CN113839563A - 设置低压dc-dc变换器的变压器的气隙和匝数比的方法和设备 - Google Patents

设置低压dc-dc变换器的变压器的气隙和匝数比的方法和设备 Download PDF

Info

Publication number
CN113839563A
CN113839563A CN202111169527.3A CN202111169527A CN113839563A CN 113839563 A CN113839563 A CN 113839563A CN 202111169527 A CN202111169527 A CN 202111169527A CN 113839563 A CN113839563 A CN 113839563A
Authority
CN
China
Prior art keywords
transformer
air gap
inductance
voltage
core region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111169527.3A
Other languages
English (en)
Inventor
金元坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Mobis Co Ltd
Original Assignee
Hyundai Mobis Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Mobis Co Ltd filed Critical Hyundai Mobis Co Ltd
Publication of CN113839563A publication Critical patent/CN113839563A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本公开涉及设置低压DC‑DC变换器的变压器的气隙和匝数比的方法和设备。所述方法包括:基于电压/电流容量和寄生电容设置功率开关元件;设置最小电感以确保功率开关元件的零电压开关操作;基于变压器的输入电压范围调整变压器的铁芯区域中的气隙和匝数比;计算变压器的漏感;比较最小电感与漏感;以及基于比较结果自适应地执行调整。

Description

设置低压DC-DC变换器的变压器的气隙和匝数比的方法和 设备
本申请是申请日为2019年7月17日、申请号为201910645666.5、发明名称为“低压DC-DC变换器及其驱动方法”的分案申请,其全部内容结合于此作为参考。
相关申请的交叉引用
本申请要求2018年7月18日提交的韩国专利申请No.2018-0083575的优先权和权益,其公开内容通过引用全部结合于此。
技术领域
本发明涉及低压DC-DC变换器及其驱动方法。
背景技术
低电压直流(DC)-直流(DC)变换器(LDC)是电力供应件,其需要负责向电负载供应电力并且对安装在环保车辆中的低电压辅助电池充电。
根据驱动方法将这种低压DC-DC变换器分类为各种类型,并且以全桥方式(full-bridge manner)变换高功率,以执行绝缘开关操作。
然而,在功率开关元件的控制开关操作期间,在传统LDC中发生开关功率损耗。
同时,为了解决该问题,韩国未审查专利公开No.1998-040074(标题:零电压开关DC-DC降压变换器)公开了功率开关元件的零电压开关技术。
也就是说,现有技术使用零电压开关操作来减少开关功率损耗。
然而,在现有技术中,应另外安装零电压开关电感器以确保零电压开关操作。
然而,由于零电压开关电感器在功率开关元件的高速开关操作期间产生热量,因此需要使用散热板的散热结构,并且从系统的角度来看需要大的空间。
发明内容
本发明旨在提供一种用于设置低压DC-DC转换器的变压器的铁芯区域中的气隙和匝数比的方法和设备,其能够通过在变压器的核心区域中增加气隙(air gap)并调节变压器的匝数比来减小产品的尺寸和成本并增加功率密度。
然而,本实施方式的技术目标不限于上述技术目标,并且可存在其他技术目标。
根据本发明的一个方面,提供了一种用于设置低压DC-DC转换器的变压器的铁芯区域中的气隙和匝数比的方法,包括:基于电压/电流容量和寄生电容设置功率开关元件;设置最小电感以确保功率开关元件的零电压开关操作;基于变压器的输入电压范围调整变压器的铁芯区域中的气隙和匝数比;计算变压器的漏感;比较最小电感与漏感;以及基于比较结果自适应地执行调整。
最小电感是基于功率开关元件的寄生电容设置的。
匝数比是基于变压器的初级输入电流、次级输入电流和磁化电流设置的。
铁芯区域中的气隙是基于磁化电感、初级匝数、铁芯区域的磁阻和气隙的磁阻设置的。
漏感是基于初级漏感、初级匝数和初级电路电阻计算的。
此外,根据本发明的另一方面,提供一种用于设置低压DC-DC转换器的变压器的铁芯区域中的气隙和匝数比的设备,该设备包括:用于基于电压/电流容量和寄生电容设置功率开关元件的装置;用于设置最小电感以确保功率开关元件的零电压开关操作的装置;用于基于变压器的输入电压范围调整变压器的铁芯区域中的气隙和匝数比的装置;用于计算变压器的漏感的装置;以及用于比较最小电感与漏感的装置,其中,用于调整的装置被配置为基于比较结果自适应地调整铁芯区域中的气隙和匝数比。
最小电感是基于功率开关元件的寄生电容设置的。
匝数比是基于变压器的初级输入电流、次级输入电流和磁化电流设置的。
铁芯区域中的气隙是基于磁化电感、初级匝数、铁芯区域的磁阻和气隙的磁阻设置的。
漏感是基于初级漏感、初级匝数和初级电路电阻计算的。
附图说明
通过参考附图详细描述本发明的示例性实施方式,本发明的上述和其他目的、特征和优点对于本领域普通技术人员将变得更加明显,其中:
图1是示出根据现有技术以全桥方式操作的低电压直流(DC)-DC变换器的视图;
图2是说明根据本发明的一个实施方式的低压DC-DC变换器的配置图;
图3是用于描述根据本发明的一个实施方式的低压DC-DC变换器的视图;
图4是表示根据本发明的一个实施方式的低压DC-DC变换器的变压器的视图;
图5是根据本发明的一个实施方式的驱动低压DC-DC变换器的方法的流程图。
图6是根据本发明的一个实施方式的设置低压DC-DC变换器的变压器的方法的流程图。
图7是表示根据各现有技术和本发明的一个实施方式的低压DC-DC变换器的变压器的内部结构的视图;
图8A是示出根据各现有技术的低压DC-DC变换器的输出波形的视图,图8B是表示根据本发明的一个实施方式的低压DC-DC变换器的输出波形的图;以及
图9是示出根据各现有技术和本发明的一个实施方式的低压DC-DC变换器的输出值的表。
具体实施方式
在下文中,将参考附图详细描述本领域技术人员容易执行的实施方式。然而,本发明的实施方式可以以若干不同的形式实现,并且不限于这里描述的实施方式。另外,为了清楚地说明本发明的实施方式,在附图中省略了与描述无关的部分。
同时,提供本文使用的术语仅是为了描述本发明的实施方式而不是为了限制的目的。除非上下文另有明确说明,否则单数形式包括复数形式。应当理解,术语“包括”和“包含”在本文中使用时,指定一些陈述的组件、步骤、操作和/或元件,但不排除存在或添加一个或多个其他组件、步骤、操作和/或元件。
本发明涉及低电压直流(DC)-DC变换器100及其驱动方法。
在环保型车辆中,低压DC-DC变换器是用于使用来自高电压主电池的高电压输出对低电压辅助电池充电并且向安装在车辆中的各种电负载供电的必要装置。此外,高功率变换使用全桥方式来执行绝缘开关操作。
在下文中,将参考图1描述传统的低压DC-DC变换器的操作。
图1是示出根据现有技术以全桥方式操作的低压DC-DC变换器的视图。
在这种情况下,由于在功率开关元件Q1,Q2,Q3和Q4的操作期间发生功率损耗,因此使用零电压开关操作来最小化开关功率损耗。
零电压开关操作是功率元件的高速开关技术,并且是有助于在变换器领域中实现高效率的重要因素,但是需要零电压开关电感器Lzvs。
然而,由于零电压开关电感器Lzvs在功率开关元件Q1,Q2,Q3和Q4的开关操作期间产生热量,因此需要使用散热器或其冷却系统的散热结构,因此从系统的角度来看需要大的空间,并且需要增加产品的尺寸。
在本发明的一个实施方式中,在变压器120的核心区域中添加气隙,并且调节变压器120的匝数比以代替传统的零电压开关电感器。
在下文中,将参考图2至图4描述根据本发明的一个实施方式的低压DC-DC变换器100。
图2是示出根据本发明的一个实施方式的低压DC-DC变换器100的配置图。图3是用于描述根据本发明的一个实施方式的低压DC-DC变换器100的视图。图4是示出根据本发明的一个实施方式的低压DC-DC变换器100的变压器120的视图。
如图2中所示,根据本发明的一个实施方式的低压DC-DC变换器100包括开关110、变压器120和电源130。
开关110将从车辆的高电压电池供应的高电压变换为AC电压。
参见图3,功率开关元件Q1,Q2,Q3和Q4以全桥方式设置在开关110中,并且可使用将在下面描述的漏电感(leakage inductance)Llk1执行零电压开关操作。
此外,从开关110移除根据现有技术安装用于零电压开关操作的电感器Lzvs,在上述变压器120的核心区域中添加气隙,并且调节其匝数比以代替变压器120的初级漏电感Llk1,从而降低材料成本和产品尺寸。另外,由于产品的尺寸减小,产品的功率密度可增加。
变压器120将从开关110输出的AC电压降低为低电压,并将降低的电压传输到电源130。
参考图4,由于在变压器120的核心区域中添加了气隙,因此根据等式1减小磁化电感(magnetizing inductance)Lm。
[等式1]
Figure BDA0003292520220000071
这里,Lm是变压器120的磁化电感,N1是变压器120的初级匝数,Rc是核心区域的磁阻,以及Rg是气隙的磁阻。
由于根据本发明的一个实施方式的变压器120的核心由磁性材料形成,并且当超过磁性材料固有的饱和特性的电流被施加到其上时可能不执行正常功能,认为变压器120的匝数比减小了磁化电流。
因此,通过调节变压器120的匝数比,可实现如下效果:变压器120的磁化电流im根据等式2减小,并且变压器120的初级漏电感Llk1根据等式增加3。
[等式2]
Figure BDA0003292520220000072
这里,im是变压器120的磁化电流,i1是变压器120的初级输入电流,N1是变压器120的初级匝数,N2是变压器120的次级匝数,并且i2是变压器120的次级输出电流。
[等式3]
Figure BDA0003292520220000081
这里,Llk1是变压器120的初级漏电感值,N1是变压器120的初级匝数,并且R1是变压器120的初级电路电阻。
电源130对来自变压器120的低电压输出进行整流,并将整流的低电压提供给负载。
在下文中,将参考图5描述驱动低压DC-DC变换器100的方法。
图5是根据本发明的一个实施方式的驱动低压DC-DC变换器100的方法的流程图。
参照图5,首先,在驱动低压DC-DC变换器100的方法中,将从车辆的高电压电池供应的高电压变换为AC电压(S110)。
此时,根据本发明的一个实施方式,功率开关元件可以以全桥方式设置,以将车辆的高电压变换为AC电压。
然后,使用其中在核心区域中添加气隙并调节匝数比的变压器120将AC电压降低为低电压。
此时,由于已经参考图4和上述等式1至等式3描述了在变压器120的核心区域中添加气隙并且调节匝数比的具体描述,下面将省略具体描述。
最后,对低电压进行整流并将其提供给车辆的低电压辅助电池和电负载(S130)。
在以上描述中,S110至S130的操作可进一步划分为附加操作或者组合成减少数量的操作。另外,可根据需要省略一些操作,或者也可改变操作的顺序。另外,即使已经参考图4描述的其他省略的操作也可应用于驱动图5的低压DC-DC变换器100的方法。
同时,可通过图6的方法设置根据本发明的一个实施方式的低压DC-DC变换器100的变压器120。
图6是根据本发明的一个实施方式的设置低压DC-DC变换器100的变压器120的方法的流程图。
参照图6,首先,通过考虑电压/电流容量和寄生电容来设置功率开关元件(S210)。
然后,设置最小电感Lmin的值以确保零电压开关操作(S220)。
这里,最小电感值是零电压开关电感器确保功率开关元件的零电压开关操作的最小值,并且被设置为使得功率开关元件的寄生电容小于存储在零电压开关电感器中的能量。
然后,根据本发明的一个实施方式,设定变压器120的匝数比并调节气隙(S230)。
此时,考虑输入电压范围来设定变压器120的匝数比并调节核心区域的气隙。
然后,使用上述等式3计算变压器120的漏电感Llk1的值(S240)。
然后,比较最小电感Lmin的设定值和计算的漏电感Llk1的值(S250)。
在比较结果中最小电感Lmin的值小于漏电感Llk1的值的情况下,在减小的磁化电流和磁化电感以及增加的漏电感值的条件下形成的变压器120应用于产品(S260)。
相反,在最小电感Lmin的值大于漏电感Llk1的值的情况下,再次执行设置匝数比并调节气隙的操作S230。
在下文中,将参考图7至图9描述根据现有技术的变压器120的内部结构,根据本发明的一个实施方式的变压器120的内部结构,以及根据变压器120的核心区域中的气隙的增加和匝数比的调节的输出值的变化。
图7是示出根据各现有技术和本发明的一个实施方式的低压DC-DC变换器100的变压器120的内部结构的视图。
参照图7,在本发明的一个实施方式中,根据现有技术另外安装在变压器120中的零电压开关电感器从变压器120中移除,气隙被添加在变压器120的核心区域中,并且调节变压器120的匝数比以代替零电压开关电感器。因此,与传统变压器相比,可减少组件数量,从而降低材料成本和产品尺寸。另外,由于产品的尺寸减小,产品的功率密度可增加。
图8A是示出根据各现有技术的低压DC-DC变换器的输出波形的视图。图8B是示出根据本发明的一个实施方式的低压DC-DC变换器100的输出波形的视图,并且示出了可在多个执行结果之间容易地比较的结果。图9是示出根据各现有技术和本发明的一个实施方式的低压DC-DC变换器100的输出值的表。
图8A示出了使用根据现有技术的输出值形成的波形,图8B示出了在变压器120的核心区域中添加气隙并且调节匝数比之后使用输出值形成的波形。
根据本发明的一个实施方式,匝数比可调节为11:1:1。
参见图9,根据本发明的一个实施方式的输入电压和输入电流与根据现有技术的输入电压和输入电流相同。根据现有技术的800μH的磁化电感在根据本发明的一个实施方式在变压器120的核心区域中添加气隙并且调节匝数比之后减小到210μH。此外,变压器120的漏电感从2.8μH增加到4.3μH。
在仿真结果中,可看出,随着磁化电感减小,磁化电流减小,并且低压DC-DC变换器100的操作性能高于或等于传统低压DC-DC变换器的操作性能,并且由于磁化电流减小,与传统的低压DC-DC变换器相比,输入电流减小,从而可预期系统效率提高的效果。此外,可看出,还能够确保变压器120的占空比的余量。
根据本发明的一个实施方式,通过在变压器的核心区域中增加气隙并调节匝数比,可显著降低产品的成本和尺寸。
还可根据产品的尺寸减小来增加低压DC-DC变换器的功率密度。
以上描述仅是示例性的,并且本领域技术人员将理解,本发明可以以其他具体形式执行而不改变技术范围和基本特征。因此,上述实施方式应该仅被视为所有方面的实例,而不是为了限制的目的。例如,描述为单一类型的每个组件可以以分布式方式实现,并且类似地,被描述为分布式的组件可以以耦合方式实现。
本发明的范围由所附权利要求限定,并且包括源自所附权利要求的含义、范围和等同物的所有修改或变更。

Claims (10)

1.一种用于设置低压DC-DC转换器的变压器的铁芯区域中的气隙和匝数比的方法,所述方法包括以下步骤:
基于电压/电流容量和寄生电容设置功率开关元件;
设置最小电感以确保所述功率开关元件的零电压开关操作;
基于所述变压器的输入电压范围调整所述变压器的所述铁芯区域中的所述气隙和所述匝数比;
计算所述变压器的漏感;
比较所述最小电感与所述漏感;以及
基于比较结果自适应地执行所述调整。
2.根据权利要求1所述的方法,其中,所述最小电感是基于功率开关元件的寄生电容设置的。
3.根据权利要求1所述的方法,其中,所述匝数比是基于所述变压器的初级输入电流、次级输入电流和磁化电流设置的。
4.根据权利要求1所述的方法,其中,所述铁芯区域中的所述气隙是基于磁化电感、初级匝数、所述铁芯区域的磁阻和所述气隙的磁阻设置的。
5.根据权利要求1所述的方法,其中,所述漏感是基于初级漏感、初级匝数和初级电路电阻计算的。
6.一种用于设置低压DC-DC转换器的变压器的铁芯区域中的气隙和匝数比的设备,所述设备包括:
用于基于电压/电流容量和寄生电容设置功率开关元件的装置;
用于设置最小电感以确保所述功率开关元件的零电压开关操作的装置;
用于基于所述变压器的输入电压范围调整所述变压器的所述铁芯区域中的所述气隙和所述匝数比的装置;
用于计算所述变压器的漏感的装置;以及
用于比较所述最小电感与所述漏感的装置,
其中,用于调整的装置被配置为基于比较结果自适应地调整所述铁芯区域中的所述气隙和所述匝数比。
7.根据权利要求6所述的装置,其中,所述最小电感是基于功率开关元件的寄生电容设置的。
8.根据权利要求6所述的装置,其中,所述匝数比是基于所述变压器的初级输入电流、次级输入电流和磁化电流设置的。
9.根据权利要求6所述的装置,其中,所述铁芯区域中的所述气隙是基于磁化电感、初级匝数、所述铁芯区域的磁阻和所述气隙的磁阻设置的。
10.根据权利要求6所述的装置,其中,所述漏感是基于初级漏感、初级匝数和初级电路电阻计算的。
CN202111169527.3A 2018-07-18 2019-07-17 设置低压dc-dc变换器的变压器的气隙和匝数比的方法和设备 Pending CN113839563A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2018-0083575 2018-07-18
KR1020180083575A KR102569566B1 (ko) 2018-07-18 2018-07-18 저전압 직류변환장치 및 그 구동방법
CN201910645666.5A CN110739854B (zh) 2018-07-18 2019-07-17 低压dc-dc变换器及其驱动方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201910645666.5A Division CN110739854B (zh) 2018-07-18 2019-07-17 低压dc-dc变换器及其驱动方法

Publications (1)

Publication Number Publication Date
CN113839563A true CN113839563A (zh) 2021-12-24

Family

ID=69161202

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202111169527.3A Pending CN113839563A (zh) 2018-07-18 2019-07-17 设置低压dc-dc变换器的变压器的气隙和匝数比的方法和设备
CN201910645666.5A Active CN110739854B (zh) 2018-07-18 2019-07-17 低压dc-dc变换器及其驱动方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910645666.5A Active CN110739854B (zh) 2018-07-18 2019-07-17 低压dc-dc变换器及其驱动方法

Country Status (3)

Country Link
US (2) US10978952B2 (zh)
KR (1) KR102569566B1 (zh)
CN (2) CN113839563A (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467998B (zh) * 2020-10-14 2022-03-29 华南理工大学 一种能量密度可调整的多工作模式等离子体电源
CN114264863B (zh) * 2022-01-04 2023-08-22 超旸半导体(上海)有限公司 一种dc/dc变换器用限流值检测方法及检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060279966A1 (en) * 2005-04-13 2006-12-14 International Rectifier Corp. Simple zero voltage switching full-bridge DC bus converters
KR100732612B1 (ko) * 2006-02-07 2007-06-27 학교법인 포항공과대학교 하이브리드 자동차용 고효율 강압형 직류-직류 컨버터
CN105140908A (zh) * 2015-09-29 2015-12-09 中国科学院电工研究所 用于光伏高压直流输电系统的零电压软开关控制方法
KR20160110708A (ko) * 2015-03-11 2016-09-22 순천향대학교 산학협력단 풀-브리지 dc-dc 컨버터
US20170324343A1 (en) * 2016-05-04 2017-11-09 Toyota Motor Engineering & Manufacturing North America, Inc. Transformer with integrated leakage inductance
US20180138800A1 (en) * 2015-06-11 2018-05-17 Safran Electrical & Power Dc-dc converter for controlling an aircraft fan inverter, and associated control method and fan

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914561A (en) * 1989-02-03 1990-04-03 Eldec Corporation Dual transformer device for power converters
KR100204495B1 (ko) 1996-11-28 1999-06-15 전주범 영전압스위칭 직류-직류 강압형 컨버터
CN101355308B (zh) 2008-08-29 2010-07-21 浙江大学 一种磁集成的零电压零电流软开关全桥电路
CN101697453A (zh) 2009-10-22 2010-04-21 北京金自天正智能控制股份有限公司 一种产生高稳定度高压的系统
US8937817B2 (en) * 2010-05-10 2015-01-20 Enphase Energy, Inc. Lossless commutation during operation of a power converter
EP2730017B1 (en) * 2011-07-07 2018-09-12 Danmarks Tekniske Universitet Isolated boost flyback power converter
KR101457887B1 (ko) * 2012-12-28 2014-11-20 서울과학기술대학교 산학협력단 공진형 dc-dc 컨버터 및 이를 이용한 인터리빙 공진형 dc-dc 컨버터
KR101592650B1 (ko) * 2013-12-26 2016-02-11 현대모비스 주식회사 친환경 차량의 저전압 직류 변환 장치를 위한 멀티 전압 출력 제공 장치 및 방법
WO2015192133A2 (en) * 2014-06-13 2015-12-17 University Of Maryland An integrated dual-output grid-to-vehicle (g2v) and vehicle-to-grid (v2g) onboard charger for plug-in electric vehicles
KR101835528B1 (ko) 2016-01-25 2018-04-19 청주대학교 산학협력단 적층구조를 갖는 스위칭 전원장치
CN107294414B (zh) 2016-04-08 2020-09-18 松下知识产权经营株式会社 电力变换装置
KR101903121B1 (ko) * 2016-05-23 2018-11-13 주식회사 이진스 전기자동차용 충전 및 전력변환 겸용 회로
US10298132B2 (en) * 2016-10-13 2019-05-21 Intersil Americas LLC Switching power supply for low step down conversion ratio with reduced switching losses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060279966A1 (en) * 2005-04-13 2006-12-14 International Rectifier Corp. Simple zero voltage switching full-bridge DC bus converters
KR100732612B1 (ko) * 2006-02-07 2007-06-27 학교법인 포항공과대학교 하이브리드 자동차용 고효율 강압형 직류-직류 컨버터
KR20160110708A (ko) * 2015-03-11 2016-09-22 순천향대학교 산학협력단 풀-브리지 dc-dc 컨버터
US20180138800A1 (en) * 2015-06-11 2018-05-17 Safran Electrical & Power Dc-dc converter for controlling an aircraft fan inverter, and associated control method and fan
CN105140908A (zh) * 2015-09-29 2015-12-09 中国科学院电工研究所 用于光伏高压直流输电系统的零电压软开关控制方法
US20170324343A1 (en) * 2016-05-04 2017-11-09 Toyota Motor Engineering & Manufacturing North America, Inc. Transformer with integrated leakage inductance

Also Published As

Publication number Publication date
US20210184581A1 (en) 2021-06-17
US20200028438A1 (en) 2020-01-23
CN110739854B (zh) 2022-04-26
KR102569566B1 (ko) 2023-08-23
KR20200009342A (ko) 2020-01-30
US11955273B2 (en) 2024-04-09
CN110739854A (zh) 2020-01-31
US10978952B2 (en) 2021-04-13

Similar Documents

Publication Publication Date Title
Li et al. A high-efficiency high-density wide-bandgap device-based bidirectional on-board charger
Zhao et al. An improved phase-shifted full-bridge converter with wide-range ZVS and reduced filter requirement
Steigerwald et al. A comparison of high-power DC-DC soft-switched converter topologies
US7176662B2 (en) Power converter employing a tapped inductor and integrated magnetics and method of operating the same
Jeong et al. Analysis on half-bridge LLC resonant converter by using variable inductance for high efficiency and power density server power supply
KR102208523B1 (ko) Ldc 및 obc 통합 모듈 장치
Tang et al. An improved LLC resonant converter with reconfigurable hybrid voltage multiplier and PWM-plus-PFM hybrid control for wide output range applications
EP2670039B1 (en) Quasi resonant push-pull converter and control method thereof
CN101494421B (zh) 开关电源装置
Zou et al. 3.3 kW CLLC converter with synchronous rectification for plug-in electric vehicles
Wang et al. Integrated matrix transformer with optimized PCB winding for high-efficiency high-power-density LLC resonant converter
Liu et al. 1 MHz 48–12 V regulated DCX with single transformer
Ren et al. A 1-kV input SiC LLC converter with split resonant tanks and matrix transformers
Yang et al. Design of high efficiency high power density 10.5 kW three phase on-board-charger for electric/hybrid vehicles
Chen et al. Design and magnetics optimization of LLC resonant converter with GaN
US11955273B2 (en) Low-voltage DC-DC converter including zero voltage switching and method of driving same
KR20200056275A (ko) 2단 전력 변환 장치
Ahmed et al. GaN Based High-Density Unregulated 48 V to x V LLC Converters with??? 98% Efficiency for Future Data Centers
Blinov et al. Snubberless boost full‐bridge converters: analysis of soft switching performance and limitations
Jin et al. Light load efficiency improvement of three phase CLLC resonant converter for on-board charger applications
Ahmed et al. LLC converter with integrated magnetics application for 48V rack architecture in future data centers
Yan et al. Optimized design of integrated planar matrix transformer for LLC converter in consumer electronics
US8711588B1 (en) Power supply device
Nguyen et al. Matrix inductor with DC-bias effect reduction capability for GaN-based DC-DC boost converter
US6400582B1 (en) Dual forward power converter utilizing coupling capacitors for improved efficiency

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination