgta ctaccccgac 120
aaggtgttcc ggagcagcgt gctgcacagc acccaggacc tgttcctgcc cttcttcagc 180
aacgtgacct ggttccacgc catccacgtg agcggcacca acggcaccaa gcggttcgac 240
aaccccgtgc tgcccttcaa cgacggcgtg tacttcgcca gcaccgagaa gagcaacatc 300
atccggggct ggatcttcgg caccaccctg gacagcaaga cccagagcct gctgatcgtg 360
aacaacgcca ccaacgtggt gatcaaggtg tgcgagttcc agttctgcaa cgaccccttc 420
ctggacgtgt actaccacaa gaacaacaag agctggatgg agagcggcgt gtacagcagc 480
gccaacaact gcaccttcga gtacgtgagc cagcccttcc tgatggacct ggagggcaag 540
cagggcaact tcaagaacct gcgggagttc gtgttcaaga acatcgacgg ctacttcaag 600
atctacagca agcacacccc catcaacctg gtgcgggacc tgccccaggg cttcagcgcc 660
ctggagcccc tggtggacct gcccatcggc atcaacatca cccggttcca gaccctgctg 720
gccctgcacc ggagctacct gacccccggc gacagcagca gcggctggac cgccggcgcc 780
gccgcctact acgtgggcta cctgcagccc cggaccttcc tgctgaagta caacgagaac 840
ggcaccatca ccgacgccgt ggactgcgcc ctggaccccc tgagcgagac caagtgcacc 900
ctgaagagct tcaccgtgga gaagggcatc taccagacca gcaacttccg ggtgcagccc 960
accgagagca tcgtgcggtt ccccaacatc accaacctgt gccccttcgg cgaggtgttc 1020
aacgccaccc ggttcgccag cgtgtacgcc tggaaccgga agcggatcag caactgcgtg 1080
gccgactaca gcgtgctgta caacagcgcc agcttcagca ccttcaagtg ctacggcgtg 1140
agccccacca agctgaacga cctgtgcttc accaacgtgt acgccgacag cttcgtgatc 1200
cggggcgacg aggtgcggca gatcgccccc ggccagaccg gcaagatcgc cgactacaac 1260
tacaagctgc ccgacgactt caccggctgc gtgatcgcct ggaacagcaa caacctggac 1320
agcaaggtgg gcggcaacta caactaccgg taccggctgt tccggaagag caacctgaag 1380
cccttcgagc gggacatcag caccgagatc taccaggccg gcagcaagcc ctgcaacggc 1440
gtggagggct tcaactgcta cttccccctg cagagctacg gcttccagcc caccaacggc 1500
gtgggctacc agccctaccg ggtggtggtg ctgagcttcg agctgctgca cgcccccgcc 1560
accgtgtgcg gccccaagaa gagcaccaac ctggtgaaga acaagtgcgt gaacttcaac 1620
ttcaacggcc tgaccggcac cggcgtgctg accgagagca acaagaagtt cctgcccttc 1680
cagcagttcg gccgggacat cgccgacacc accgacgccg tgcgggaccc ccagaccctg 1740
gagatcctgg acatcacccc ctgcagcttc ggcggcgtga gcgtgatcac ccccggcacc 1800
aacaccagca accaggtggc cgtgctgtac cagggcgtga actgcaccga ggtgcccgtg 1860
gccatccacg ccgaccagct gacccccacc tggcgggtgt acagcaccgg cagcaacgtg 1920
ttccagaccc gggccggctg cctgatcggc gccgagcacg tgaacaacag ctacgagtgc 1980
gacatcccca tcggcgccgg catctgcgcc agctaccaga cccagaccaa cagccggcgg 2040
cgggcccgga gcgtggccag ccagagcatc atcgcctaca ccatgagcct gggcgccgag 2100
aacagcgtgg cctacagcaa caacagcatc gccatcccca ccaacttcac catcagcgtg 2160
accaccgaga tcctgcccgt gagcatgacc aagaccagcg tggactgcac catgtacatc 2220
tgcggcgaca gcaccgagtg cagcaacctg ctgctgcagt acggcagctt ctgcacccag 2280
ctgaaccggg ccctgaccgg catcgccgtg gagcaggaca agaacaccca ggaggtgttc 2340
gcccaggtga agcagatcta caagaccccc cccatcaagg acttcggcgg cttcaacttc 2400
agccagatcc tgcccgaccc cagcaagccc agcaagcgga gcttcatcga ggacctgctg 2460
ttcaacaagg tgaccctggc cgacgccggc ttcatcaagc agtacggcga ctgcctgggc 2520
gacatcgccg cccgggacct gatctgcgcc cagaagttca acggcctgac cgtgctgccc 2580
cccctgctga ccgacgagat gatcgcccag tacaccagcg ccctgctggc cggcaccatc 2640
accagcggct ggaccttcgg cgccggcgcc gccctgcaga tccccttcgc catgcagatg 2700
gcctaccggt tcaacggcat cggcgtgacc cagaacgtgc tgtacgagaa ccagaagctg 2760
atcgccaacc agttcaacag cgccatcggc aagatccagg acagcctgag cagcaccgcc 2820
agcgccctgg gcaagctgca gaacgtggtg aaccagaacg cccaggccct gaacaccctg 2880
gtgaagcagc tgagcagcaa cttcggcgcc atcagcagcg tgctgaacga catcctgagc 2940
cggctggacc cccccgaggc cgaggtgcag atcgaccggc tgatcaccgg ccggctgcag 3000
agcctgcaga cctacgtgac ccagcagctg atccgggccg ccgagatccg ggccagcgcc 3060
aacctggccg ccaccaagat gagcgagtgc gtgctgggcc agagcaagcg ggtggacttc 3120
tgcggcaagg gctaccacct gatgagcttc ccccagagcg ccccccacgg cgtggtgttc 3180
ctgcacgtga cctacgtgcc cgcccaggag aagaacttca ccaccgcccc cgccatctgc 3240
cacgacggca aggcccactt cccccgggag ggcgtgttcg tgagcaacgg cacccactgg 3300
ttcgtgaccc agcggaactt ctacgagccc cagatcatca ccaccgacaa caccttcgtg 3360
agcggcaact gcgacgtggt gatcggcatc gtgaacaaca ccgtgtacga ccccctgcag 3420
cccgagctgg acagcttcaa ggaggagctg gacaagtact tcaagaacca caccagcccc 3480
gacgtggacc tgggcgacat cagcggcatc aacgccagcg tggtgaacat ccagaaggag 3540
atcgaccggc tgaacgaggt ggccaagaac ctgaacgaga gcctgatcga cctgcaggag 3600
ctgggcaagt acgagcagta catcaagtgg ccctggtaca tctggctggg cttcatcgcc 3660
ggcctgatcg ccatcgtgat ggtgaccatc atgctgtgct gcatgaccag ctgctgcagc 3720
tgcctgaagg gctgctgcag ctgcggcagc tgctgcaagt tcgacgagga cgacagcgag 3780
cccgtgctga agggcgtgaa gctgcactac acc 3813

Claims (23)

1.一种有限自我复制mRNA分子系统,其特征在于,包括:
编码甲病毒属突变型复制酶的第一mRNA;以及
至少一个编码目标蛋白的第二mRNA;
其中,每个所述第二mRNA按照5’→3’方向依次包括如下元件:复制酶5’端特异性序列、目标蛋白编码序列以及复制酶3’端特异性序列;
所述突变型复制酶包括依次连接的nsP1区域、nsP2区域、nsP3区域以及nsP4区域,所述突变型复制酶的氨基酸序列如SEQ ID NO.1所示;
所述第一mRNA或所述第二mRNA中部分或全部的尿嘧啶进行了能够提高所述第一mRNA或所述第二mRNA在生物体内稳定性的化学改性,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少50%的尿嘧啶。
2.根据权利要求1所述的有限自我复制mRNA分子系统,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少60%的尿嘧啶。
3.根据权利要求2所述的有限自我复制mRNA分子系统,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少70%的尿嘧啶。
4.根据权利要求3所述的有限自我复制mRNA分子系统,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少80%的尿嘧啶。
5.根据权利要求4所述的有限自我复制mRNA分子系统,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少90%的尿嘧啶。
6.根据权利要求5所述的有限自我复制mRNA分子系统,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的100%的尿嘧啶。
7.根据权利要求1所述的有限自我复制mRNA分子系统,其特征在于,所述第一mRNA包括突变型复制酶编码序列,所述突变型复制酶编码序列包括如SEQ ID NO.2所示的核酸序列对应的RNA序列;
每个所述第二mRNA包括依次连接的复制酶5’端特异性序列、目标蛋白编码序列以及复制酶3’端特异性序列,所述复制酶5’端特异性序列包括如SEQ ID NO.7所示的核酸序列对应的RNA序列,所述复制酶3’端特异性序列包括如SEQ ID NO.8所示的核酸序列对应的RNA序列。
8.根据权利要求7所述的有限自我复制mRNA分子系统,其特征在于,所述第一mRNA和所述第二mRNA还包括:5’帽结构、5’UTR序列、3’UTR序列以及多聚腺苷酸序列;
其中,所述第一mRNA按照5’→3’方向依次包括如下元件:5’帽结构、5’UTR序列、突变型复制酶编码序列、3’UTR序列和多聚腺苷酸序列;
每个所述第二mRNA按照5’→3’方向依次包括如下元件:5’帽结构、5’UTR序列、所述复制酶5’端特异性序列、所述目标蛋白编码序列、所述复制酶3’端特异性序列、3’UTR序列和多聚腺苷酸序列;
所述5’UTR序列包括如SEQ ID NO.9所示的核酸序列对应的RNA序列,所述3’UTR序列包括如SEQ ID NO.10所示的核酸序列对应的RNA序列,所述5’帽结构选自3′-O-Me-m7G、m 7GpppG、m 2 7,3′-O GpppG、m 7 Gppp(5')N1或m 7 Gppp(m 2′-O )N1中的至少一种。
9.根据权利要求1所述的有限自我复制mRNA分子系统,其特征在于,所述第一mRNA和所述第二mRNA被RNase III处理,所述第一mRNA和所述第二mRNA经快速蛋白质液相色谱提纯。
10.根据权利要求1所述的有限自我复制mRNA分子系统,其特征在于,所述目标蛋白包括SARS-CoV-2的抗原性多肽、白细胞介素-2、不含氨基的甲胎蛋白、HPV6的L1蛋白、HPV11的L1蛋白、HPV16的L1蛋白、HPV18的L1蛋白、HPV的E6蛋白、HSV的包膜糖蛋白E、HSV的包膜糖蛋白D、流感病毒HA抗原、HIV的Gag抗原、HIV的EnV抗原、HIV的CD40L、非洲猪瘟病毒的NL-S蛋白、非洲猪瘟病毒的cd2v ep402r蛋白、非洲猪瘟病毒的TK蛋白、Taffazin蛋白、c-Myc蛋白、Klf4蛋白、Sox2蛋白、OCT4蛋白、Lin28蛋白、Cas9蛋白、DNAJC19蛋白或水解GFP蛋白。
11.一种权利要求1所述的有限自我复制mRNA分子系统的制备方法,其特征在于,包括:
合成第一mRNA;
合成至少一个第二mRNA;
其中,第一mRNA编码甲病毒属突变型复制酶,第二mRNA编码目标蛋白;每个所述第二mRNA按照5’→3’方向依次包括如下元件:复制酶5’端特异性序列、目标蛋白编码序列以及复制酶3’端特异性序列;
所述突变型复制酶包括依次连接的nsP1区域、nsP2区域、nsP3区域以及nsP4区域,所述突变型复制酶的氨基酸序列如SEQ ID NO.1所示;
所述第一mRNA或所述第二mRNA中部分或全部的尿嘧啶进行了能够提高所述第一mRNA或所述第二mRNA在生物体内稳定性的化学改性,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少50%的尿嘧啶。
12.根据权利要求11所述的制备方法,其特征在于,还包括:
利用RNase III对所述第一mRNA和所述第二mRNA进行处理;
利用快速蛋白质液相色谱对所述第一mRNA和所述第二mRNA进行提纯。
13.根据权利要求11所述的制备方法,其特征在于,所述合成第一mRNA,包括:
合成突变型复制酶DNA编码序列,其中,所述突变型复制酶DNA编码序列包括如SEQ IDNO.9所示的5’非翻译区DNA序列、如SEQ ID NO.2所示的突变型复制酶编码序列、如SEQ IDNO.10所示的3’非翻译区DNA序列;
通过PCR在所述突变型复制酶DNA编码序列上添加mRNA的poly-(a)尾巴得到第一mRNA的DNA合成模版;
将所述第一mRNA的DNA合成模版进行体外转录合成第一mRNA。
14.根据权利要求11所述的制备方法,其特征在于,所述合成第二mRNA,包括:
合成特异性修饰的目标蛋白DNA编码序列,其中,所述特异性修饰的目标蛋白DNA编码序列包括如SEQ ID NO.9所示的5’非翻译区DNA序列、如SEQ ID NO.7所示的复制酶5’端特异性DNA序列、目标蛋白DNA编码序列、如SEQ ID NO.8所示的复制酶3’端特异性DNA序列、如SEQ ID NO.10所示的3’非翻译区DNA序列;
通过PCR在所述特异性修饰的目标蛋白DNA编码序列上添加mRNA的poly-(a)尾巴得到第二mRNA的DNA合成模版;
将所述第二mRNA的DNA合成模版进行体外转录合成第二mRNA。
15.根据权利要求11所述的制备方法,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少60%的尿嘧啶。
16.根据权利要求15所述的制备方法,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少70%的尿嘧啶。
17.根据权利要求16所述的制备方法,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少80%的尿嘧啶。
18.根据权利要求17所述的制备方法,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的至少90%的尿嘧啶。
19.根据权利要求18所述的制备方法,其特征在于,所述化学改性为利用N1-甲基假尿苷置换所述第一mRNA或所述第二mRNA中的100%的尿嘧啶。
20.一种生物材料,其特征在于,所述生物材料为A1)至A3)中的任一种:
A1)编码权利要求1所述的有限自我复制mRNA分子系统的生物材料,所述生物材料包括编码所述第一mRNA的核酸分子以及编码所述第二mRNA的核酸分子,其中,所述第一mRNA编码甲病毒属突变型复制酶,所述第二mRNA编码目标蛋白;每个所述第二mRNA按照5’→3’方向依次包括如下元件:复制酶5’端特异性序列、目标蛋白编码序列以及复制酶3’端特异性序列;
A2)含有A1)所述核酸分子的重组载体;
A3)含有A2)所述重组载体的转基因动物细胞系,其中,所述转基因动物细胞系不包括胚胎干细胞系、生殖细胞系或受精卵细胞系。
21.一种药物组合物,其特征在于,包括权利要求1~10中任一项所述的有限自我复制mRNA分子系统,以及递送载体。
22.权利要求1~10中任一项所述的有限自我复制mRNA分子系统在制备调节免疫系统的佐剂的用途。
23.权利要求1~10中任一项所述的有限自我复制mRNA分子系统或权利要求20所述的生物材料或权利要求21所述的药物组合物在制备细胞重编辑试剂中的用途、在制备基因编辑试剂中的用途、在制备Barth综合征治疗药物中的用途、在制备感染性疾病疫苗中的用途或在制备肿瘤疫苗中的用途。
CN202111080355.2A 2021-09-09 2021-09-15 一种有限自我复制mRNA分子系统、制备方法及应用 Active CN113846113B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/126076 WO2023035372A1 (zh) 2021-09-09 2021-10-25 一种有限自我复制mRNA分子系统、制备方法及应用
US18/598,120 US20240200042A1 (en) 2021-09-09 2024-03-07 Limited self-replicating mrna molecular system, producing method and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111054809 2021-09-09
CN2021110548099 2021-09-09

Publications (2)

Publication Number Publication Date
CN113846113A CN113846113A (zh) 2021-12-28
CN113846113B true CN113846113B (zh) 2022-09-13

Family

ID=78973894

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111080355.2A Active CN113846113B (zh) 2021-09-09 2021-09-15 一种有限自我复制mRNA分子系统、制备方法及应用

Country Status (3)

Country Link
US (1) US20240200042A1 (zh)
CN (1) CN113846113B (zh)
WO (1) WO2023035372A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116474120A (zh) * 2023-04-03 2023-07-25 臻赫医药(杭州)有限公司 重编程因子抗衰老mRNA组合物、制备方法及应用
CN116426573A (zh) * 2023-04-14 2023-07-14 臻赫医药(杭州)有限公司 重编程因子抗衰老表达系统、生物材料及用途
CN116870197A (zh) * 2023-08-15 2023-10-13 臻赫医药(杭州)有限公司 促组织细胞增生重编程因子制剂及用途
CN117778432B (zh) * 2024-02-26 2024-05-28 苏州左旋星生物科技有限公司 自复制rna载体、其制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2325564A1 (en) * 1998-03-27 1999-10-07 Cytos Biotechnology Ag Inducible alphaviral gene expression system
EP2296702A1 (en) * 2008-05-23 2011-03-23 FIT Biotech Oy Expression vector encoding alphavirus replicase and the use thereof as immunological adjuvant
EP3830109A4 (en) * 2018-08-03 2022-05-18 Uab Research Foundation METHODS AND COMPOSITIONS FOR ALPHAVIRUS VACCINATION
CA3115480A1 (en) * 2018-10-08 2020-04-16 Janssen Pharmaceuticals, Inc. Alphavirus-based replicons for administration of biotherapeutics

Also Published As

Publication number Publication date
CN113846113A (zh) 2021-12-28
US20240200042A1 (en) 2024-06-20
WO2023035372A1 (zh) 2023-03-16

Similar Documents

Publication Publication Date Title
CN113846113B (zh) 一种有限自我复制mRNA分子系统、制备方法及应用
AU2022275537A1 (en) Nuclease systems for genetic engineering
AU2022204298B2 (en) Nucleobase editors and uses thereof
AU2018250519B2 (en) Compositions and methods for improving lettuce production
CN111770992B (zh) CRISPR-Cas12j酶和系统
CN107109422B (zh) 使用由两个载体表达的拆分的Cas9的基因组编辑
DK2588616T3 (en) PROCEDURE FOR MAKING A RELATIONSHIP OF INTEREST
AU2023241400A1 (en) Novel crispr enzymes and systems
AU2023251441A1 (en) RNA containing composition for treatment of tumor diseases
AU2020227049A1 (en) Fast diagnosis and personalized treatments for acne
AU2018201717A1 (en) Optimal maize loci
AU2018200955A1 (en) Optimal maize loci
AU2022200130B2 (en) Engineered Cas9 systems for eukaryotic genome modification
CN112105728B (zh) CRISPR/Cas效应蛋白及系统
KR20220113442A (ko) 입자 전달 시스템
KR20210060429A (ko) 적응 면역의 조절을 위한 조성물 및 방법
KR20200111172A (ko) 네페탈락톨 산화 환원 효소, 네페탈락톨 합성 효소, 및 네페탈락톤을 생산할 수 있는 미생물
KR20230111189A (ko) 재프로그램 가능한 iscb 뉴클레아제 및 이의 용도
RU2752529C9 (ru) Улучшенные эукариотические клетки для получения белка и способы их получения
AU2016295122A1 (en) Genetic testing for predicting resistance of pseudomonas species against antimicrobial agents
CN109337904B (zh) 基于C2c1核酸酶的基因组编辑系统和方法
KR102043356B1 (ko) 마크로포미나 파세올리나로부터의 리그닌 분해 효소 및 이의 용도
CN113817778B (zh) 一种利用核仁素增强mRNA稳定表达的方法
KR102386498B1 (ko) Crispr-cas를 기반으로 하는 유전자 교정용 조성물
KR102114010B1 (ko) 흑부병으로부터의 셀룰로즈 및/또는 헤미셀룰로즈 분해 효소 및 이의 용도

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240314

Address after: Room 309, Building 1, No. 502, Linping Avenue, Economic Development Zone, Linping District, Hangzhou, Zhejiang 310000

Patentee after: Zhenhe medicine (Hangzhou) Co.,Ltd.

Country or region after: China

Patentee after: Hangzhou Helin biomedical Co.,Ltd.

Address before: 310000 Room 309, building 1, No. 502, Linping Avenue, Yuhang Economic Development Zone, Yuhang District, Hangzhou, Zhejiang Province

Patentee before: Zhenhe medicine (Hangzhou) Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right