CN114014684A - 一种具有梯度孔结构的高性能轻集料及其制备方法 - Google Patents

一种具有梯度孔结构的高性能轻集料及其制备方法 Download PDF

Info

Publication number
CN114014684A
CN114014684A CN202111338856.6A CN202111338856A CN114014684A CN 114014684 A CN114014684 A CN 114014684A CN 202111338856 A CN202111338856 A CN 202111338856A CN 114014684 A CN114014684 A CN 114014684A
Authority
CN
China
Prior art keywords
shell
pore structure
lightweight aggregate
core
transition layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111338856.6A
Other languages
English (en)
Other versions
CN114014684B (zh
Inventor
刘川北
刘来宝
张礼华
石贤盼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University of Science and Technology
Original Assignee
Southwest University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University of Science and Technology filed Critical Southwest University of Science and Technology
Priority to CN202111338856.6A priority Critical patent/CN114014684B/zh
Publication of CN114014684A publication Critical patent/CN114014684A/zh
Application granted granted Critical
Publication of CN114014684B publication Critical patent/CN114014684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/02Agglomerated materials, e.g. artificial aggregates
    • C04B18/027Lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/135Combustion residues, e.g. fly ash, incineration waste
    • C04B33/1352Fuel ashes, e.g. fly ash
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/138Waste materials; Refuse; Residues from metallurgical processes, e.g. slag, furnace dust, galvanic waste
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及建筑材料技术领域,公开了一种具有梯度孔结构的高性能轻集料及其制备方法,该具有梯度孔结构的高性能轻集料经混磨、造粒、裹粉、烧结工艺步骤制成,包括内核、过渡层和外壳三部分,各部分矿物组成均为堇青石、尖晶石和少量玻璃相,同时孔隙率和孔径沿内核、过渡层和外壳方向依次梯度减小。采用本发明制备的具有梯度孔结构的高性能轻集料具有高比强度、低吸水的优良特点,其堆积密度<750kg/m3,抗压强度>8MPa,吸水率<1.5%。

Description

一种具有梯度孔结构的高性能轻集料及其制备方法
技术领域
本发明涉及建筑材料技术领域,具体涉及一种具有梯度孔结构的高性能轻集料及其制备方法。
背景技术
轻集料混凝土具有轻质高强、隔热保温、减震吸声等诸多优良性能,在超高层建筑、大跨度桥梁和自保温墙体等建筑结构中具有广泛应用。目前,制约高强度等级(≥LWC50)轻集料混凝土力学强度的关键因素是轻集料的自身强度。为保证轻集料充分烧胀并具有较低体积密度,普通轻集料内部和表面产生了大量连通孔隙,这些连通孔不仅增加了吸水率,而且降低了力学强度。如何提高单位质量轻集料的强度(比强度)并尽可能降低吸水率,是轻集料混凝土发展亟待解决的技术问题。
影响轻集料强度和吸水率的主要因素是轻集料的物相组成和孔结构。在轻集料内部引入高强度矿相,如尖晶石可以提升强度;而引入低热膨胀矿相,如堇青石则可以减少轻集料生产冷却时微裂纹的产生,并提升强度,降低吸水率。在轻集料表面引入孔径较小的封闭球形孔可以抑制水分吸入,降低吸水率;而在轻集料内部引入孔径较大的球形孔则可以降低体积密度,提升比强度。因此,可以在轻集料内部引入堇青石、尖晶石等矿物的同时,调整内部孔隙大小使其沿半径方向呈梯度分布,从而制备具有梯度孔结构的高性能轻集料,这对提升轻集料比强度和降低吸水率,推动高强轻集料混凝土的发展有重要意义。
发明内容
针对现有技术存在问题和不足,本发明提供了一种具有梯度孔结构的高性能轻集料及其制备方法,主要解决普通轻集料比强度低、吸水率高的问题。
为实现上述目的,本发明采用如下技术方案:
一种具有梯度孔结构的高性能轻集料,包括内核、过渡层和外壳,内核、过渡层和外壳物相组成均为堇青石、尖晶石和少量玻璃相;且内核、过渡层和外壳的孔隙率和孔径依次梯度减小;
内核、过渡层和外壳的孔隙率分别为70~60%、60~40%和40~30%,孔径分别为2.0~1.0mm、1.0~0.5mm和0.5~0.01mm,厚度分别为4.0~6.0mm、2.0~4.0mm和0.5~2.0mm;
内核、过渡层和外壳的原料均由以下质量分数的组分组成:铬铁渣45~54%,粉煤灰29~36%,铝矾土7~9%,助熔剂0~5%,碳粉0~5%;且内核、过渡层和外壳的原料中助熔剂含量逐渐递减。
进一步地,铬铁渣是由埋弧电炉于1700℃冶炼铬铁合金产生的熔渣,然后经冷却、破碎、筛分、跳汰选和磁选选别铬铁金属后形成的固体废渣;铬铁渣中SiO2含量为33~37质量份,Al2O3含量为20~24质量份,MgO含量为25~29质量份,CaO含量为0~4质量份,Fe2O3含量为5~9质量份;且铬铁渣细度为0~0.075mm。
进一步地,粉煤灰中SiO2含量为40~60质量份,Al2O3含量为20~30质量份,CaO含量为0~10质量份,Fe2O3含量为5~10质量份,烧失量0~15质量份;且粉煤灰细度为0~0.075mm。
进一步地,铝矾土和碳粉均为天然矿物原料,且原料细度均为0~0.075mm。
进一步地,助熔剂是Na2SiO3、Na2CO3、NaHCO3、K2CO3、KHCO3中的一种或多种混合物;且助熔剂均采用化学纯试剂或工业试剂。
为实现上述技术效果,本发明还提供了一种具有梯度孔结构的高性能轻集料的制备方法,包括以下步骤:
1)混磨:将内核、外壳原料分别混合研磨,得到内核、外壳的生料粉;
2)造粒:将内核生料粉造粒,制成微球;
3)裹粉:将过渡层和外壳的生料粉均匀包裹在微球表面,外壳厚度控制为0.4-1mm,得到生料球;
4)烧结:将生料球高温烧结,制得具有梯度孔结构的高性能轻集料。
为实现上述技术效果,本发明还提供了另一种具有梯度孔结构的高性能轻集料的制备方法,包括以下步骤:
1)混磨:将内核、过渡层和外壳原料分别混合研磨,得到内核、过渡层和外壳的生料粉;
2)造粒:将内核生料粉造粒,制成微球;
3)裹粉:依次将过渡层和外壳的生料粉均匀包裹在微球表面,得到生料球;
4)烧结:将生料球高温烧结,制得具有梯度孔结构的高性能轻集料。
进一步地,步骤2)中造粒包括:将混合研磨后的内核生料粉在包衣机中以转速40r/min的速度制成直径2~5mm的微球。
进一步地,步骤4)中烧结包括:将生料球升温至600~800℃预烧10~30min,然后在1200~1300℃烧结10~30min,最后将生料球随炉冷却至室温。
进一步地,步骤3)中裹粉包括:将步骤2)中微球在转速20r/min速度下,依次将过渡层和外壳生料粉均匀包裹在微球表面,每层厚度控制为0.2~0.5mm。
与现有技术相比,本发明的有益效果是:
1.本发明基于SiO2-Al2O3-MgO三元相图指导,控制原料主要化学组成在堇青石理论组成点附近(SiO2含量46~59质量份,Al2O3含量29~41质量份,MgO含量12~16质量份),通过高温烧结制备出了矿物组成为堇青石和尖晶石的轻集料,其中堇青石具有较低热膨胀系数,尖晶石具有较高硬度,二者协同作用提升了轻集料骨架强度。
2.本发明根据铝硅酸盐熔体的高温粘度模型和轻集料的烧胀理论,在不影响原料主要化学组成和轻集料矿物组成的前提下,通过添加不同含量的碱性氧化物(Na2O+K2O)作为助熔剂,从而改变内核、过渡层和外壳的高温粘度和烧胀性能,使轻集料内部孔隙大小沿半径方向呈现梯度分布,从而提升了轻集料比强度,降低了吸水率,制备的轻集料堆积密度<750kg/m3,抗压强度>8MPa,吸水率<1.5%。
3.碳粉与铬铁渣中的氧化铁发生还原反应,产生CO2可以使轻集料内部成孔,而且其他原料自身分解或相互反应形成的晶相也能产生部分孔隙结构;高碳铬铁渣中含有部分未反应完全的铬铁原矿,经过碳还原后形成低价铁或单质铁,Fe2+离子半径和Mg2+比较相近,会固溶进入铬铁渣中镁橄榄石中形成固溶体,促进镁橄榄石的分解产生液相,进一步改善内核、过渡层和外壳的高温粘度和烧胀性能,而且也有利于堇青石的低温生成,同时部分铁也会固溶到尖晶石中,形成铁尖晶石。
4.本发明采用混磨、造粒、裹粉、烧结工艺步骤,实现了具有梯度孔结构的高性能轻集料的生产制备,轻集料内部孔隙沿内核、过渡层和外壳方向呈现梯度分布,内核孔隙率最高、孔径最大,可有效降低轻集料体积密度;过渡层孔隙率、孔径适中,且连续变化,可以有效缓解轻集料内部应力集中现象,提升比强度;外壳孔隙率最低、孔径最小,可以有效阻止外部水分浸入,降低吸水率。
附图说明
图1为实施例2中的具有梯度孔结构的高性能轻集料内部横截面XCT图;
图2为实施例2中的具有梯度孔结构的高性能轻集料内部SEM图;
图3为实施例2中的具有梯度孔结构的高性能轻集料的XRD图谱;
图4为实施例3中的具有梯度孔结构的高性能轻集料内部横截面XCT图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
一种具有梯度孔结构的高性能轻集料,从内到外包括内核、过渡层和外壳;内核、过渡层和外壳物相组成均为堇青石、尖晶石和少量玻璃相;内核、过渡层和外壳的孔隙率分别为70~60%、60~40%和40~30%,孔径分别为2.0~1.0mm、1.0~0.5mm和0.5~0.01mm,厚度分别为4.0~6.0mm、2.0~4.0mm和0.5~2.0mm。
内核、过渡层和外壳的主要原料组成均为:铬铁渣45~54%,粉煤灰29~36%,铝矾土7~9%,助熔剂0~5%,碳粉0~5%;且内核、过渡层和外壳的原料中助熔剂含量依次递减。
具有梯度孔结构的高性能轻集料内部矿物组成为堇青石和尖晶石的轻集料,其中堇青石具有较低热膨胀系数,尖晶石具有较高硬度,二者协同作用提升了轻集料强度。
具有梯度孔结构的高性能轻集料内部孔隙沿内核、过渡层和外壳方向呈现梯度分布,内核孔隙率最高、孔径最大,可有效降低轻集料体积密度;过渡层孔隙率、孔径适中,且连续变化,可以有效缓解轻集料内部应力集中现象,提升比强度;外壳孔隙率最低、孔径最小,可以有效阻止外部水分浸入,降低吸水率。
实施例2:
一种高性能核壳轻集料,包括内核、过渡层和外壳;
内核原料组成为:铬铁渣51.7%,粉煤灰31.7%,铝矾土10.6%,碳粉3%,化学纯碳酸钠3%;
过渡层原料组成为:铬铁渣52.8%,粉煤灰32.4%,铝矾土10.8%,碳粉3%,化学纯碳酸钠1%;
外壳原料组成为:铬铁渣53.4%,粉煤灰32.7%,铝矾土10.9%,碳粉3%。
制备上述高性能核壳轻集料的方法,具体包括:
1)混磨:将内核、过渡层和外壳原料分别放入行星式球磨机中,然后在200~300r/min下混合研磨3~8min,得到内核、过渡层和外壳的生料粉;
2)造粒:将混合研磨后的内核生料粉在包衣机中以转速40r/min的速度制成直径2mm的微球;
3)裹粉:将步骤2)中微球在转速20r/min速度下,依次将过渡层和外壳生料粉均匀包裹在微球表面,每层裹粉厚度控制为0.5mm,过渡层总厚度控制为1.5mm,外壳总厚度控制为0.5mm;
4)烧结:将生料球升温至600℃预烧30min,然后在1250℃烧结30min,最后将生料球随炉冷却至室温,制得具有梯度孔结构的高性能轻集料。
依据《轻集料及其试验方法》(GB/T 17431.2-2010)对制备具有梯度孔结构的高性能轻集料物理力学性能进行测试。
经测试,本实施例中的内核、过渡层和外壳的孔隙率分别为68.4%、42.8%和33.2%,平均孔径分别为1.81mm、0.96mm和0.22mm,厚度分别为5.2mm、2.8mm和0.8mm;本实施例制备的具有梯度孔结构的高性能轻集料堆积密度为702.0kg/m3,表观密度1290.0kg/m3,1h吸水率为1.2%,抗压强度为9.8MPa。
本实施例中获得的具有梯度孔结构的高性能轻集料,对其内部孔结构进行XCT分析,得到横截面的XCT照片如图1所示,内部孔径由内到外以此梯度减小,经图像处理分析:内核平均孔径为1.81mm,厚度为5.2mm;过渡区平均孔径为0.96mm,厚度为2.8mm;外壳平均孔径为0.22mm,厚度为0.8mm。同时选取具有梯度孔结构的高性能轻集料内部样品进行扫描电镜分析和XRD分析,获得的SEM图和XRD图谱分别如图2、图3所示,可以发现具有梯度孔结构的高性能轻集料内部晶相组成主要为相互交织生长的六方柱状堇青石和颗粒状的尖晶石,微结构致密。
实施例3:
一种高性能核壳轻集料,包括内核、过渡层和外壳;内核原料组成为:铬铁渣51.7%,粉煤灰31.7%,铝矾土10.6%,碳粉3%,化学纯碳酸钠3%;
外壳原料组成为:铬铁渣53.4%,粉煤灰32.7%,铝矾土10.9%,碳粉3%。
制备上述高性能核壳轻集料的方法,具体包括:
1)混磨:将内核、外壳原料分别放入行星式球磨机中,然后在200~300r/min下混合研磨3~8min,得到内核、外壳的生料粉;
2)造粒:将混合研磨后的内核生料粉在包衣机中以转速40r/min的速度制成直径2mm的微球;
3)裹粉:将步骤2)中微球在转速20r/min速度下,将外壳生料粉均匀包裹在微球表面,裹粉厚度控制为2mm;
4)烧结:将生料球升温至600℃预烧30min,然后在1250℃烧结30min,最后将生料球随炉冷却至室温,制得具有梯度孔结构的高性能轻集料。
在本实施例中,虽然没有单独进行过渡层的裹粉,二是直接在内核的表面裹上2mm厚的外壳生料粉,过渡层的形成是由烧结过程中在助熔剂的作用下,内核和外壳接触部分液相相互扩散渗透得到的,孔径依然介于内核和外壳之间。
本实施例中获得的具有梯度孔结构的高性能轻集料,对其内部孔结构进行XCT分析,得到横截面的XCT照片如图4所示,内部孔径由内到外以此梯度减小,经图像处理分析:本实施例中的内核平均孔径为1.76mm,厚度为4.8mm;过渡区平均孔径为0.67mm,厚度为2.4mm;外壳平均孔径为0.21mm,厚度为0.6mm。
如上即为本发明的实施例。上述实施例以及实施例中的具体参数仅是为了清楚表述发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。

Claims (10)

1.一种具有梯度孔结构的高性能轻集料,其特征在于:包括内核、过渡层和外壳,内核、过渡层和外壳物相组成均为堇青石、尖晶石和少量玻璃相;且内核、过渡层和外壳的孔隙率和孔径依次梯度减小;
所述内核、过渡层和外壳的孔隙率分别为70~60%、60~40%和40~30%,孔径分别为2.0~1.0mm、1.0~0.5mm和0.5~0.01mm,厚度分别为4.0~6.0mm、2.0~4.0mm和0.5~2.0mm;
所述内核、过渡层和外壳的原料均由以下质量分数的组分组成:铬铁渣45~54%,粉煤灰29~36%,铝矾土7~9%,助熔剂0~5%,碳粉0~5%;且所述内核、过渡层和外壳的原料中助熔剂含量逐渐递减。
2.根据权利要求1所述的具有梯度孔结构的高性能轻集料,其特征在于,铬铁渣是由埋弧电炉于1700℃冶炼铬铁合金产生的熔渣,然后经冷却、破碎、筛分、跳汰选和磁选选别铬铁金属后形成的固体废渣;铬铁渣中SiO2含量为33~37质量份,Al2O3含量为20~24质量份,MgO含量为25~29质量份,CaO含量为0~4质量份,Fe2O3含量为5~9质量份;且铬铁渣细度为0~0.075mm。
3.根据权利要求1所述的具有梯度孔结构的高性能轻集料,其特征在于,所述粉煤灰中SiO2含量为40~60质量份,Al2O3含量为20~30质量份,CaO含量为0~10质量份,Fe2O3含量为5~10质量份,烧失量0~15质量份;且粉煤灰细度为0~0.075mm。
4.根据权利要求1所述的具有梯度孔结构的高性能轻集料,其特征在于,所述铝矾土和碳粉均为天然原料,且原料细度均为0~0.075mm。
5.根据权利要求1所述的具有梯度孔结构的高性能轻集料,其特征在于,所述助熔剂是Na2SiO3、Na2CO3、NaHCO3、K2CO3、KHCO3中的一种或多种混合物;且助熔剂均采用化学纯试剂或工业试剂。
6.一种具有梯度孔结构的高性能轻集料的制备方法,该方法用于制备权利要求1至5任一项所述的具有梯度孔结构的高性能轻集料,其特征在于,包括以下步骤:
1)混磨:将内核、外壳原料分别混合研磨,得到内核、外壳的生料粉;
2)造粒:将内核生料粉造粒,制成微球;
3)裹粉:将过渡层和外壳的生料粉均匀包裹在微球表面,外壳厚度控制为0.4-1mm,得到生料球;
4)烧结:将生料球高温烧结,制得具有梯度孔结构的高性能轻集料。
7.一种具有梯度孔结构的高性能轻集料的制备方法,该方法用于制备权利要求1至5任一项所述的具有梯度孔结构的高性能轻集料,其特征在于,包括以下步骤:
1)混磨:将内核、过渡层和外壳原料分别混合研磨,得到内核、过渡层和外壳的生料粉;
2)造粒:将内核生料粉造粒,制成微球;
3)裹粉:依次将过渡层和外壳的生料粉均匀包裹在微球表面,得到生料球;
4)烧结:将生料球高温烧结,制得具有梯度孔结构的高性能轻集料。
8.根据权利要求6或7所述的具有梯度孔结构的高性能轻集料的制备方法,其特征在于,步骤2)中造粒包括:将混合研磨后的内核生料粉在包衣机中以转速40r/min的速度制成直径2~5mm的微球。
9.根据权利要求6或7所述的具有梯度孔结构的高性能轻集料的制备方法,其特征在于,步骤4)中烧结包括:将生料球升温至600~800℃预烧10~30min,然后在1200~1300℃烧结10~30min,最后将生料球随炉冷却至室温。
10.根据权利要求7所述的具有梯度孔结构的高性能轻集料的制备方法,其特征在于,步骤3)中裹粉包括:将步骤2)中微球在转速20r/min速度下,依次将过渡层和外壳生料粉均匀包裹在微球表面,每层厚度控制为0.2~0.5mm。
CN202111338856.6A 2021-11-12 2021-11-12 一种具有梯度孔结构的高性能轻集料及其制备方法 Active CN114014684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111338856.6A CN114014684B (zh) 2021-11-12 2021-11-12 一种具有梯度孔结构的高性能轻集料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111338856.6A CN114014684B (zh) 2021-11-12 2021-11-12 一种具有梯度孔结构的高性能轻集料及其制备方法

Publications (2)

Publication Number Publication Date
CN114014684A true CN114014684A (zh) 2022-02-08
CN114014684B CN114014684B (zh) 2023-11-10

Family

ID=80063937

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111338856.6A Active CN114014684B (zh) 2021-11-12 2021-11-12 一种具有梯度孔结构的高性能轻集料及其制备方法

Country Status (1)

Country Link
CN (1) CN114014684B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804846A (zh) * 2022-05-24 2022-07-29 景德镇陶瓷大学 一种利用铬铁废渣制备堇青石质材料的方法及其堇青石质材料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2509186Y (zh) * 2001-09-24 2002-09-04 杨有春 免烧陶粒
CN102643061A (zh) * 2012-05-04 2012-08-22 四川建筑职业技术学院 核壳结构高强抗震型免烧陶粒、其制备方法及其应用
CN102807337A (zh) * 2011-05-31 2012-12-05 周大伟 复合、保温、防火墙体材料用轻骨料及其生产方法
CN106746816A (zh) * 2016-12-29 2017-05-31 东莞深圳清华大学研究院创新中心 一种超轻高强粉煤灰轻集料
CN108328954A (zh) * 2017-01-19 2018-07-27 西南科技大学 碳铬渣基高强轻骨料及其工业化生产方法
CN108424016A (zh) * 2017-02-14 2018-08-21 西南科技大学 一种结构工程用高性能轻骨料
CN108585781A (zh) * 2018-05-22 2018-09-28 景德镇陶瓷大学 适合低温快烧的陶瓷透水砖的制备方法
CN112794665A (zh) * 2020-12-28 2021-05-14 贺州学院 一种高闭孔率免烧多孔陶粒的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2509186Y (zh) * 2001-09-24 2002-09-04 杨有春 免烧陶粒
CN102807337A (zh) * 2011-05-31 2012-12-05 周大伟 复合、保温、防火墙体材料用轻骨料及其生产方法
CN102643061A (zh) * 2012-05-04 2012-08-22 四川建筑职业技术学院 核壳结构高强抗震型免烧陶粒、其制备方法及其应用
CN106746816A (zh) * 2016-12-29 2017-05-31 东莞深圳清华大学研究院创新中心 一种超轻高强粉煤灰轻集料
CN108328954A (zh) * 2017-01-19 2018-07-27 西南科技大学 碳铬渣基高强轻骨料及其工业化生产方法
CN108424016A (zh) * 2017-02-14 2018-08-21 西南科技大学 一种结构工程用高性能轻骨料
CN108585781A (zh) * 2018-05-22 2018-09-28 景德镇陶瓷大学 适合低温快烧的陶瓷透水砖的制备方法
CN112794665A (zh) * 2020-12-28 2021-05-14 贺州学院 一种高闭孔率免烧多孔陶粒的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘川北: "碳铬渣基轻集料表面改性及其与水泥石界面性质研究", 《中国优秀博硕士学位论文全文数据库(硕士) 工程科技Ⅱ辑(月刊)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804846A (zh) * 2022-05-24 2022-07-29 景德镇陶瓷大学 一种利用铬铁废渣制备堇青石质材料的方法及其堇青石质材料
CN114804846B (zh) * 2022-05-24 2022-12-13 景德镇陶瓷大学 一种利用铬铁废渣制备堇青石质材料的方法及其堇青石质材料

Also Published As

Publication number Publication date
CN114014684B (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
Li et al. Sulfate resistance of steam cured ferronickel slag blended cement mortar
Sun et al. Effect of ferronickel slag as fine aggregate on properties of concrete
Qureshi et al. Autogenous self-healing of cement with expansive minerals-I: Impact in early age crack healing
CN110117193B (zh) 疏水性陶粒轻集料的制备方法、由该方法制备的疏水性陶粒轻集料及其应用
Sudharsan et al. Feasibility studies on waste glass powder
Satpute Manesh et al. Effect of duration and temperature of curing on compressive strength of geopolymer concrete
CN112142447B (zh) 一种高性能节能型镁基原料及其制备方法
CN114014684B (zh) 一种具有梯度孔结构的高性能轻集料及其制备方法
Liu et al. Preparation of self-foamed glass ceramics based on the cooperative treatment of various solid wastes: characterization of structure-properties and analysis of self-foaming behavior
CN110128083B (zh) 一种基于人工砂的高性能混凝土及其制备方法和应用
CN114163253B (zh) 一种高强度发泡陶瓷及其制备方法
Zhou et al. Influence of CeO 2 addition on the preparation of foamed glass-ceramics from high-titanium blast furnace slag
Xu et al. Preparation of foamed ceramics from steel slag with high calcium and iron content
CN106747150A (zh) 高强度双掺矿粉
Wen et al. Glass-ceramics prepared from desulfurized electrolytic manganese residue and the nucleation promotion effect of calcium fluoride in glass phase transition
CN113845323B (zh) 一种高性能核壳轻集料及其制备方法
Rong et al. Mechanical properties and microstructure of ultra-high performance cement-based composite incorporating RHA
CN116496017A (zh) 超细复合矿物掺合料及混凝土
CN114990330B (zh) 铬渣无害资源化处理方法、活性微粉材料组合物和活性微粉材料
Zhang et al. Thermal behavior and mechanism study of geopolymers prepared from ferronickel slag with high fire resistance
CN113233800A (zh) 重金属污泥高温处理渣料的应用和含有该渣料的改性硫氧镁水泥
Zhang et al. Influence of magnesium oxide activity on water resistance of basic magnesium sulfate cement
Fu et al. Effect of holding time on the properties of porous ceramics with high-volume polished slag and its pore structure characteristics
CN110204312A (zh) 一种镍铁渣陶粒的制备方法
Yan et al. Effect of oxides composition on the mechanical properties of non‐sintered spherical filters from waste steel slag

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant