CN113845323B - 一种高性能核壳轻集料及其制备方法 - Google Patents

一种高性能核壳轻集料及其制备方法 Download PDF

Info

Publication number
CN113845323B
CN113845323B CN202110778761.XA CN202110778761A CN113845323B CN 113845323 B CN113845323 B CN 113845323B CN 202110778761 A CN202110778761 A CN 202110778761A CN 113845323 B CN113845323 B CN 113845323B
Authority
CN
China
Prior art keywords
shell
core
parts
lightweight aggregate
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110778761.XA
Other languages
English (en)
Other versions
CN113845323A (zh
Inventor
张礼华
刘来宝
马鑫
刘川北
张红平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202110778761.XA priority Critical patent/CN113845323B/zh
Publication of CN113845323A publication Critical patent/CN113845323A/zh
Application granted granted Critical
Publication of CN113845323B publication Critical patent/CN113845323B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及建筑材料技术领域,公开了一种高性能核壳轻集料及其制备方法,该高性能核壳轻集料由内核和外壳两部分组成;内核原料包括粉煤灰、铝矾土、轻烧镁砂和石英粉;外壳原料包括铝矾土、粘土、硬石膏和石灰石;内核和外壳的质量比为1:0.2~1:0.4。该高性能核壳轻集料依次经造粒成球、表面裹粉和高温烧结制备而成。采用本发明制备的高性能核壳轻集料内核组成为堇青石、钙长石和尖晶石,外壳组成为β‑硅酸二钙和硫铝酸四钙,内核、外壳原料经高温扩散反应和液相烧结产生玻璃相、镁黄长石和钙长石的低共熔化合形成物界面结合区,使得高性能轻集料具有轻质高强、低吸水和表面反应活性的特点,可显著改善并提升轻集料混凝土界面过渡区和力学性能。

Description

一种高性能核壳轻集料及其制备方法
技术领域
本发明涉及建筑材料技术领域,具体涉及一种高性能核壳轻集料及其制备方法。
背景技术
轻集料混凝土具有轻质高强、减震吸声和保温隔热等优异性能,在超高层建筑、大跨度桥梁和节能建筑中具有广泛应用。普通轻集料混凝土表现为典型的脆性破坏,破坏裂纹直接贯穿轻集料内部;再加之普通轻集料表面开孔率较高,同时制备冷却过程中由于温度收缩应力在内部和表面产生了大量微裂纹,这使得普通轻集料吸水率高,单位重量强度(比强度)大大降低,从而严重影响轻集料混凝土的工作性和力学性能。
而且,现阶段轻集料与水泥硬化浆体之间的界面过渡区也是轻集料混凝土中的薄弱环节。因此,如何制备高比强度、低吸水率的高性能轻集料改善高性能轻集料混凝土力学性能,同时还能改善高性能轻集料与水泥石之间的界面过渡区,是制约轻集料混凝土发展亟待解决的关键技术问题。
发明内容
基于以上问题,本发明提供一种高性能核壳轻集料及其制备方法,通过对轻集料的组成设计和孔结构调控,制备具有高比强度、低吸水率的多孔陶瓷内核和具有水化反应活性的高贝利特水泥熟料外壳,从而显著改善并提升高性能轻集料混凝土的界面过渡区和力学性能。
为实现上述技术效果,本发明所采用的技术方案是:
一种高性能核壳轻集料,包括内核、外壳以及介于内核和外壳之间的界面结合区,内核和外壳质量比为1:0.2~1:0.4;
内核原料包括如下组分:粉煤灰35~40质量份、铝矾土30~35质量份、轻烧镁砂10~15质量份和石英粉15~20质量份;内核晶相组成主要为相互交织生长的六方柱状堇青石、板状钙长石和颗粒状的尖晶石;
外壳原料包括如下组分:铝矾土2~5质量份、粘土27~30质量份、硬石膏5~8质量份和石灰石60~63质量份;外壳晶相组成主要为颗粒状的β-硅酸二钙和片状的硫铝酸四钙组成;
界面结合区由内核、外壳原料经高温扩散反应和液相烧结形成,主要为玻璃相、镁黄长石和钙长石的低共熔化合物。
进一步地,粉煤灰中SiO2含量为40~60质量份,Al2O3含量为20~30质量份,CaO含量为0~15质量份,Fe2O3含量为5~10质量份,烧失量0~10质量份;且粉煤灰细度为0~0.075mm。
进一步地,轻烧镁砂中MgO含量为75~100质量份,CaO含量为0~8质量份,SiO2含量为0~10质量份,烧失量0~12质量份;且轻烧镁砂细度为0~0.075mm。
进一步地,硬石膏包括天然石膏、磷石膏、氟石膏、脱硫石膏、柠檬酸石膏;且硬石膏中硫酸钙的含量为80~100质量份,硬石膏细度为0~0.075mm。
进一步地,铝矾土、石英粉、粘土和石灰石均为天然矿物原料,且天然矿物原料细度均为0~0.075mm。
为实现上述技术效果,本发明还提供了一种高性能核壳轻集料的制备方法,包括以下步骤:
1)将粉煤灰、铝矾土、轻烧镁砂和石英粉混合研磨,然后造粒成球,得到内核生料球;
2)将铝矾土、粘土、硬石膏和石英粉混合,得到外壳生料粉;
3)将外壳生料粉包裹在内核生料球表面并烘干,然后高温烧结,制得高性能核壳轻集料。
进一步地,步骤1)中混合研磨包括:将粉煤灰、铝矾土、轻烧镁砂和石英粉放入行星式球磨机中,加入酒精作为研磨介质,然后在300~400r/min下混合研磨3~8min。
进一步地,步骤1)中造粒包括:将混合研磨后的粉煤灰、铝矾土、轻烧镁砂和石英粉在转速为20~40r/min,旋转倾角为30~40°条件下造粒成球。
进一步地,步骤3)中外壳生料粉包裹在内核生料球表面包括:将步骤2)中外壳生料粉及内核生料球在转速20~40r/min,旋转倾角为30~40°条件下将外壳生料粉包裹在内核生料球表面。
进一步地,步骤3)中高温烧结工艺为:将物料颗粒升温至600~800℃条件下预烧10~30min,然后在1200~1300℃条件下烧结10~30min后取出,最后将物料颗粒由800~1000℃经空气急冷至室温。
与现有技术相比,本发明的有益效果是:
1.本发明通过对轻集料内核的组成设计和孔结构调控,制备了矿物组成为堇青石、钙矾石和尖晶石的多孔陶瓷内核,其中堇青石和钙矾石具有较低热膨胀系数,尖晶石具有较高硬度,三者协同作用提升了轻集料比强度,制备的高性能核壳轻集料堆积密度≤750kg/m3,抗压强度≥9MPa。
2.本发明通过对轻集料内核和外壳组成以及烧成制度的匹配设计,采用造粒成球、表面裹粉和高温烧结工艺,促使多孔陶瓷内核的液相烧结,高贝利特水泥熟料的固相烧结以及二者界面结合区的高温扩散反应和液相烧结等过程同步进行,从而既保证了高贝利特水泥熟料外壳较高的水化反应活性,同时增强了高贝利特水泥熟料外壳与多孔陶瓷内核间的粘结性能,避免了高贝利特水泥熟料外壳对核壳轻集料整体力学性能的不利影响。
3.本发明通过对轻集料外壳的组成设计,制备了矿物组成为β-硅酸二钙和硫铝酸四钙的高贝利特水泥熟料外壳。与现有技术提出的普通硅酸盐水泥熟料外壳相比,高贝利特水泥熟料烧成温度更低,可降低生产能耗和有害气体排放;同时高贝利特水泥熟料是由高温固相烧结而成,内部较为疏松多孔,有利于熟料矿物与水充分接触并提升其水化反应活性;此外高贝利特水泥熟料中硫铝酸四钙早期(28d前)水化活性高,β-硅酸二钙后期(90d后)水化活性好,因而可以相互协同并持续改善高性能轻集料与水泥石的界面过渡区。
4.本发明中高性能轻集料的内核具有致密微结构,而且较低热膨胀系数使急冷过程中由于温度收缩应力产生的微裂纹减少,使得轻集料具有较低的吸水率;再加之界面结合区内,由于内核组成富硅(SiO2)、富镁(MgO)而外壳组成富钙(CaO),在浓度梯度作用下三者会发生高温扩散反应生成玻璃相、镁黄长石和钙长石等低共熔化合物,并对内核表面孔道产生填充、封堵效应,从而进一步降低高性能核壳轻集料的吸水率。本发明所制备的高性能轻集料吸水率≤3%,优于高性能轻集料对应指标(抗压强度≥6MPa,吸水率≤5%),高性能轻集料在混凝土拌和过程中对拌合水的吸收减少,能够规避轻集料吸水对混凝土拌合物(尤其是低水灰比的高性能混凝土)的流动性的不利影响。
附图说明
图1为实施例5中的高性能核壳轻集料外观和内部形貌;
图2为实施例5中的高贝利特水泥熟料外壳SEM图和XRD图谱;
图3为实施例5中的多孔陶瓷内核SEM图和XRD图谱。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
一种高性能核壳轻集料,包括内核、外壳以及介于内核和外壳之间的界面结合区,内核和外壳质量比为1:0.2~1:0.4;
内核原料包括如下组分:粉煤灰35~40质量份、铝矾土30~35质量份、轻烧镁砂10~15质量份和石英粉15~20质量份;内核晶相组成主要为相互交织生长的六方柱状堇青石、板状钙长石和颗粒状的尖晶石;
外壳原料包括如下组分:铝矾土2~5质量份、粘土27~30质量份、硬石膏5~8质量份和石灰石60~63质量份;外壳晶相组成主要为颗粒状的β-硅酸二钙和片状的硫铝酸四钙组成;
界面结合区由内核、外壳原料经高温扩散反应和液相烧结形成,主要为玻璃相、镁黄长石和钙长石的低共熔化合物。
在本实施例中,高性能核壳轻集料由多孔陶瓷内核、高贝利特水泥熟料外壳以及二者之间的界面结合区构成。
多孔陶瓷内核是由内核生料球经高温液相烧结而成,并且由连续的陶瓷骨架和封闭的球形孔组成。陶瓷骨架内部六方柱状的堇青石、板状的钙长石和颗粒状的尖晶石相互交织生长,形成致密微结构。其中堇青石(~1.5×10-6/℃)和钙长石(~4.8×10-6/℃)都具有较低热膨胀系数,可减少急冷过程中陶瓷骨架内部由于温度收缩应力产生的微裂纹;而尖晶石(莫氏硬度8)具有较高硬度,可提升陶瓷骨架力学强度,三者协同作用提升了轻集料比强度,并降低了吸水率。
高贝利特水泥熟料外壳是由外壳生料粉经高温固相烧成而成,并且由颗粒状的β-硅酸二钙和片状的硫铝酸四钙组成。其中硫铝酸四钙早期(28d前)水化活性高,β-硅酸二钙后期(90d后)水化活性好,二者相互协同可以持续改善高性能轻集料与水泥石的界面过渡区,并提升高性能轻集料混凝土力学性能和长期耐久性。
轻集料的界面结合区是由内核生料球和外壳生料粉经高温扩散反应和液相烧结而成,并且由玻璃相、镁黄长石和钙长石等低共熔化合物组成。低共熔化合物的形成增强了多孔陶瓷内核和高贝利特水泥熟料外壳之间的粘结性能,提升了高性能核壳轻集料的整体力学强度。同时界面结合区的高温扩散反应和液相烧结而成的玻璃相、镁黄长石和钙长石等低共熔化合物对内核表面孔道产生封堵效应,进一步降低高性能核壳轻集料的吸水率。高性能轻集料在混凝土拌和过程中对拌合水的吸收减少,能够规避轻集料吸水对混凝土拌合物(尤其是低水灰比的高性能混凝土)的流动性的不利影响。
实施例2:
一种高性能核壳轻集料,包括内核和外壳;内核和外壳的质量比为1:0.24;
内核包括如下组分:粉煤灰36.2质量份、铝矾土30.8质量份、轻烧镁砂13.4质量份和石英粉19.6质量份;
所述外壳包括如下组分:铝矾土2.6质量份、粘土28.4质量份、硬石膏7.8质量份和石灰石61.2质量份。
制备上述高性能核壳轻集料的方法,具体包括:
1)按上述原料比例,将粉煤灰、铝矾土、轻烧镁砂和石英粉放入行星式球磨机中,加入适量酒精作为研磨介质,然后于350r/min下研磨5min混合均匀,随后过滤研磨介质并烘干,然后加入适量水通过造粒机成球,造粒过程中,成球机转速为30r/min,倾角为35°,得到内核生料球。
2)按上述原料比例,将铝矾土、粘土、硬石膏和石灰石混合均匀,得到外壳生料粉。
3)采用成球机在20r/min和倾角35°条件下将外壳生料粉均匀包裹在内核生料球表面并烘干,然置于电阻炉中,先升温至600℃条件下预烧20min,然后在1250℃条件下烧结20min后取出,最后在800℃左右开始进行空气急冷至室温(20-30℃),得到高性能核壳轻集料。
依据《轻集料及其试验方法》(GB/T17431.2-2010)对制备高性能核壳轻集料物理力学性能进行测试。
经测试,本实施例制备的高性能核壳轻集料堆积密度为701.0kg/m3,表观密度1358.0kg/m3,1h吸水率为1.7%,抗压强度为10.2MPa。
实施例3:
一种高性能核壳轻集料,包括内核和外壳;内核和外壳的质量比为1:0.36;
内核包括如下组分:粉煤灰36.2质量份、铝矾土30.8质量份、轻烧镁砂13.4质量份和石英粉19.6质量份;
所述外壳包括如下组分:铝矾土2.6质量份、粘土28.4质量份、硬石膏7.8质量份和石灰石61.2质量份。
制备上述高性能核壳轻集料的方法,具体包括:
1)按上述原料比例,将粉煤灰、铝矾土、轻烧镁砂和石英粉放入行星式球磨机中,加入适量酒精作为研磨介质,然后于350r/min下研磨5min混合均匀,随后过滤研磨介质并烘干,然后加入适量水通过造粒机成球,造粒过程中,成球机转速为30r/min,倾角为35°,得到内核生料球。
2)按上述原料比例,将铝矾土、粘土、硬石膏和石灰石混合均匀,得到外壳生料粉。
3)采用成球机在20r/min和倾角35°条件下将外壳生料粉均匀包裹在内核生料球表面并烘干,然置于电阻炉中,先升温至600℃条件下预烧20min,然后在1250℃条件下烧结20min后取出,最后在800℃左右开始进行空气急冷至室温,得到高性能核壳轻集料。
依据《轻集料及其试验方法》(GB/T17431.2-2010)对制备高性能核壳轻集料物理力学性能进行测试。
经测试,本实施例制备的高性能核壳轻集料堆积密度为695.0kg/m3,表观密度1354.0kg/m3,1h吸水率为2.5%,抗压强度为9.6MPa。
实施例4:
一种高性能核壳轻集料,包括内核和外壳;内核和外壳的质量比为1:0.24;
内核包括如下组分:粉煤灰39.2质量份、铝矾土31.8质量份、轻烧镁砂12.4质量份和石英粉16.6质量份;
所述外壳包括如下组分:铝矾土2.6质量份、粘土28.4质量份、硬石膏7.8质量份和石灰石61.2质量份。
制备上述高性能核壳轻集料的方法,具体包括:
1)按上述原料比例,将粉煤灰、铝矾土、轻烧镁砂和石英粉放入行星式球磨机中,加入适量酒精作为研磨介质,然后于350r/min下研磨5min混合均匀,随后过滤研磨介质并烘干,然后加入适量水通过造粒机成球,造粒过程中,成球机转速为30r/min,倾角为35°,得到内核生料球。
2)按上述原料比例,将铝矾土、粘土、硬石膏和石灰石混合均匀,得到外壳生料粉。
3)采用成球机在20r/min和倾角35°条件下将外壳生料粉均匀包裹在内核生料球表面并烘干,然置于电阻炉中,先升温至600℃条件下预烧20min,然后在1250℃条件下烧结20min后取出,最后在900℃左右开始进行空气急冷至室温,得到高性能核壳轻集料。
依据《轻集料及其试验方法》(GB/T17431.2-2010)对制备高性能核壳轻集料物理力学性能进行测试。
经测试,本实施例制备的高性能核壳轻集料堆积密度为682.0kg/m3,表观密度1314.0kg/m3,1h吸水率为1.2%,抗压强度为9.1MPa。
实施例5:
参见图1-3,一种高性能核壳轻集料,包括内核和外壳;内核和外壳的质量比为1:0.24;
内核包括如下组分:粉煤灰36.2质量份、铝矾土30.8质量份、轻烧镁砂13.4质量份和石英粉19.6质量份;
所述外壳包括如下组分:铝矾土2.6质量份、粘土28.4质量份、硬石膏7.8质量份和石灰石61.2质量份。
制备上述高性能核壳轻集料的方法,具体包括:
1)按上述原料比例,将粉煤灰、铝矾土、轻烧镁砂和石英粉放入行星式球磨机中,加入适量酒精作为研磨介质,然后于350r/min下研磨5min混合均匀,随后过滤研磨介质并烘干,然后加入适量水通过造粒机成球,造粒过程中,成球机转速为30r/min,倾角为35°,得到内核生料球。
2)按上述原料比例,将铝矾土、粘土、硬石膏和石灰石混合均匀,得到外壳生料粉。
3)采用成球机在20r/min和倾角35°条件下将外壳生料粉均匀包裹在内核生料球表面并烘干,然置于电阻炉中,先升温至600℃条件下预烧20min,然后在1200℃条件下烧结20min后取出,最后在800℃左右开始进行空气急冷至室温,得到高性能核壳轻集料。
依据《轻集料及其试验方法》(GB/T17431.2-2010)对制备高性能核壳轻集料物理力学性能进行测试。
经测试,本实施例制备的高性能核壳轻集料堆积密度为742.6kg/m3,表观密度1418.0kg/m3,1h吸水率为0.9%,抗压强度为17.3MPa。
本实施例中获得的高性能轻集料的外观和内部形貌如图1所示,并对多孔陶瓷内核和高贝利特水泥熟料外壳外壳分别取样研磨后进行电镜扫描形貌表征和XRD定性分析,获得的SEM图和XRD图谱如图2和图3所示,由图2和图3可知,内核晶相组成主要为相互交织生长的六方柱状堇青石、板状钙长石和颗粒状的尖晶石,外壳晶相组成主要为颗粒状的β-硅酸二钙和片状的硫铝酸四钙组成。
如上即为本发明的实施例。上述实施例以及实施例中的具体参数仅是为了清楚表述发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (10)

1.一种高性能核壳轻集料,其特征在于:包括内核、外壳以及介于内核和外壳之间的界面结合区,所述内核和外壳质量比为1:0.2~1:0.4;
所述内核原料包括如下组分:粉煤灰35~40质量份、铝矾土30~35质量份、轻烧镁砂10~15质量份和石英粉15~20质量份;所述内核晶相组成主要为相互交织生长的六方柱状堇青石、板状钙长石和颗粒状的尖晶石;
所述外壳原料包括如下组分:铝矾土2~5质量份、粘土27~30质量份、硬石膏5~8质量份和石灰石60~63质量份;所述外壳晶相组成主要为颗粒状的β-硅酸二钙和片状的硫铝酸四钙组成;
所述界面结合区由内核、外壳原料经高温扩散反应和液相烧结形成,主要为玻璃相、镁黄长石和钙长石的低共熔化合物。
2.根据权利要求1所述的高性能核壳轻集料,其特征在于,所述粉煤灰中SiO2含量为40~60质量份,Al2O3含量为20~30质量份,CaO含量为0~15质量份,Fe2O3含量为5~10质量份,烧失量0~10质量份;且所述粉煤灰细度为0~0.075mm。
3.根据权利要求1所述的高性能核壳轻集料,其特征在于,所述轻烧镁砂中MgO含量为75~100质量份,CaO含量为0~8质量份,SiO2含量为0~10质量份,烧失量0~12质量份;且所述轻烧镁砂细度为0~0.075mm。
4.根据权利要求1所述的高性能核壳轻集料,其特征在于,所述硬石膏包括天然石膏、磷石膏、氟石膏、脱硫石膏、柠檬酸石膏中的一种或多种组合;且所述硬石膏中硫酸钙的含量为80~100质量份,所述硬石膏细度为0~0.075mm。
5.根据权利要求1所述的高性能核壳轻集料,其特征在于,所述铝矾土、所述石英粉、所述粘土和所述石灰石均为天然矿物原料,且所述天然矿物原料细度均为0~0.075mm。
6.一种高性能核壳轻集料的制备方法,该方法用于制备权利要求1至5任一项所述的高性能核壳轻集料,其特征在于,包括以下步骤:
1)将所述粉煤灰、铝矾土、轻烧镁砂和石英粉混合研磨,然后造粒成球,得到内核生料球;
2)将所述铝矾土、粘土、硬石膏和石英粉混合,得到外壳生料粉;
3)将所述外壳生料粉包裹在内核生料球表面并烘干,然后高温烧结,制得高性能核壳轻集料。
7.根据权利要求6所述的高性能核壳轻集料的制备方法,其特征在于,所述步骤1)中混合研磨包括:将所述粉煤灰、铝矾土、轻烧镁砂和石英粉放入行星式球磨机中,加入酒精作为研磨介质,然后在300~400r/min下混合研磨3~8min。
8.根据权利要求6所述的高性能核壳轻集料的制备方法,其特征在于,所述步骤1)中造粒包括:将混合研磨后的所述粉煤灰、铝矾土、轻烧镁砂和石英粉在转速为20~40r/min,旋转倾角为30~40°条件下造粒成球。
9.根据权利要求6所述的高性能核壳轻集料的制备方法,其特征在于,所述步骤3)中外壳生料粉包裹在内核生料球表面包括:将步骤2)中所述外壳生料粉及内核生料球在转速20~40r/min,旋转倾角为30~40°条件下将外壳生料粉包裹在内核生料球表面。
10.根据权利要求6所述的高性能核壳轻集料的制备方法,其特征在于,所述步骤3)中高温烧结工艺为:将物料颗粒升温至600~800℃条件下预烧10~30min,然后在1200~1300℃条件下烧结10~30min后取出,最后将物料颗粒由800~1000℃经空气急冷至室温。
CN202110778761.XA 2021-07-09 2021-07-09 一种高性能核壳轻集料及其制备方法 Active CN113845323B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110778761.XA CN113845323B (zh) 2021-07-09 2021-07-09 一种高性能核壳轻集料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110778761.XA CN113845323B (zh) 2021-07-09 2021-07-09 一种高性能核壳轻集料及其制备方法

Publications (2)

Publication Number Publication Date
CN113845323A CN113845323A (zh) 2021-12-28
CN113845323B true CN113845323B (zh) 2023-01-13

Family

ID=78975109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110778761.XA Active CN113845323B (zh) 2021-07-09 2021-07-09 一种高性能核壳轻集料及其制备方法

Country Status (1)

Country Link
CN (1) CN113845323B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455872B (zh) * 2022-03-22 2022-09-30 中冶建筑研究总院有限公司 一种采用矿山废料制备的低密度高强度轻骨料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849970A (zh) * 2012-07-04 2013-01-02 武汉理工大学 一种功能集料及其制备方法
CN108328954A (zh) * 2017-01-19 2018-07-27 西南科技大学 碳铬渣基高强轻骨料及其工业化生产方法
DE102017111836A1 (de) * 2017-05-30 2018-12-06 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Kompositpartikeln und von Isoliermaterial zur Herstellung von isolierenden Produkten für die Baustoffindustrie sowie entsprechende Verwendungen
KR102014679B1 (ko) * 2019-04-03 2019-08-26 박인식 무기성 슬러지를 이용한 인공골재 제조방법
CN111635152A (zh) * 2020-06-04 2020-09-08 武汉三源特种建材有限责任公司 一种高贝利特硫铝酸盐水泥熟料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849970A (zh) * 2012-07-04 2013-01-02 武汉理工大学 一种功能集料及其制备方法
CN108328954A (zh) * 2017-01-19 2018-07-27 西南科技大学 碳铬渣基高强轻骨料及其工业化生产方法
DE102017111836A1 (de) * 2017-05-30 2018-12-06 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung von Kompositpartikeln und von Isoliermaterial zur Herstellung von isolierenden Produkten für die Baustoffindustrie sowie entsprechende Verwendungen
KR102014679B1 (ko) * 2019-04-03 2019-08-26 박인식 무기성 슬러지를 이용한 인공골재 제조방법
CN111635152A (zh) * 2020-06-04 2020-09-08 武汉三源特种建材有限责任公司 一种高贝利特硫铝酸盐水泥熟料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
马鑫等.《微硅粉对堇青石质轻集料烧胀性能的影响》.《西南科技大学学报》.2020,第35卷(第4期), *

Also Published As

Publication number Publication date
CN113845323A (zh) 2021-12-28

Similar Documents

Publication Publication Date Title
CN103159443B (zh) 一种超高强度混凝土及其制备方法
Rougeau et al. Ultra high performance concrete with ultrafine particles other than silica fume
KR101305546B1 (ko) 경소백운석의 수화특성을 활용한 이산화탄소 저감형 포틀랜드 시멘트의 제조방법
US5509962A (en) Cement containing activated belite
Mohan et al. A review on use of crushed brick powder as a supplementary cementitious material
CN113955996B (zh) 一种相变抗裂混凝土及其制备方法
CN112694342B (zh) 一种轻质高强高延性水泥基胶凝复合材料及其制备方法
CN114988791B (zh) 一种掺富硫锂渣的烟道灌浆料及其制备方法和应用
CN115286278B (zh) 一种用于粉煤灰基混凝土的复合外加剂及其制备方法和应用
Liu et al. Utilization of phosphorus slag and fly ash for the preparation of ready-mixed mortar
CN113845323B (zh) 一种高性能核壳轻集料及其制备方法
CN110128083B (zh) 一种基于人工砂的高性能混凝土及其制备方法和应用
CN115974447A (zh) 一种赤泥基高抗硫水泥基材料用掺合料及其制备方法与应用
Zhu et al. Efflorescence of microwave-heated alkali-activated cement synthesized with ultrafine coal combustion ashes
CN110078395B (zh) 一种人造细集料硅酸盐陶砂及其制备方法
Maczura et al. Refractory cements
Mortazavi et al. Evaluation of silica fume effect on compressive strength of structural lightweight concrete containing LECA as lightweight aggregate
CN114920473A (zh) 一种多元低碳少熟料复合水泥及其制备方法
CN109265041A (zh) 一种高活性矿渣粉及其制备工艺
CN114014684A (zh) 一种具有梯度孔结构的高性能轻集料及其制备方法
CN107840586B (zh) 一种富硅镁质镍渣无熟料不收缩水泥及其制备方法
Zhang et al. Influence of magnesium oxide activity on water resistance of basic magnesium sulfate cement
Shu A preliminary research on alkali-activated slag concrete as tunnel lining in severe frigid regions
RU2777761C2 (ru) Способ производства низкоуглеродного цемента
CN109608132A (zh) 一种c45p10地铁混凝土及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant