CN113825750B - 作为sglt1抑制剂的葡糖苷类衍生物及其应用 - Google Patents

作为sglt1抑制剂的葡糖苷类衍生物及其应用 Download PDF

Info

Publication number
CN113825750B
CN113825750B CN202080025867.6A CN202080025867A CN113825750B CN 113825750 B CN113825750 B CN 113825750B CN 202080025867 A CN202080025867 A CN 202080025867A CN 113825750 B CN113825750 B CN 113825750B
Authority
CN
China
Prior art keywords
compound
reaction
pharmaceutically acceptable
isomer
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202080025867.6A
Other languages
English (en)
Other versions
CN113825750A (zh
Inventor
李翼
于涛
毛庆华
吴成德
陈曙辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medshine Discovery Inc
Original Assignee
Medshine Discovery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Medshine Discovery Inc filed Critical Medshine Discovery Inc
Publication of CN113825750A publication Critical patent/CN113825750A/zh
Application granted granted Critical
Publication of CN113825750B publication Critical patent/CN113825750B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/26Acyclic or carbocyclic radicals, substituted by hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/14Acyclic radicals, not substituted by cyclic structures attached to a sulfur, selenium or tellurium atom of a saccharide radical

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Obesity (AREA)
  • Emergency Medicine (AREA)
  • Endocrinology (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Saccharide Compounds (AREA)

Abstract

一种作为SGLT1抑制剂的葡糖苷类衍生物,及其在制备用于治疗SGLT1相关疾病的药物中的应用。具体公开了式(II)所示化合物、其互变异构体或其药学上可接受的组合物。

Description

作为SGLT1抑制剂的葡糖苷类衍生物及其应用
相关申请的引用
本申请主张如下优先权:
CN201910251853.5,申请日:2019-03-29;
CN201911104949.5,申请日:2019-11-13;
CN202010105251.1,申请日:2020-02-20。
技术领域
本发明涉及一系列作为SGLT1抑制剂的葡糖苷类衍生物,及其在制备用于治疗SGLT1相关疾病的药物中的应用。具体涉及式(II)和式(I)所示化合物、其互变异构体或其药学上可接受的组合物。
背景技术
肥胖症、糖尿病及其引发的相关代谢紊乱疾病已成为威胁人类健康的重要危险因素。
钠-葡萄糖共转运蛋白(sodium-glucose cotransporters,SGLTs)是一类在小肠黏膜和肾近曲小管中发现的葡萄糖转运蛋白家族,成员主要包括SGLT1和SGLT2两类,其功能是介导肠道和肾脏中葡萄糖的跨膜转运。具体而言,SGLT1主要分布于小肠的肠道粘膜细胞,在心肌和肾脏中也有少量表达,它的功能主要是调节葡萄糖的肠道吸收过程。SGLT2在肾脏中高水平表达,主要负责葡萄糖肾脏重摄取过程的调节,即尿液中的葡萄糖在经过肾小球过滤时可主动附着于肾小管上皮细胞并通过SGLT2蛋白转运进胞内被重新利用。由于SGLTs介导的葡萄糖转运过程不介入糖的代谢,从而避免了低血糖不良反应的发生,降低了引起心血管类疾病的风险,因此,SGLTs已逐渐成为治疗糖尿病的理想靶点之一。鉴于此,一些SGLTs抑制剂,尤其是高选择性的SGLT2抑制剂被相继开发。它们通过抑制SGLT2活性,特异性地抑制肾脏对葡萄糖的重吸收,从而增加葡萄糖在尿中的排泄,使糖尿病患者的血糖正常化。从2012年至今,已有多个SGLT2抑制剂先后被批准上市,成为治疗糖尿病的有效药物。
除了抑制SGLT2,近几年研究发现,适当抑制SGLT1能阻止肠道对葡萄糖的摄取,且不会导致明显的腹泻或者其他胃肠道反应。同时,通过抑制SGLT1能减少经肠道吸收入血的葡萄糖,进而增加肠道远端葡萄糖浓度,导致餐后GLP-1和PYY水平升高,从而发挥较良好的降糖作用,降低发生尿路感染和肾功能损伤等的风险。另外,通过控制肠道对葡萄糖吸收,还能降低食物中总能量的摄入,叠加GLP-1降低体重的作用,可以达到双重降低体重的目的。因此,开发SGLT1抑制剂已成为近年来糖尿病和肥胖症治疗的新方向。
综上所述,SGLT1抑制剂作为新型的糖尿病和肥胖症治疗药物有着良好的开发前景。但迄今为止,关于SGLT1抑制剂的研究仍处于临床阶段,还没有药物批准上市。目前,由Lexicon公司开发的只作用于胃肠道的SGLT1抑制剂LX2761正在针对糖尿病治疗开展临床I期研究(WO2014081660)。
Figure GDA0003285237340000021
发明内容
本发明提供了式(II)所示化合物、其异构体或其药学上可接受的盐,
Figure GDA0003285237340000022
其中,
R1选自H、F、Cl、Br、I、OH、NH2、CN、C1-6烷基和C1-6烷氧基,所述C1-6烷基和C1-6烷氧基任选被1、2或3个Ra取代;
R2选自F、Cl、Br、I、OH、NH2和C1-3烷氨基;
R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个Rb取代C1-3烷基;
L选自单键、-O-、-S-、-C(Rc)2-和-N(Rd)-;
m选自0、1和2;
n选自1、2和3;
Ra、Rb和Rc分别独立地选自F、Cl、Br、I、OH、NH2和CH3
Rd选自H和CH3
本发明的一些方案中,上述R1选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2CH3
Figure GDA0003285237340000037
所述CH3、CH2CH3
Figure GDA0003285237340000038
任选被1、2或3个Ra取代,其他变量如本发明所定义。
本发明的一些方案中,上述R1选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2F、CHF2、CF3、CH2CH3
Figure GDA0003285237340000039
其他变量如本发明所定义。
本发明的一些方案中,上R2选自F、Cl、Br、I、OH、NH2、NH(CH3)和N(CH3)2,其他变量如本发明所定义。
本发明的一些方案中,上述R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个Rb取代CH3,其他变量如本发明所定义。
本发明的一些方案中,上述R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2F、CHF2和CF3,其他变量如本发明所定义。
本发明的一些方案中,上述L选自单键、-O-和-S-,其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure GDA0003285237340000031
选自
Figure GDA0003285237340000032
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure GDA0003285237340000033
选自
Figure GDA0003285237340000034
Figure GDA0003285237340000035
其他变量如本发明所定义。
本发明提供了式(I)所示化合物、其异构体或其药学上可接受的盐,
Figure GDA0003285237340000036
其中,
R1选自H、F、Cl、Br、I、OH、NH2、CN、C1-6烷基和C1-6烷氧基,所述C1-6烷基或C1-6烷氧基任选被1、2或3个Ra取代;
R2选自F、Cl、Br、I、OH和NH2
R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个Rb取代C1-3烷基;
L选自单键、-O-、-S-、-C(Rc)2-和-N(Rd)-;
m选自0、1和2;
Ra、Rb和Rc分别独立地选自F、Cl、Br、I、OH、NH2和CH3
Rd选自H和CH3
本发明的一些方案中,上述R1选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2CH3
Figure GDA0003285237340000041
所述CH3、CH2CH3
Figure GDA0003285237340000042
任选被1、2或3个Ra取代,其他变量如本发明所定义。
本发明的一些方案中,上述R1选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2F、CHF2、CF3、CH2CH3
Figure GDA0003285237340000043
其他变量如本发明所定义。
本发明的一些方案中,上述R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个Rb取代CH3,其他变量如本发明所定义。
本发明的一些方案中,上述R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2F、CHF2和CF3,其他变量如本发明所定义。
本发明的一些方案中,上述L选自单键、-O-和-S-,其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure GDA0003285237340000044
选自
Figure GDA0003285237340000045
其他变量如本发明所定义。
本发明的一些方案中,上述结构单元
Figure GDA0003285237340000046
选自
Figure GDA0003285237340000047
Figure GDA0003285237340000048
其他变量如本发明所定义。
本发明还有一些方案是由上述各变量任意组合而来。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自
Figure GDA0003285237340000051
其中,
R1、R2、R3、R4、R5和L如本发明所定义。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自
Figure GDA0003285237340000052
其中,
R2选自F、Cl、Br、I、OH、NH2、NH(CH3)和N(CH3)2
R1、R3、R4、R5和L如本发明所定义。
本发明的一些方案中,上述化合物、其异构体或其药学上可接受的盐,其选自
Figure GDA0003285237340000061
,其中,
R1、R2、R3、R4和R5如本发明所定义。
本发明还提供了下式所示化合物、其异构体或其药学上可接受的盐,
Figure GDA0003285237340000062
本发明的一些方案中,上述的化合物、其异构体或其药学上可接受的盐,其选自
Figure GDA0003285237340000071
本发明还提供了一种药物组合物,包括作为活性成分的治疗有效量的根据上述的化合物、其异构体或其药学上可接受的盐以及药学上可接受的载体。
本发明的一些方案中,公开了上述化合物、其异构体或其药学上可接受的盐或者上述的组合物在制备用于治疗SGLT1相关疾病的药物上的应用。
本发明的一些方案中,上述的应用,其特征在于,所述用于治疗SGLT1相关疾病的药物是用于糖尿病和肥胖症的药物。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物的中性形式接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机氨或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物的中性形式接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等)的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
除了盐的形式,本发明所提供的化合物还存在前药形式。本文所描述的化合物的前药容易地在生理条件下发生化学变化从而转化成本发明的化合物。此外,前体药物可以在体内环境中通过化学或生化方法被转换到本发明的化合物。
本发明的某些化合物可以以非溶剂化形式或者溶剂化形式存在,包括水合物形式。一般而言,溶剂化形式与非溶剂化的形式相当,都包含在本发明的范围之内。
除非另有说明,术语“异构体”意在包括几何异构体、顺反异构体、立体异构体、对映异构体、旋光异构体、非对映异构体和互变异构体。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
除非另有说明,术语“对映异构体”或者“旋光异构体”是指互为镜像关系的立体异构体。
除非另有说明,术语“顺反异构体”或者“几何异构体”系由因双键或者成环碳原子单键不能自由旋转而引起。
除非另有说明,术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
除非另有说明,“(D)”或者“(+)”表示右旋,“(L)”或者“(-)”表示左旋,“(DL)”或者“(±)”表示外消旋。
除非另有说明,用楔形实线键
Figure GDA0003285237340000091
和楔形虚线键
Figure GDA0003285237340000092
表示一个立体中心的绝对构型,用直形实线键
Figure GDA0003285237340000093
和直形虚线键
Figure GDA0003285237340000094
表示立体中心的相对构型,用波浪线
Figure GDA0003285237340000095
表示楔形实线键
Figure GDA0003285237340000096
或楔形虚线键
Figure GDA0003285237340000097
或用波浪线
Figure GDA0003285237340000098
表示直形实线键
Figure GDA0003285237340000099
和直形虚线键
Figure GDA00032852373400000910
本发明的化合物可以存在特定的。除非另有说明,术语“互变异构体”或“互变异构体形式”是指在室温下,不同官能团异构体处于动态平衡,并能很快的相互转化。若互变异构体是可能的(如在溶液中),则可以达到互变异构体的化学平衡。例如,质子互变异构体(proton tautomer)(也称质子转移互变异构体(prototropic tautomer))包括通过质子迁移来进行的互相转化,如酮-烯醇异构化和亚胺-烯胺异构化。价键异构体(valencetautomer)包括一些成键电子的重组来进行的相互转化。其中酮-烯醇互变异构化的具体实例是戊烷-2,4-二酮与4-羟基戊-3-烯-2-酮两个互变异构体之间的互变。
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚(3H),碘-125(125I)或C-14(14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR)0-,表示该连接基团为单键。
当一个取代基数量为0时,表示该取代基是不存在的,比如-A-(R)0表示该结构实际上是-A。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当一个取代基为空缺时,表示该取代基是不存在的,比如A-X中X为空缺时表示该结构实际上是A。当所列举的取代基中没有指明其通过哪一个原子连接到被取代的基团上时,这种取代基可以通过其任何原子相键合,例如,吡啶基作为取代基可以通过吡啶环上任意一个碳原子连接到被取代的基团上。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure GDA0003285237340000111
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure GDA0003285237340000112
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure GDA0003285237340000121
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure GDA0003285237340000122
直形虚线键
Figure GDA0003285237340000123
或波浪线
Figure GDA0003285237340000124
表示。例如-OCH3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure GDA0003285237340000125
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure GDA0003285237340000126
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure GDA0003285237340000127
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure GDA0003285237340000128
这4种连接方式,即使-N-上画出了H原子,但是
Figure GDA0003285237340000129
仍包括
Figure GDA00032852373400001210
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有规定,术语“C1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C1-6烷基包括C1-5、C1-4、C1-3、C1-2、C2-6、C2-4、C6和C5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C1-3烷基包括C1-2和C2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C1-6烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至6个碳原子的烷基基团。所述C1-6烷氧基包括C1-4、C1-3、C1-2、C2-6、C2-4、C6、C5、C4和C3烷氧基等。C1-6烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)、丁氧基(包括n-丁氧基、异丁氧基、s-丁氧基和t-丁氧基)、戊氧基(包括n-戊氧基、异戊氧基和新戊氧基)、己氧基等。
除非另有规定,术语“C1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C1-3烷氧基包括C1-2、C2-3、C3和C2烷氧基等。C1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“C1-3烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C1-3烷氨基包括C1-2、C3和C2烷氨基等。C1-3烷氨基的实例包括但不限于-NHCH3、-N(CH3)2、-NHCH2CH3、-N(CH3)CH2CH3、-NHCH2CH2CH3、-NHCH2(CH3)2等。
除非另有规定,Cn-n+m或Cn-Cn+m包括n至n+m个碳的任何一种具体情况,例如C1-12包括C1、C2、C3、C4、C5、C6、C7、C8、C9、C10、C11、和C12,也包括n至n+m中的任何一个范围,例如C1-12包括C1-3、C1-6、C1-9、C3-6、C3-9、C3-12、C6-9、C6-12、和C9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲和取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure GDA0003285237340000141
/扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。本发明采用下述缩略词:aq代表水;HATU代表O-(7-氮杂苯并三唑-1-基)-N,N,N',N'-四甲基脲六氟磷酸盐;EDC代表N-(3-二甲基氨基丙基)-N'-乙基碳二亚胺盐酸盐;m-CPBA代表3-氯过氧苯甲酸;eq代表当量、等量;CDI代表羰基二咪唑;DCM代表二氯甲烷;PE代表石油醚;DIAD代表偶氮二羧酸二异丙酯;DMF代表N,N-二甲基甲酰胺;DMSO代表二甲亚砜;EtOAc代表乙酸乙酯;EtOH代表乙醇;MeOH代表甲醇;CBz代表苄氧羰基,是一种胺保护基团;BOC代表叔丁氧羰基是一种胺保护基团;HOAc代表乙酸;NaCNBH3代表氰基硼氢化钠;r.t.代表室温;O/N代表过夜;THF代表四氢呋喃;Boc2O代表二-叔丁基二碳酸酯;T甲酸代表三氟乙酸;DIPEA代表二异丙基乙基胺;SOCl2代表氯化亚砜;CS2代表二硫化碳;TsOH代表对甲苯磺酸;NFSI代表N-氟-N-(苯磺酰基)苯磺酰胺;NCS代表1-氯吡咯烷-2,5-二酮;n-Bu4NF代表氟化四丁基铵;iPrOH代表2-丙醇;mp代表熔点;LDA代表二异丙基胺基锂;LiHMDS代表六甲基二硅基胺基锂;Xantphos代表4,5-双二苯基膦-9,9-二甲基氧杂蒽;LiAlH4代表四氢铝锂;Pd2(dba)3代表三(二亚苄基丙酮)二钯;Pd(dppf)Cl2代表[1,1'-双(二苯基膦基)二茂铁]二氯化钯;Pd(PPh3)4代表四三苯基膦钯;IPA代表异丙醇;DEA代表二乙胺。
化合物依据本领域常规命名原则或者使用
Figure GDA0003285237340000151
软件命名,市售化合物采用供应商目录名称。
技术效果:
本发明化合物具有显著的Human-SGLT1和Human-SGLT2体外抑制活性,同时,本发明化合物具有低的口服暴露量和生物利用度,在胃肠道发生作用,展现了SGLT1选择性抑制剂应有的药代动力学特性;本发明化合物在动物口服糖耐量实验中,可显著降低动物2小时内血糖AUC水平;本发明化合物在STZ配合高糖高脂饮食诱导的糖尿病动物实验中,可显著降低动物禁食6小时后的血糖和糖化血红蛋白,并能有效控制动物体重的增长;本发明化合物在高糖高脂饮食诱导的肥胖症动物实验中,可剂量依赖地显著降低动物体重,并能降低动物禁食6小时后和餐后1小时的血糖。
附图说明:
图1为给药4周后动物血糖水平;
图2为给药4周后动物糖化血红蛋白水平;
图3为给药4周后动物体重变化水平;
图4为给药7周后动物血糖水平;
图5为给药7周后动物糖化血红蛋白水平;
图6为给药7周后动物体重变化水平;
图7为给药3周后动物体重变化水平;
图8为给药3周后动物体重变化率;
图9为给药3周后动物禁食6小时后血糖;
图10给药3周后动物餐后1小时血糖。
注:^^^^表示相对于正常饮食溶媒组p<0.0001,*表示相对于高糖高脂饮食溶媒组p<0.05,**表示相对于高糖高脂饮食溶媒组p<0.01,***表示相对于高糖高脂饮食溶媒组p<0.001,****表示相对于高糖高脂饮食溶媒组p<0.0001。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
参考例1:片段A-1
Figure GDA0003285237340000161
合成路线:
Figure GDA0003285237340000162
步骤1:化合物A-1-2的合成。
向反应瓶中依次加入化合物A-1-1(10g,57.80mmol,1eq),联硼酸频那醇酯(16.15g,63.58mmol,1.1eq),Pd(dppf)Cl2(4.23g,5.78mmol,0.1eq),KOAc(17.02g,173.40mmol,3eq),二氧六环(120mL),置换氮气,在100℃下反应2小时。反应结束后反应液加水50mL稀释,用乙酸乙酯(50mL*3)萃取,合并有机相用饱和食盐水50mL洗涤,无水硫酸钠干燥,过滤后减压旋干有机相得粗产物。粗产物经柱层析(PE:EA=50:1)分离纯化。得到A-1-2。1H NMR(400MHz,CDCl3)δppm 7.72(d,J=8.4Hz,2H),6.83(d,J=8.4Hz,2H),5.40(s,1H),1.34(s,12H)。
步骤2:化合物A-1-4的合成。
向反应瓶中加入三苯基膦(7151mg,27.3mmol,1.2eq),DIAD(5513mg,27.3mmol,1.2eq),THF(40mL)。然后加入用THF(40mL)溶解的A-1-3(5104.7mg,27.3mmol,1.2eq)和A-1-2(5g,22.7mmol,1eq),25℃下反应16小时。反应结束后向反应液中加水100mL稀释,用乙酸乙酯(100mL*3)萃取,合并有机相用无水硫酸钠干燥,过滤后旋干有机相得粗产物。粗产物用柱层析(PE:EA=19:1-9:1)分离纯化,得到A-1-4。1H NMR(400MHz,CDCl3)δppm 7.72-7.75(m,2H),6.84-6.90(m,2H),4.94(s,1H),3.43-3.69(m,4H),2.07-2.23(m,2H),1.47(s,9H),1.34(s,12H)。
步骤3:化合物A-1-5的合成。
向反应瓶中加入A-1-4(1.28g,3.29mmol,1eq),EtOAc(10mL),氯化氢/EtOAc(4M,9.04mL,11eq),25℃下搅拌3小时。反应结束后将反应液旋干得粗产物A-1-5。粗产物A-1-5直接用于下一步反应。
步骤4:化合物A-1的合成。
向反应瓶中加入A-1-5(1.37g,4.74mmol,1eq),A-1-6(1.58g,4.74mmol,1eq),HATU(1.80g,4.74mmol,1eq),THF(15mL),DIEA(612.29mg,4.74mmol,825.18μL,1eq),25℃下搅拌2.5小时。反应结束后,向反应液加水20mL稀释,用乙酸乙酯(20mL*3)萃取,合并有机相用无水硫酸钠干燥,过滤旋干得粗产物。粗产物经柱层析(PE:EA=3:2)分离纯化。得到A-1。1H NMR(400MHz,CDCl3)δppm 7.70-7.81(m,2H),7.01-7.13(m,1H),6.81-6.93(m,3H),5.69-5.93(m,1H),4.93-5.06(m,1H),3.48-3.89(m,4H),2.83-3.02(m,2H),2.45-2.61(m,2H),2.21-2.36(m,1H),2.06-2.21(m,1H),1.29-1.41(m,21H)。
参照参考例1中步骤2~4的合成方法,合成片段A-2。
参考例2:片段A-2
Figure GDA0003285237340000171
合成路线:
Figure GDA0003285237340000181
化合物A-2:
1H NMR(400MHz,CDCl3)δppm 1.33(s,12H),1.37(d,J=1.76Hz,9H),1.77-1.95(m,4H),2.50-2.65(m,2H),2.86-3.01(m,2H),3.31-3.44(m,1H),3.56-3.84(m,3H),4.06-4.16(m,1H),4.56-4.70(m,1H),5.66(br d,J=7.53Hz,1H),6.86-6.93(m,3H),7.04-7.12(m,1H),7.76(d,J=8.28Hz,2H)。
参考例3:片段A-3
Figure GDA0003285237340000182
合成路线:
Figure GDA0003285237340000183
步骤1:化合物A-3的合成
将化合物A-2(0.20g,323.37μmol,1eq),无水N,N-二甲基甲酰胺(3mL)加入到反应瓶中,0℃下,加入氢化钠(30mg,750.00μmol,60%纯度,2.32eq),在0℃下搅拌0.5小时后加入碘甲烷(0.15g,1.06mmol,65.79μL,3.27eq),反应体系在20℃下搅拌2小时。将反应液浓缩得粗品,加入水(10mL),用乙酸乙酯萃取三次(每次10mL),合并有机相,有机相用饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得化合物A-3,粗产物A-3直接用于下一步反应。
参考例4:片段B-1
Figure GDA0003285237340000191
合成路线:
Figure GDA0003285237340000192
步骤1:化合物B-1-2的合成
将氢化铝锂(11g,289.82mmol,1.25eq)于0℃溶于四氢呋喃(200mL),经氮气置换三次后,充满氮气保护。将化合物B-1-1(50g,232.51mmol,1eq)溶于四氢呋喃(200mL)0℃下缓慢加入反应液中。有气泡产生,将反应升温至25℃下反应2小时。0℃下先缓慢滴加水(11mL),再滴加15%的氢氧化钠水溶液(11mL),最后加水(33mL)。过滤,并用乙酸乙酯清洗滤渣两次。将滤液悬干。得到粗品化合物B-1-2。
步骤2:化合物B-1-3的合成
将化合物B-1-2(47.9g,238.24mmol,1eq)溶于二甲基甲酰胺(120mL),0℃下加入钠氢(14.29g,357.36mmol,60%纯度,1.5eq),25℃下搅拌0.5小时,然后向反应液中缓慢加入3-溴丙烯(57.64g,476.47mmol,41.17mL,2eq),25℃下继续反应2小时。反应完毕后,0℃下加入水(50mL)淬灭,加入乙酸乙酯(500mL*2)萃取,然后用水(50mL*2)洗,再用饱和食盐水(50mL*2)洗,用无水硫酸钠干燥。粗品通过柱层析纯化得到目标化合物B-1-3,产物经LCMS确证,LC-MS(m/z)263,265[M+Na]+
步骤3:化合物B-1-5的合成
将化合物B-1-3(18.5g,76.72mmol,1.2eq)在-78℃溶于四氢呋喃(100mL),经氮气保护后,加入正丁基锂(2.5M,33.25mL,1.3eq),在-78℃反应0.5小时。同时将化合物B-1-4(17.47g,63.93mmol,1eq)溶解在四氢呋喃(100mL)中,降温至0℃后,经氮气保护后,滴加叔丁基氯化镁(1.7M,41.37mL,1.1eq),0℃下反应0.5小时。在-78℃下将镁烷氧溶液缓慢加入到烷基锂溶液中。反应液在-78℃下反应0.5小时后,升温至25℃后继续反应15.5小时。反应完毕后,在0℃下向反应液中加入氯化铵溶液(50mL),加入乙酸乙酯(200mL)稀释反应液后,用水(50mL*2)洗。合并有机相后用饱和食盐水(50mL*2)除水,用无水硫酸钠干燥,过滤旋干,粗品用柱层析纯化得到目标化合物B-1-5,产物经LCMS确证,LC-MS(m/z)371[M+Na]+
步骤4:化合物B-1-6的合成
将化合物B-1-5(17.80g,51.09mmol,1eq)溶解在甲醇中(100mL),降温至0℃,依次加入七水合三氯化铈(22.84g,61.31mmol,5.83mL,1.2eq),硼氢化钠(3.87g,102.18mmol,2eq),升温至25℃,反应16小时。反应完毕后,向反应液中加入水(30mL)淬灭旋干。再加入乙酸乙酯(100mL)稀释,用水(50mL*2)洗涤,再用饱和食盐水(50mL*2)除水,最后用无水硫酸钠干燥,过滤后减压浓缩干。得到目标化合物B-1-6,产物经LCMS确证,LC-MS(m/z)373[M+Na]+
步骤5:化合物B-1-7的合成
将化合物B-1-6(10.22g,29.17mmol,1eq)溶于水(100mL)和冰醋酸(100mL)中,100℃下反应16小时。反应完毕后。将溶剂60℃真空旋干,然后用甲苯带干三次。得到化合物B-1-7,产物经LCMS确证,LC-MS(m/z)333[M+Na]+
步骤6:化合物B-1-8的合成
将化合物B-1-7(9.52g,30.68mmol,1eq)和乙酸酐(25.05g,245.41mmol,22.98mL,8eq)溶解到吡啶(40mL)中,25℃下搅拌16小时。反应完毕后,将反应液用乙酸乙酯(200mL)稀释,用1M稀盐酸(100mL*4)洗涤,有机相再用水(50mL*2)洗涤,然后用饱和食盐水(50mL*2)洗涤,最后将有机相用无水硫酸钠干燥,过滤后减压浓缩干。用柱层析进行纯化,得到目标化合物B-1-8,产物经LCMS确证,LC-MS(m/z)501[M+Na]+
步骤7:B-1-9的合成
将化合物B-1-8(8.8g,18.39mmol,1eq)溶于1,4-二氧六环(100mL),加入硫脲(4.20g,55.17mmol,3eq),置换氮气3次,25℃下加入三氟甲磺酸三甲基硅酯(14.31g,64.37mmol,3.5eq),升温至60℃反应2小时,降温至25℃,依次加入碘甲烷(13.30g,93.70mmol,5.09eq),二异丙基乙胺(19.02g,147.13mmol,8eq),25℃下反应14小时。反应结束后反应液加水(80mL)稀释,用乙酸乙酯(80mL*3)萃取,合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液通过减压旋干得到粗产物。粗产物通过柱层析纯化得到目标化合物B-1-9,产物经LCMS确证,LC-MS(m/z)489[M+Na]+
步骤8:B-1-10的合成
向反应瓶中加入B-1-9(2g,4.29mmol,1eq),巴比妥酸(1.10g,8.57mmol,2eq),乙醇(20mL),置换氮气3次后,加入四三苯基膦钯(495.37mg,428.68μmol,0.1eq),在氮气环境下70℃反应16小时。反应结束后,反应液加水(20mL)稀释,乙酸乙酯(20mL*3)萃取,合并有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液经减压旋干得到粗产物。粗产物经柱层析纯化得到目标化合物B-1-10,产物通过LCMS确证,LC-MS(m/z)449[M+Na]+
步骤9:B-1的合成
向反应瓶中加入B-1-10(1.5g,3.52mmol,1eq),三苯基膦(1.38g,5.28mmol,1.5eq),二氯甲烷(20mL),置换氮气3次,在25℃搅拌0.5小时,随后在0℃下加入N-溴代丁二酰亚胺(938.98mg,5.28mmol,1.5eq),在25℃下反应1.5小时。反应结束后,反应液加水(20mL)稀释,乙酸乙酯(20mL*3)萃取,合并有机相用无水硫酸钠干燥,过滤,滤液经减压旋干得到粗产物。粗产物用柱层析分离纯化得到目标化合物B-1。1H NMR(400MHz,CDCl3)δ7.25(d,J=6.4Hz,2H),7.18(d,J=8.4Hz,1H),5.38(t,J=9.6Hz,1H),5.25(t,J=9.6Hz,1H),5.13(t,J=9.6Hz,1H),4.56(d,J=9.6Hz,1H),4.53(q,J=10.4Hz,2H),4.43(d,J=9.6Hz,1H),2.40(s,3H),2.21(s,3H),2.11(s,3H),2.02(s,3H),1.84(s,3H)。
参照参考例4中步骤1~9的合成方法,合成表1中各片段。
表1
Figure GDA0003285237340000221
参考例7:片段B-4
Figure GDA0003285237340000222
合成路线:
Figure GDA0003285237340000223
步骤1:化合物B-4-2的合成
将化合物B-4-1(25g,133.67mmol,1eq)溶于四氢呋喃(250mL),0℃下加入氢化钠(10.69g,267.33mmol,60%纯度,2eq),25℃下搅拌0.5小时,然后向反应液中缓慢加入烯丙基溴(48.51g,401.00mmol,34.65mL,3eq),25℃下继续反应2小时。反应完毕后,0℃下加入饱和氯化铵水溶液(20mL)淬灭,加入乙酸乙酯(250mL*2)萃取。粗品通过柱层析纯化得到化合物B-4-2,1H NMR(400MHz,CD3OD)δppm 4.04(dt,J=5.5,1.4Hz,2H),4.45-4.52(m,2H),5.17-5.34(m,2H),5.95(ddt,J=17.2,10.7,5.5,5.5Hz,1H),7.22-7.32(m,2H),7.43(d,J=7.5Hz,1H),7.51(s,1H)。
步骤2:化合物B-4-3的合成
将化合物B-4-2(14g,61.65mmol,1eq)在-78℃溶于四氢呋喃(140mL),经氮气保护后,加入正丁基锂(2.5M,27.12mL,1.1eq),在-78℃反应0.5小时。同时将化合物B-1-4(18.53g,67.81mmol,1.1eq)溶解在四氢呋喃(180mL)中,降温至0℃后,经氮气保护后,滴加叔丁基氯化镁(1.7M,47.14mL,1.3eq),0℃下反应0.5小时。在-78℃下将镁烷氧溶液缓慢加入到烷基锂溶液中。反应液在-78℃下反应0.5小时后,升温至25℃后继续反应15.5小时。反应完毕后,向0℃下向反应液中加入氯化铵溶液(100mL),加入乙酸乙酯(200mL)稀释反应液后,用水(50mL*2)洗。合并有机相后用饱和食盐水(50mL*2)洗,用无水硫酸钠干燥,过滤旋干,粗品用柱层析纯化得到化合物B-4-3,产物经LCMS确证,LC-MS(m/z)357[M+Na]+
步骤3:化合物B-4-4的合成
将化合物B-4-3(13g,38.88mmol,1eq)溶解在甲醇中(130mL),降温至0℃,依次加入七水合三氯化铈(9.58g,38.88mmol,1eq),硼氢化钠(2.94g,77.76mmol,2eq),升温至25℃,反应16小时。反应完毕后,向反应液中加入饱和氯化铵水溶液(30mL)淬灭旋干。再加入乙酸乙酯(100mL)稀释,用水(50mL*2)洗涤,再用饱和食盐水(50mL*2)除水,最后用无水硫酸钠干燥,过滤后减压浓缩干。得到目标化合物B-4-4,产物经LCMS确证,LC-MS(m/z)359[M+Na]+
步骤4:化合物B-4-5的合成
将化合物B-4-4(10.8g,32.11mmol,1eq)溶于水(50mL)和冰醋酸(50mL)中,100℃下反应16小时。反应完毕后。将溶剂60℃真空旋干,然后用甲苯带干三次。得到化合物B-4-5,产物经LCMS确证,LC-MS(m/z)319[M+Na]+
步骤5:化合物B-4-6的合成
将化合物B-4-5(9.2g,31.05mmol,1eq)溶解到1,4-二氧六环中(100mL),加入乙酸酐(25.36g,248.38mmol,23.26mL,8eq),吡啶(24.56g,310.48mmol,25.06mL,10eq),4-二甲氨基吡啶(1.90g,15.52mmol,0.5eq),80℃下搅拌16小时。反应完毕后,减压浓缩除去1,4-二氧六环,将反应液用乙酸乙酯(100mL)稀释,用1M稀盐酸(100mL*4)洗涤,有机相再用水(50mL*2)洗涤,然后用饱和食盐水(50mL*2)洗涤,最后将有机相用无水硫酸钠干燥,过滤后减压浓缩干。粗品用柱层析进行纯化,得到化合物B-4-6,产物经LCMS确证,LC-MS(m/z)487[M+Na]+
步骤6:B-4-7的合成
将化合物B-4-6(6.2g,13.35mmol,1eq)溶于1,4-二氧六环(62mL),加入硫脲(3.56g,46.72mmol,3.5eq),置换氮气3次,25℃下加入三氟甲磺酸三甲基硅酯(11.87g,53.40mmol,4eq),升温至60℃反应1小时,降温至25℃,依次加入碘甲烷(9.47g,66.74mmol,5eq),二异丙基乙胺(17.25g,133.49mmol,10eq),25℃下反应15小时。反应结束后反应液加水(60mL)稀释,用乙酸乙酯(60mL*3)萃取,合并有机相,用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液通过减压旋干得到粗产物。粗产物通过柱层析纯化得到目标化合物B-4-7,产物经LCMS确证,LC-MS(m/z)475[M+Na]+
步骤7:B-4-8的合成
向反应瓶中加入B-4-7(4.4g,9.72mmol,1eq),巴比妥酸(2.49g,19.45mmol,2eq),乙醇(44mL),置换氮气3次后,加入四三苯基膦钯(516.80mg,486.17μmol,0.05eq),在氮气环境下65℃反应16小时。反应结束后,反应液加碳酸氢钠水溶液调节pH=7-8,布氏漏斗过滤,收集滤液,加入乙酸乙酯(40mL*2)萃取,合并有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液经减压旋干得到粗产物。粗产物经柱层析纯化得到目标化合物B-4-8,产物通过LCMS确证,LC-MS(m/z)435[M+Na]+
步骤8:B-4的合成
将化合物B-4-8(300mg,727.36μmol,1eq)溶于四氢呋喃(3mL),氮气保护下,0℃加入三溴化磷(98.44mg,363.68μmol,34.18μL,0.5eq),0℃搅拌3小时。反应结束后,向反应液中加入饱和碳酸钾水溶液洗涤两次,收集有机相,水相加入乙酸乙酯(3mL*2)萃取,合并有机相,水泵减压浓缩至干。粗产物用柱层析分离纯化得到目标化合物B-4。1H NMR(400MHz,CDCl3)δppm 1.83-1.86(m,3H),2.02(s,3H),2.10-2.13(m,3H),2.20-2.22(m,3H),4.46-4.49(m,2H),4.54-4.58(m,1H),5.10(t,J=9.7Hz,1H),5.20-5.27(m,1H),5.31(s,1H),5.34-5.40(m,1H),7.30-7.38(m,4H)。
参考例8:片段B-5
Figure GDA0003285237340000251
合成路线:
Figure GDA0003285237340000252
步骤1:化合物B-5-2的合成
将化合物B-5-1(11.00g,64.48mmol,1eq),N-溴代丁二酰亚胺(14.30g,80.34mmol,1.25eq)加入到反应瓶中,0℃下加入硫酸(202.40g,2.06mol,110.00mL,32.00eq),搅拌1小时。将反应液滴加到冰水中(500mL),水相用乙酸乙酯萃取三次(200mL*3),合并有机相,将有机相浓缩得化合物B-5-2,直接用于下一步反应。
步骤2:化合物B-5-3的合成
将化合物B-5-2(19.00g,76.16mmol,1eq),无水四氢呋喃(50.0mL)加入到反应瓶中,滴加硼烷的四氢呋喃溶液(1M,160.00mL,2.10eq),反应体系在20℃下搅拌16小时。20℃下,向反应液中滴入甲醇(100mL),同时鼓氮气,淬灭完毕,混合液在70℃回流1小时,45℃水泵浓缩干得到粗品,加入水(200mL),用乙酸乙酯萃取(200mL*3),合并有机相,有机相用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得化合物B-5-3。1H NMR(400MHz,CDCl3)δppm 7.66(s,1H),7.24(s,1H),4.73(d,J=6.02Hz,2H),2.38(s,3H),1.88(t,J=6.27Hz,1H)。
步骤3:化合物B-5-4的合成
将化合物B-5-3(15.60g,66.24mmol,1eq),无水N,N-二甲基甲酰胺(100mL)加入到反应瓶中,0℃下,加入氢化钠(6.24g,156.01mmol,60%纯度,2.36eq),反应体系在0℃下搅拌0.5小时,加入3-溴丙烯(24.04g,198.72mmol,3eq),反应体系在室温(20℃)下搅拌15.5小时。反应液中滴加水(200mL)淬灭反应,用乙酸乙酯萃取(200mL*3),合并有机相,有机相用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得粗品。粗品经柱层析分离纯化得目标化合物B-5-4,1H NMR(400MHz,CDCl3)δppm 7.66(s,1H),7.23(s,1H),5.91-6.05(m,1H),5.31-5.42(m,1H),5.19-5.29(m,1H),4.55(s,2H),4.10(dt,J=5.58,1.35Hz,2H),2.37(s,3H)。
步骤4:化合物B-5-5的合成
将化合物B-5-4(15.30g,55.52mmol,1eq),无水四氢呋喃(200mL)加入到反应瓶中,-70℃下,氮气保护,加入正丁基锂(2.5M,27mL,1.22eq),反应体系在-70℃下搅拌0.5小时。将化合物B-1-4(15.30g,55.99mmol,1.01eq),无水四氢呋喃(200mL),加入到反应瓶中,0℃下,氮气保护,加入叔丁基氯化镁(1.7M,54mL,1.65eq),反应体系在0℃下搅拌0.5小时。将镁烷氧溶液缓慢加入到烷基锂溶液中,反应体系在-70℃下搅拌0.5小时,缓慢升温至室温(20℃)搅拌1小时。向反应液中滴加饱和氯化铵(200mL)淬灭反应,浓缩除去有机溶剂,加入柠檬酸调节溶液至澄清,用乙酸乙酯萃取(200mL*3),合并有机相,有机相用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得粗品。粗品经柱层析分离纯化得目标化合物B-5-5,产物经LCMS确证,LC-MS(m/z)405[M+Na]+
步骤5:化合物B-5-6的合成
化合物B-5-5(10.60g,27.69mmol,1eq)溶解在无水甲醇(200mL)中,降温至0℃,依次加入七水合三氯化铈(12.38g,33.23mmol,1.20eq),硼氢化钠(2.1g,55.38mmol,2eq),升温至25℃,反应16小时。反应完毕后,向反应液中加入饱和氯化铵水溶液(30mL)淬灭旋干。再加入乙酸乙酯(100mL)稀释,用水(50mL*2)洗涤,再用饱和食盐水(50mL*2)除水,最后用无水硫酸钠干燥,过滤后减压浓缩干。得到目标化合物B-5-6,直接用于下一步反应。
步骤6:化合物B-5-7的合成
将化合物B-5-6(9.85g,19.00mmol,1eq),乙酸(60mL),水(60mL)加入到反应瓶中,100℃下搅拌8小时。将反应液浓缩得粗品,随后加入甲苯(100mL)浓缩带干,如此重复两次后得目标化合物B-5-7,直接用于下一步反应。
步骤7:化合物B-5-8的合成
将化合物将化合物B-5-7(10.00g,29.00mmol,1eq),三乙胺(16.72g,165.24mmol,23.0mL,5.70eq),乙酸酐(21.80g,213.54mmol,20mL,7.36eq),4-二甲氨基吡啶(40mg,327.42μmol,1.13e-2eq),乙腈(100mL)加入到反应瓶中,25℃下搅拌2小时。将反应液浓缩得粗品,加入乙酸乙酯(200mL),用50%饱和硫酸氢钠水溶液萃取(200mL*2),合并水相,水相用乙酸乙酯萃取(200mL*2),合并有机相,有机相用饱和食盐水(200mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得粗品。粗品经柱层析分离纯化得目标化合物B-5-8,产物经LCMS确证,LC-MS(m/z)535[M+Na]+
步骤8:化合物B-5-9的合成
将化合物B-5-8(3.60g,7.02mmol,1eq),硫脲(1.08g,14.19mmol,2.02eq),无水二氧六环(40mL)加入到反应瓶中,反应体系在80℃下搅拌2小时。随后加入三氟甲磺酸三甲基硅酯(3.90g,17.55mmol,3.17mL,2.50eq),继续在80℃下搅拌1小时。反应液冷却至室温,加入碘甲烷(3.06g,21.56mmol,1.34mL,3.07eq),二异丙基乙胺(4.54g,35.09mmol,6.11mL,5eq),反应体系在25℃下搅拌15小时。向反应液中加入水(50mL),用乙酸乙酯萃取(50mL*2),合并有机相,有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得粗品。粗品经柱层析分离纯化得目标化合物B-5-9。1H NMR(400MHz,CDCl3)δppm 7.48(s,1H),7.15(s,1H),5.98(ddt,J=17.32,10.60,5.36,5.36Hz,1H),5.22-5.37(m,5H),4.70(d,J=10.04Hz,1H),4.56(d,J=2.76Hz,2H),4.54(d,J=9.79Hz,1H),4.07(ddt,J=5.49,2.48,1.41,1.41Hz,2H),2.38(s,3H),2.19(s,3H),2.11(s,3H),2.03(s,3H),1.81(s,3H)。
步骤9:化合物B-5-10的合成
将化合物B-5-9(2.70g,5.39mmol,1eq),巴比妥酸(1.38g,10.78mmol,2.0eq),无水乙醇(20mL),无水二氯甲烷(10mL)加入到反应瓶中,氮气氛围下,加入四三苯基膦钯(622mg,0.539mmol,0.1eq),反应体系在40℃下搅拌12小时。将反应液过滤,滤液浓缩得粗品,加入水(500mL),用乙酸乙酯萃取(500mL*3),合并有机相,有机相用饱和食盐水(500mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得粗品,经柱层析分离纯化得目标化合物B-5-10。1HNMR(400MHz,CDCl3)δppm 7.51(s,1H),7.16(s,1H),5.35-5.41(m,1H),5.26(dt,J=15.00,9.57Hz,2H),4.68-4.77(m,3H),4.55(d,J=10.04Hz,1H),2.38(s,3H),2.17-2.23(m,3H),2.11(s,3H),2.02(s,3H),1.81(s,3H)。
步骤10:化合物B-5的合成
将化合物B-5-10(0.60g,468.88μmol,1eq),无水四氢呋喃(10mL)加入到反应瓶中,氮气保护,0℃下滴加三溴化磷(288.00mg,1.06mmol,0.10mL,2.27eq),缓慢升至25℃搅拌12小时。向反应液中滴加水(20mL)淬灭反应,浓缩除去有机溶剂,剩余水相用乙酸乙酯萃取(20mL*3),合并有机相,有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤,滤液浓缩得粗品,经柱层析分离纯化得目标化合物B-5,1H NMR(400MHz,CDCl3)δppm 1.83(s,3H),2.03(s,3H),2.11(s,3H),2.20(s,3H),2.40(s,3H),4.50-4.59(m,3H),4.66(d,J=10.04Hz,1H),5.20-5.40(m,3H),7.20(s,1H),7.41(s,1H)。
参考例9:片段B-6
Figure GDA0003285237340000281
合成路线:
Figure GDA0003285237340000282
步骤1:化合物B-6-2的合成
向反应瓶中依次加入浓硫酸(70mL)和化合物B-6-1(20g,132.31mmol,1.89mL,1eq),搅拌至溶解,0℃下分批加入N-溴代丁二酰亚胺(28.26g,158.77mmol,1.2eq)。加完后在30℃搅拌至N-溴代丁二酰亚胺全部溶解,继续在30℃反应0.5小时。将反应液缓慢加入搅拌的冰水(1L)中淬灭,随后在0℃搅拌0.5小时。过滤,滤饼用水(100mL)洗涤三次后收集干燥得到化合物B-6-2,直接用于下一步反应。
步骤2:化合物B-6-3的合成
向反应瓶中依次加入水(250mL),乙腈(125mL),化合物B-6-2(25g,97.80mmol,1eq)和浓盐酸(38.55g,391.21mmol,37.79mL,37%纯度,4eq),搅拌得到悬浊液。0℃下向反应液中加入亚硝酸钠(7.09g,102.69mmol,1.05eq)并搅拌0.5小时。0℃下将该反应液滴加入氯化亚铜(10.17g,102.69mmol,2.46mL,1.05eq)、浓盐酸(38.55g,391.21mmol,37.79mL,37%纯度,4eq)和水(250mL)的溶液中。滴加完后反应液在70℃反应3小时。反应液浓缩除去乙腈,剩余物冷却至室温后,过滤,滤饼用水(100mL)洗涤3次。收集滤饼用乙酸乙酯(200mL)溶解分液,有机相加入无水硫酸钠干燥,过滤。滤液减压浓缩得到化合物B-6-3,产物经LCMS确证,LC-MS(m/z)248.9,250.8[M+H]+
步骤3:化合物B-6-4的合成
向反应瓶中加入化合物B-6-3(18g,64.93mmol,1eq)和四氢呋喃(300mL),在氮气氛围下滴加硼烷二甲硫醚(10M,19.48mL,3eq)。加完后在30℃搅拌反应16小时。反应结束后向反应液中滴入甲醇(100mL)淬灭完毕,反应液在70℃回流1小时,减压浓缩得到化合物B-6-4,直接用于下一步反应。
步骤4:化合物B-6-5的合成
向反应瓶中加入化合物B-6-4(16.5g,70.06mmol,1eq)和DMF(180mL),降温至0℃,加入氢化钠(5.60g,140.12mmol,60%纯度,2eq),0℃搅拌0.5小时后,向反应液中加入烯丙基溴(25.43g,210.19mmol,3eq)。混合液在30℃搅拌反应10小时。向反应液中加入水(300mL)淬灭,用乙酸乙酯萃取(100mL*3)。有机相合并后再用饱和食盐水(100mL)洗涤,浓缩得到粗品,经柱层析纯化得到化合物B-6-5,产物经LCMS确证,LC-MS(m/z)275,277[M+H]+
步骤5:化合物B-6-6的合成
向反应瓶中加入化合物B-6-5(16g,52.26mmol,1eq)和四氢呋喃(160mL),降温至-78℃,滴加正丁基锂(2.5M,27.17mL,1.3eq)并在-78℃搅拌0.5小时。向反应瓶加入化合物B-1-4(14.28g,52.26mmol,1eq)和四氢呋喃(160mL),降温至0℃,滴加叔丁基氯化镁(1.7M,49.18mL,1.6eq)并在0-5℃搅拌0.5小时。-78℃下将镁烷氧溶液缓慢滴加到烷基锂溶液中,-78℃搅拌0.5小时后再在25℃搅拌反应2小时。0℃下,向反应液中滴加饱和氯化铵和饱和食盐水混合溶液(体积比1:1,共150mL)淬灭,乙酸乙酯(100mL*3)萃取,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经柱层析纯化得到化合物B-6-6,产物经LCMS确证,LC-MS(m/z)383[M+H]+
步骤6:化合物B-6-7的合成
化合物B-6-6(7.40g,17.40mmol,1eq)溶解在无水甲醇(100mL)中,降温至0℃,依次加入七水合三氯化铈(7.77g,20.88mmol,1.20eq),硼氢化钠(1.32g,34.8mmol,2eq),升温至25℃,反应16小时。反应完毕后,向反应液中加入饱和氯化铵水溶液(30mL)淬灭悬干。再加入乙酸乙酯(100mL)稀释,用水(50mL*2)洗涤,再用饱和食盐水(50mL*2)除水,最后用无水硫酸钠干燥,过滤后减压浓缩干。得到目标化合物B-6-7,直接用于下一步反应。
步骤7:化合物B-6-8的合成
向250mL单口瓶中加入化合物B-6-7(6.5g,16.89mmol,1eq),乙酸(40mL)和水(40mL),100℃下反应16小时。反应液减压浓缩干,甲苯共沸带干(50mL*2)得到化合物B-6-8,直接用于下一步反应。
步骤8:化合物B-6-9的合成
向反应瓶中加入化合物B-6-8(6g,17.40mmol,1eq),三乙胺(11.62g,114.85mmol,15.99mL,6.6eq),4-二甲氨基吡啶(212.60mg,1.74mmol,0.1eq)和乙腈(40mL),然后再加入乙酸酐(11.73g,114.85mmol,10.76mL,6.6eq),25℃下反应16小时。反应液浓缩除去乙腈后,加入0.5N的盐酸(40mL),用乙酸乙酯萃取(50mL*3),有机相用饱和食盐水(50mL)洗涤,减压浓缩得到粗品。粗品经柱层析纯化得到化合物B-6-9。
步骤9:化合物B-6-10的合成
向反应瓶中加入化合物B-6-9(2.5g,4.39mmol,1eq),硫脲(1.17g,15.35mmol,3.5eq)和二氧六环(30mL),抽换氮气后加入三氟甲磺酸三甲基硅酯(3.90g,17.55mmol,3.17mL,4eq),80℃下混合液反应0.5小时。降温至0-5℃,依次加入碘甲烷(1.87g,13.16mmol,819.23μL,3eq)和二异丙基乙胺(2.83g,21.93mmol,3.82mL,5eq),再在25℃下反应10小时。向反应液中加入水(30mL),用乙酸乙酯萃取(30mL*3),有机相合并后用饱和食盐水(30mL)洗涤后浓缩得到粗品,经柱层析纯化得到化合物B-6-10,产物通过LCMS确证,LC-MS(m/z)523[M+Na]+
步骤10:化合物B-6-11的合成
向反应瓶中加入化合物B-6-10(1.257g,2.515mmol,1eq),巴比妥酸(644.30mg,5.03mmol,2eq),四三苯基膦钯(290.63mg,251.50μmol,0.1eq)和EtOH(40mL)抽换氮气后在40℃下搅拌反应16小时。向反应液中加入饱和碳酸钠水溶液(50mL)和乙酸乙酯(50mL),有大量固体析出,过滤,分液,水相再用乙酸乙酯萃取(50mL*3)。有机相合并后再用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。粗品经柱层析纯化得到化合物B-6-11,产物通过LCMS确证,LC-MS(m/z)483[M+Na]+
步骤11:B-6的合成
向反应瓶中加入化合物B-6-11(200mg,418.07μmol,1eq)和四氢呋喃(5mL),0℃下加入三溴化磷(113.17mg,418.07μmol,39.29μL,1eq),反应液在0-10℃反应0.5小时。0℃下将反应液倒入碳酸钾水溶液(20mL,1M),乙酸乙酯萃取(20mL*3)。有机相用无水硫酸钠干燥,浓缩得粗品。粗品经柱层析纯化得到目标化合物B-6。1H NMR(400MHz,CDCl3)δppm 1.86(s,3H),2.01(s,3H),2.10(s,3H),2.21(s,3H),2.40(s,3H),4.40(d,J=10.04Hz,1H),4.51-4.57(m,2H),4.60-4.65(m,1H),5.06(t,J=9.66Hz,1H),5.17-5.25(m,1H),5.31-5.38(m,1H),7.22(s,1H),7.24(s,1H)。
实施例1:WXD001或WXD002
Figure GDA0003285237340000311
合成路线
Figure GDA0003285237340000321
步骤1:WXD001-1的合成
向反应瓶中加入B-2(0.35g,695.27μmol,1eq),A-1(626.19mg,1.04mmol,1.49eq),Na2CO3(147.38mg,1.39mmol,2eq),甲苯(5mL),EtOH(1mL),H2O(1mL),置换氮气后加入Pd(PPh3)4(160.68mg,139.05μmol,0.2eq),在50℃下搅拌3小时。反应结束后反应液加水20mL稀释,用乙酸乙酯(20mL*3)萃取,合并有机相用饱和食盐水(20mL)洗涤,无水硫酸钠干燥,过滤旋干得粗产物。粗产物经过柱层析分离纯化得到WXD001-1。
步骤2:WXD001-2或WXD001-3的合成
向反应瓶中加入WXD001-1(229mg,254.16μmol,1eq),LiOH.H2O(213mg,5.08mmol,20eq),THF(0.5mL),MeOH(1mL),H2O(1mL),在25℃下反应1小时。反应结束后,向反应液加水10mL,用乙酸乙酯(10mL*3)萃取,有机相用无水硫酸钠干燥,过滤旋干得粗产物。粗产物经SFC手性拆分(色谱柱:REGIS(s,s)WHELK-O1(250mm×30mm,5μm);流动相:[0.1%NH3H2O-异丙醇];B(异丙醇)%:40%-40%,min)得到WXD001-2(t=4.167min)或WXD001-3(t=2.909min)。
步骤3:WXD001或WXD002的合成
向反应瓶中加入WXD001-2(60mg,77.43μmol,1eq),EtOAc(3mL),HCl/EtOAc(4M,1mL,51.66eq),25℃下反应1小时。反应结束后,减压旋干反应液得粗产物。粗产物经过制备高效液相色谱(色谱柱:Boston Prime C18 150×30mm,5μm;流动相:[水(0.05%氢氧化铵v/v)-乙腈];B(乙腈)%:47%-77%,8min)得到WXD001。对应SFC(方法:色谱柱:ChiralpakAD-3 100×4.6mm I.D.,3μm;流动相:CO2-40%甲醇(0.05%DEA);流速:2.8mL/min;柱温:40℃),保留时间t=4.404min。
向反应瓶中加入WXD001-3(60mg,77.43μmol,1eq),EtOAc(3mL),HCl/EtOAc(4M,1mL,51.66eq),25℃下反应1小时。反应结束后,减压旋干反应液得粗产物。粗产物经过制备高效液相色谱(色谱柱:Boston Prime C18 150×30mm 5μm;流动相:[水(0.05%氢氧化铵v/v)-乙腈];B(乙腈)%:47%-77%,8min)得到WXD002。对应SFC(方法:色谱柱:ChiralpakAD-3 100×4.6mm I.D.,3μm,流动相:CO2-40%甲醇(0.05%DEA);流速:2.8mL/min;柱温:40℃),保留时间t=5.921min。
实施例2:WXD003
Figure GDA0003285237340000331
合成路线
Figure GDA0003285237340000332
步骤1:WXD003-1的合成
先将A-2(319.44mg,516.49μmol,1.3eq),B-2(200mg,397.30μmol,1eq),Na2CO3(65.95mg,794.59μmol,2eq),Pd(PPh3)4(91.82mg,79.46μmol,0.2eq)加入到反应瓶中,经氮气置换三次后,依次加入甲苯(4mL),EtOH(1mL),H2O(1mL),然后加热到50℃反应16小时。反应结束后将反应液旋干,然后用水(30mL)稀释,用乙酸乙酯(100mL*3)萃取,有机相用饱和食盐水(50mL)洗涤,用无水硫酸钠干燥,过滤旋干。通过制备层析板进行纯化。得到WXD003-1。
步骤2:WXD003-2的合成
将WXD003-1(320mg,349.72μmol,1eq)溶于MeOH(2mL)THF(1mL)H2O(2mL)混合溶剂中,加入LiOH.H2O(293.48mg,6.99mmol,20eq),25℃下搅拌1小时。反应结束后,向反应液中加入乙酸乙酯(30mL)待溶液分层后,收集有机相,加入无水硫酸钠干燥,过滤旋干。得到粗品WXD003-2直接用于下一步反应。
步骤3:WXD003的合成
将WXD003-2(270mg,342.24μmol,1eq)溶于乙酸乙酯(5mL),加入HCl/EtOAc(4M,5mL,58.44eq),25℃搅拌1小时。反应结束后直接将反应液旋干。通过制备高效液相色谱进行纯化(色谱柱:Xtimate C18 150×25mm×5μm;流动相:[水(0.225%甲酸)-乙腈];B(乙腈)%:25%-55%,7min)得到产物WXD003。
参照实施例2中步骤1~3的合成方法,用片段B-1替代B-2合成下表2中的化合物WXD004,用A-3替代A-2合成下表2中的化合物WXD005,用片段B-3替代B-2合成下表2中的化合物WXD006,用片段B-4替代B-2合成下表2中的化合物WXD007,用片段B-5替代B-2合成下表2中的化合物WXD008,用片段B-6替代B-2合成下表2中的化合物WXD009。
表2
Figure GDA0003285237340000341
Figure GDA0003285237340000351
各实施例的氢谱和质谱数据如表3所示。
表3
Figure GDA0003285237340000352
Figure GDA0003285237340000361
Figure GDA0003285237340000371
实验例一、体外细胞活性测试:
生物学活性实验1:SGLT1葡萄糖转运试验
1.实验目的:
通过测定进入高表达Human-SGLT1细胞内的带[14C]标记葡萄糖的量,检测化合物对SGLT1转运体转运葡萄糖活性的影响。
2.实验方法
2.1.细胞准备
实验所用的稳定表达Human-SGLT1的细胞由上海药明康德构建。将SGLT1细胞铺于Cytostar-T(PerkinElmer)96孔细胞培养板中并于5%CO2,37℃的环境下培养过夜。
2.2.SGLT1葡萄糖转运试验
1)实验缓冲液:10mM HEPES缓冲液(Sigma公司),1.2mM MgCl2,4.7mM KCl,2.2mMCaCl2 and 120mM NaCl.
2)将化合物用100%DMSO以1mM为起始浓度,做8个点5倍连续梯度稀释。3)用实验缓冲液配制3μM[14C]Methyl a-D-glucopyranosid(标记甲基α-D-吡喃葡萄糖苷)。
4)用49μL实验缓冲液、1μL梯度稀释的化合物和50μL3μM[14C]同位素标记的糖溶液,在37℃作用于细胞2小时。
5)用同位素检测仪(Micro beta Reader)读数。
6)数据通过GraphPad Prism 5.0软件的计算公式:log(inhibitor)vs.response--Variable slope得到受试化合物的IC50值。
生物学活性实验2:SGLT2葡萄糖转运试验
1.实验目的:
通过测定进入高表达Human-SGLT2细胞内的带[14C]标记葡萄糖的量,检测化合物对SGLT2转运体转运葡萄糖活性的影响。
2.实验方法
2.1.细胞准备
实验所用的稳定表达Human-SGLT2的细胞由上海药明康德构建。将SGLT2细胞铺于96孔细胞培养板(Greiner)中并于5%CO2,37℃的环境下培养过夜。
2.2.SGLT2葡萄糖转运试验
1)实验缓冲液:10mM HEPES,1.2mM MgCl2,4.7mM KCl,2.2mM CaCl2 and 120mMNaCl。
2)终止缓冲液:10mM HEPES,1.2mM MgCl2,4.7mM KCl,2.2mM CaCl2,120mM NaCl和1μM LX4211。
3)将化合物用100%DMSO以10μM为起始浓度,做8个点5倍连续梯度稀释。
4)用实验缓冲液配制6μM[14C]Methyl a-D-glucopyranosid。
5)用49μL实验缓冲液、1μL梯度稀释的化合物和50μL6μM[14C]同位素标记的糖溶液,在37℃作用于细胞2小时。
6)吸出孔内液体,用终止缓冲液润洗细胞3遍。
7)用50μL10%的氢氧化钠溶液裂解细胞,将细胞裂解液吸到闪烁管内,再加入2mL闪烁液。
8)用同位素检测仪(Tricarb)读数。
9)数据通过GraphPad Prism 5.0软件的计算公式:log(inhibitor)vs.response--Variable slope得到受试化合物的IC50值。
实验结果见表4:
表4体外细胞活性测试结果
Figure GDA0003285237340000381
Figure GDA0003285237340000391
结论:本发明化合物表现出较优的对Human-SGLT1和Human-SGLT2体外抑制活性。
实验例二、体内DMPK研究:
大鼠体内DMPK研究
实验目的:以雄性SD大鼠为受试动物,单次给药后测定化合物血药浓度并评估药代动力学行为。
实验操作:选择健康成年雄性SD大鼠4只,2只为静注组,2只为口服组。待测化合物与适量静注组溶媒(10%NMP/10%solutol/80%水)混合,涡旋并超声,制备得到0.5mg/mL澄清溶液,微孔滤膜过滤后备用;口服组溶媒为10%NMP/10%solutol/80%水,待测化合物与溶媒混合后,涡旋并超声,制备得到1mg/mL澄清溶液。大鼠1mg/kg静脉给药或10mg/kg口服给药后,收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。
注NMP:N-甲基吡咯烷酮;solutol:聚乙二醇-15羟基硬脂酸酯。
实验结果见表5:
表5化合物PK测试结果
Figure GDA0003285237340000392
注::Cmax为最大浓度;F%为口服生物利用度;DNAUC=AUCPO/Dose,AUCPO为口服暴露量,Dose为药物剂量;Vdss为分布容积;Cl为清除率;T1/2为半衰期;ND指未检测到。
结论:本发明化合物表现低的口服暴露量和生物利用度,展现了SGLT1选择性抑制剂应有的药代动力学特性。
实验例三、体内药效研究:
一、大鼠口服糖耐受量(OGTT)体内药效研究:
1.实验动物:
Figure GDA0003285237340000393
Figure GDA0003285237340000401
2.实验分组:
表6.实验分组信息
Figure GDA0003285237340000402
3.实验流程:
1)动物适应及准备
实验动物抵达设施后需在动物房适应环境1周。
2)禁食与给药
动物禁食6小时后,按照表6给予WXD003或溶媒,随后立即给予50%葡萄糖溶液(2g/kg,4ml/kg)。
3)血糖测试
将给糖时间记为0点,在给糖前0分钟,给糖后15,30,60,90,120分钟,分别对动物进行血糖检测,根据时间对血糖数据绘制糖耐量曲线,计算曲线下面积(AUC)。
4)数据分析:
所有数值将表示为平均值。统计学分析使用Graphpad Prism 6单因素方差分析Tukey’s多重比较检验来评估。小于0.05的p值被认为具有统计学显着性。
4.实验结果:
表7大鼠糖耐受量体内药效实验结果
Figure GDA0003285237340000403
注:****表示相对于溶媒对照组p<0.0001。
结论:相比溶媒对照组,给药组均可显著降低动物2小时内血糖AUC水平。
二、STZ配合高糖高脂饮食诱导糖尿病小鼠模型体内药效研究
1.实验动物
7周龄C57BL/6J雄性小鼠,购于江苏集萃药康生物科技有限公司。
2.实验内容
1)动物适应环境后,根据体重将所有小鼠分为两组,按表8中的方案进行喂养,并注射溶媒及链脲佐菌素(STZ)进行造模;
表8.STZ造模实验分组信息
Figure GDA0003285237340000411
2)根据模型组随机血糖检测结果,随机血糖>11mmol/L入组继续进行给药实验;
3)将符合入组标准的模型组小鼠分为3组,正常组5只,模型给药组每组10只,按照表9中的给药方案进行给药;
表9.实验分组信息
Figure GDA0003285237340000412
4)开始给药后,每天监测动物体重变化水平,并在给药4周和7周后,分别检测各组小鼠禁食6小时后的血糖和糖化血红蛋白;
5)数据分析:所有数值将表示为平均值。统计学分析使用Graphpad Prism 6单因素方差分析Tukey’s多重比较检验来评估,小于0.05的p值被认为具有统计学显着性。
3.实验结果
1)给药4周后的实验结果:
a)如表10和附图1所示,给药4周后,WXD003能显著降低动物禁食6小时后的血糖水平;
表10.给药4周后动物血糖
Figure GDA0003285237340000421
b)如表11和附图2所示,给药4周后,WXD003能显著降低动物禁食6小时后的糖化血红蛋白水平;
表11.给药4周后动物糖化血红蛋白
Figure GDA0003285237340000422
c)如附图3所示,给药4周后,WXD003能有效控制动物体重的增长。
2)给药7周后的实验结果
d)如表12和附图4所示,给药7周后,WXD003能显著降低动物禁食6小时后的血糖水平。相比给药4周,给药7周后,WXD003能进一步降低动物禁食6小时后的血糖水平;
表12.给药7周后动物血糖
Figure GDA0003285237340000423
e)如表13和附图5所示,给药7周后,WXD003能显著降低动物禁食6小时后的糖化血红蛋白水平;
表13.给药7周后动物糖化血红蛋白
Figure GDA0003285237340000431
f)如附图6所示,给药7周后,WXD003能有效控制动物体重的增长。注:^^^^表示相对于正常饮食溶媒组p<0.0001,*表示相对于高糖高脂饮食溶媒组p<0.05,**表示相对于高糖高脂饮食溶媒组p<0.01,***表示相对于高糖高脂饮食溶媒组p<0.001,****表示相对于高糖高脂饮食溶媒组p<0.0001。
结论:相比高糖高脂溶媒对照组,给药组可显著降低动物禁食6小时后的血糖和糖化血红蛋白,并能有效控制动物体重的增长。
三、高糖高脂饮食诱导的肥胖小鼠模型体内药效研究
1.实验动物
5周龄雄性C57B/6J小鼠购于江苏集萃药康生物科技有限公司。
2.实验内容
1)动物适应环境后,喂养高糖高脂饲料(Research Diet,HFHS,D12451)20周后,挑选体重大于40克的小鼠开展减重实验。
2)将体重符合标准的动物先进行溶媒给药适应,然后根据体重将所有小鼠分为5组开展减重实验,检测化合物降低动物体重的效果,实验分组如表14所示:
表14.实验分组信息
Figure GDA0003285237340000432
Figure GDA0003285237340000441
3)开始给药后,每天监测动物体重变化水平,并在给药3周后,分别检测各组小鼠禁食6小时后的血糖和餐后1小时的血糖水平;
4)数据分析:所有数值将表示为平均值。统计学分析使用Graphpad Prism 6单因素方差分析Tukey’s多重比较检验来评估,小于0.05的p值被认为具有统计学显着性。
3.实验结果
1)如附图7和附图8所示,给药3周后,WXD003能剂量相关地显著降低动物体重;
2)如表15和附图9所示,给药3周后,WXD003能降低动物禁食6小时后的血糖;
表15.给药3周后动物禁食6小时后的血糖
Figure GDA0003285237340000442
3)如表16和图附10所示,给药3周后,WXD003能降低动物餐后1小时的血糖。
表16.给药3周后动物餐后1小时的血糖
Figure GDA0003285237340000443
注:*表示相对于高糖高脂饮食溶媒组p<0.05,**表示相对于高糖高脂饮食溶媒组p<0.01,***表示相对于高糖高脂饮食溶媒组p<0.001,****表示相对于高糖高脂饮食溶媒组p<0.0001。
结论:相比高糖高脂溶媒对照组,给药组可剂量依赖地显著降低动物体重,并同时能降低动物禁食6小时后和餐后1小时的血糖。

Claims (17)

1.式(II)所示化合物、其异构体或其药学上可接受的盐,
Figure FDA0003285237330000011
其中,
R1选自H、F、Cl、Br、I、OH、NH2、CN、C1-6烷基和C1-6烷氧基,所述C1-6烷基和C1-6烷氧基任选被1、2或3个Ra取代;
R2选自F、Cl、Br、I、OH、NH2和C1-3烷氨基;
R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个Rb取代C1-3烷基;
L选自单键、-O-、-S-、-C(Rc)2-和-N(Rd)-;
m选自0、1和2;
n选自1、2和3;
Ra、Rb和Rc分别独立地选自F、Cl、Br、I、OH、NH2和CH3
Rd选自H和CH3
2.根据权利要求1所述化合物、其异构体或其药学上可接受的盐,其中,R1选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2CH3
Figure FDA0003285237330000012
所述CH3、CH2CH3
Figure FDA0003285237330000013
任选被1、2或3个Ra取代。
3.根据权利要求2所述化合物、其异构体或其药学上可接受的盐,其中,R1选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2F、CHF2、CF3、CH2CH3
Figure FDA0003285237330000014
4.根据权利要求1~3任意一项所述化合物、其异构体或其药学上可接受的盐,其中,R2选自F、Cl、Br、I、OH、NH2、NH(CH3)和N(CH3)2
5.根据权利要求1~3任意一项所述化合物、其异构体或其药学上可接受的盐,其中,R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN和任选被1、2或3个Rb取代CH3
6.根据权利要求5所述化合物、其异构体或其药学上可接受的盐,其中,R3、R4和R5分别独立地选自H、F、Cl、Br、I、OH、NH2、CN、CH3、CH2F、CHF2和CF3
7.根据权利要求1~3任意一项所述化合物、其异构体或其药学上可接受的盐,其中,L选自单键、-O-和-S-。
8.根据权利要求1~3任意一项所述化合物、其异构体或其药学上可接受的盐,其中,结构单元
Figure FDA0003285237330000021
选自
Figure FDA0003285237330000022
9.根据权利要求1~3任意一项所述化合物、其异构体或其药学上可接受的盐,其中,结构单元
Figure FDA0003285237330000023
选自
Figure FDA0003285237330000024
10.根据权利要求1~7任意一项所述化合物、其异构体或其药学上可接受的盐,其选自
Figure FDA0003285237330000025
其中,
R1、R2、R3、R4、R5和L如权利要求1~7任意一项所定义。
11.根据权利要求10所述化合物、其异构体或其药学上可接受的盐,其选自
Figure FDA0003285237330000031
其中,
R2选自F、Cl、Br、I、OH、NH2、NH(CH3)和N(CH3)2
R1、R3、R4、R5和L如权利要求10所定义。
12.根据权利要求11所述化合物、其异构体或其药学上可接受的盐,其选自
Figure FDA0003285237330000032
其中,
R1、R2、R3、R4和R5如权利要求11所定义。
13.下式所示化合物、其异构体或其药学上可接受的盐,其选自
Figure FDA0003285237330000041
14.根据权利要求13所述化合物、其异构体或其药学上可接受的盐,其选自
Figure FDA0003285237330000042
Figure FDA0003285237330000051
15.一种药物组合物,包括作为活性成分的治疗有效量的根据权利要求1~14任意一项所述的化合物、其异构体或其药学上可接受的盐以及药学上可接受的载体。
16.根据权利要求1~14任意一项所述的化合物、其异构体或其药学上可接受的盐或者权利要求15的组合物在制备用于治疗SGLT1相关疾病的药物上的应用。
17.根据权利要求16所述的应用,其特征在于,所述用于治疗SGLT1相关疾病的药物是用于糖尿病和肥胖症的药物。
CN202080025867.6A 2019-03-29 2020-03-30 作为sglt1抑制剂的葡糖苷类衍生物及其应用 Active CN113825750B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
CN201910251853 2019-03-29
CN2019102518535 2019-03-29
CN2019111049495 2019-11-13
CN201911104949 2019-11-13
CN2020101052511 2020-02-20
CN202010105251 2020-02-20
PCT/CN2020/082007 WO2020200153A1 (zh) 2019-03-29 2020-03-30 作为sglt1抑制剂的葡糖苷类衍生物及其应用

Publications (2)

Publication Number Publication Date
CN113825750A CN113825750A (zh) 2021-12-21
CN113825750B true CN113825750B (zh) 2022-07-12

Family

ID=72664696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080025867.6A Active CN113825750B (zh) 2019-03-29 2020-03-30 作为sglt1抑制剂的葡糖苷类衍生物及其应用

Country Status (5)

Country Link
US (1) US20220153772A1 (zh)
EP (1) EP3950684B1 (zh)
JP (1) JP7210771B2 (zh)
CN (1) CN113825750B (zh)
WO (1) WO2020200153A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022063305A1 (zh) * 2020-09-27 2022-03-31 南京明德新药研发有限公司 葡糖苷类化合物的晶型及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104854096A (zh) * 2012-11-20 2015-08-19 莱西肯医药有限公司 钠葡萄糖协同转运蛋白1的抑制剂
CN106892948A (zh) * 2015-12-17 2017-06-27 广东东阳光药业有限公司 吡喃葡萄糖基衍生物及其在医药上的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI460187B (zh) * 2009-02-23 2014-11-11 大正製藥股份有限公司 4-異丙基苯基葡萄糖醇化合物
AU2019205072B2 (en) * 2018-01-05 2021-03-04 Shandong Danhong Pharmaceutical Co., Ltd. SGLTs inhibitor and application thereof
WO2019185026A1 (zh) * 2018-03-30 2019-10-03 南京明德新药研发有限公司 作为SGLTs抑制剂的葡糖苷类衍生物及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104854096A (zh) * 2012-11-20 2015-08-19 莱西肯医药有限公司 钠葡萄糖协同转运蛋白1的抑制剂
CN106892948A (zh) * 2015-12-17 2017-06-27 广东东阳光药业有限公司 吡喃葡萄糖基衍生物及其在医药上的应用

Also Published As

Publication number Publication date
JP7210771B2 (ja) 2023-01-23
EP3950684B1 (en) 2024-03-20
CN113825750A (zh) 2021-12-21
US20220153772A1 (en) 2022-05-19
JP2022528237A (ja) 2022-06-09
EP3950684A1 (en) 2022-02-09
WO2020200153A1 (zh) 2020-10-08
EP3950684A4 (en) 2022-12-28

Similar Documents

Publication Publication Date Title
CN115698022B (zh) 五元杂芳并咪唑类化合物及其应用
CN111372930B (zh) 一种SGLTs抑制剂及其应用
CN111465598B (zh) 作为SGLTs抑制剂的葡糖苷类衍生物及其应用
CN114174282A (zh) 作为甲状腺素受体-β激动剂的哒嗪酮类衍生物及其应用
CN102256944A (zh) 鞘氨醇-1-磷酸受体拮抗剂
WO2022194221A1 (zh) 呋喃稠环取代的戊二酰亚胺类化合物
CN113227051A (zh) 用于视网膜疾病的化合物
CN113825750B (zh) 作为sglt1抑制剂的葡糖苷类衍生物及其应用
CN114585358B (zh) 一种SGLTs/DPP4抑制剂及其应用
CN112752749B (zh) 作为pd-l1免疫调节剂的氟乙烯基苯甲酰胺基化合物
CN113439080A (zh) 作为pd-l1免疫调节剂的乙烯基吡啶甲酰胺基化合物
CN114026079B (zh) 一种sglt2/dpp4抑制剂及其应用
TW202309013A (zh) 酮類衍生物
CN113811530B (zh) 作为糜酶抑制剂的嘧啶酮类化合物及其应用
CN113474318A (zh) 用作血浆激肽释放酶抑制剂的双环烷类化合物
TWI795129B (zh) 吡啶并嘧啶酮類化合物
CN117940417A (zh) 卤素取代的哒嗪酮类化合物及其应用
CN116462635A (zh) 一种吡嗪-1(2h)-2-氧代类化合物及其制备方法与应用
CN117355515A (zh) 哌嗪衍生物及其应用
CN114746400A (zh) 用作选择性雄激素受体调节剂的化合物
TW202110844A (zh) 具有二螺二酮哌構造之化合物

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40060815

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant