CN113814411A - 一种高铝钛k418b合金增材制造方法 - Google Patents

一种高铝钛k418b合金增材制造方法 Download PDF

Info

Publication number
CN113814411A
CN113814411A CN202110931351.4A CN202110931351A CN113814411A CN 113814411 A CN113814411 A CN 113814411A CN 202110931351 A CN202110931351 A CN 202110931351A CN 113814411 A CN113814411 A CN 113814411A
Authority
CN
China
Prior art keywords
alloy
powder
manufacturing
laser
entity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110931351.4A
Other languages
English (en)
Inventor
段修涛
于连旭
王崇愚
王晓蓉
宗剑波
文超
马步洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Guore Metal Materials Research Institute Co ltd
Original Assignee
Nanjing Guore Metal Materials Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Guore Metal Materials Research Institute Co ltd filed Critical Nanjing Guore Metal Materials Research Institute Co ltd
Priority to CN202110931351.4A priority Critical patent/CN113814411A/zh
Publication of CN113814411A publication Critical patent/CN113814411A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明涉及一种增材的制造方法,尤其涉及一种高铝钛K418B合金增材的制造方法,属于合金制造技术领域。本发明通过该增材制造方法实现K418B合金粉末的无裂纹打印,其有益效果是:为SLM技术提供更高服役温度的高温合金,满足航空航天的使用要求,同时为同类合金粉末工艺参数开发作参考,可以大大拓宽SLM技术应用的广泛度。

Description

一种高铝钛K418B合金增材制造方法
技术领域
本发明涉及一种增材的制造方法,尤其涉及一种高铝钛K418B 合金增材的制造方法,属于合金制造技术领域。
背景技术
激光选区熔化(SLM)技术可根据零件三维数模,利用金属粉末无需任何工装夹具和模具,直接获得任意复杂形状的实体零件,实现“净成形”的材料加工新理念,适用于制造具有复杂内腔结构的难加工零件,具有材料利用率高、产品生产开发周期短、对产品的形状几乎没有限制、精度高等特点。目前SLM技术在不锈钢、钛合金、铝合金及高温合金领域已有一定程度的应用,展现出技术独特的优势。 K418B是一种镍基沉淀硬化强化型高温合金,合金含有较高的Al+Ti 含量,合金具有良好的抗蠕变、持久新和抗冷热疲劳性能,目前合金已用于制作航空发动机的转子叶片、涡轮导向器等零件。与该合金相近的IN 713LC合金已在国外广泛应用。采用SLM技术制造高温合金可以制备网格、空腔等传统铸造和锻造无法实现的结构零件,为航空航天等设计单位提供了更多的选择。目前已有较多牌号的高温合金如GH3536、GH4169、GH3625等在SLM技术中得到了应用,但整体来看这类合金均服役温度较低,难以满足航空航天对增材制造越来越高的要求,开发出高Al+Ti高温合金的SLM制造工艺具有较大意义。
发明内容
本发明的目的是针对现有技术存在的合金增材难以满足航空航天要求的缺陷,提出一种高铝钛K418B合金增材的制造方法,使高 Al+Ti合金K418B粉末实现无裂纹成型,进而满足航空航天对于增材的要求。
本发明通过以下技术方案解决技术问题:一种高铝钛K418B合金增材的制造方法,包括以下步骤:
第一步、准备符合SLM技术要求的K418B合金粉末,所述K418B 粉末的粒径范围为15-53μm,粉末流动性≤25s/50g;
第二步、设计三维模型,按照无裂纹的K418B合金实体要求选择10mm3无支撑的立方体;
第三步、设计SLM制备过程中的至少两组实体参数,包括激光扫描速率、激光功率和扫描线间距,根据激光能量密度,采用公式η=p/vhs计算体能量密度,式中η表示体能量密度、p表示激光器功率、v表示扫描速率、h表示铺粉厚度、s表示扫描线间距,铺粉厚度为40μm;
第四步、按照设计的至少两组实体参数对三维模型进行赋值,将烘干后的粉末装入3D打印机中,保证粉末舱原材料充足,在氩气气氛下进行激光选区熔化成形加工,成形舱内氧含量≤0.1%,基板预热到150℃,逐层进行打印,最终得到实体;
第五步、线切割实体,将打印后的实体切割,即得K418B合金增材。
以上方法中的K418B粉末由C 0.03-0.07,Cr 11.0-13.0,Co≤ 1.00,Mo 3.8-5.2,Al 5.50-6.50,Ti 0.4-1.0,Nb 1.50-2.50,S≤ 0.015,P≤0.015,O≤0.02,N≤0.015,Fe≤0.50,B 0.005-0.01,Zr 0.050-0.150,Mn≤0.25,Si≤0.50,Cu≤0.50和余量的Ni组成。
第三步中,激光功率为264-335W,激光扫描速率为 900-1200mm·s-1,扫描线间距0.10-0.13mm。
为满足航空航天的需要,可选择激光功率330W,激光扫描线速度1100mm·s-1,扫描线间距0.12mm。
所述第四步中,粉末烘干的条件是100℃保温2小时,基板材质为钢板。
在增材制造领域,工艺参数包含的参数非常多,仅调整工艺参数已是工作量巨大,各参数的配合达到最终的制备效果是增材制造领域的难点,本发明通过上述方法实现K418B合金粉末的无裂纹打印,其有益效果是:为SLM技术提供更高服役温度的高温合金,满足航空航天的使用要求,同时为同类合金粉末工艺参数开发作参考,可以大大拓宽SLM技术应用的广泛度。
附图说明
图1本发明实施例K418B打印后实体形貌。
图2为本发明实施例中一个试验例按参数打印后K418B合金XY和XZ 方向微观组织。
图3为本发明实施例中另一个试验例按参数打印后K418B合金XY和 XZ方向微观组织。
图4为本发明实施例中再一个试验例按参数打印后K418B合金XY和 XZ方向微观组织。
图5为本发明实施例中试验编号1的合金微观组织。
图6为本发明实施例中试验编号5的合金微观组织。
图7为本发明实施例中试验编号8的合金微观组织。
具体实施方式
实施例1
一种高铝钛K418B合金增材的制造方法,包括以下步骤:
(1)采购符合SLM技术应用的合格K418B合金粉末,合金粉末成分需满足下表1,粉末粒径范围为15-53μm,粉末流动性应不大于 25s/50g。
表1 K418B合金粉末成分要求
Figure BDA0003210881010000041
(2)设计试验用的三维模型,本实施例着重采用SLM制备无裂纹的K418B合金实体,故数模选择10mm3的立方体,该模型无需添加支撑,方便切割及随后金相分析。
(3)设计SLM制备过程中的实体参数,主要包括激光扫描速率、激光功率和扫描线间距,设计依据主要为激光能量密度,即采用公式η=p/vhs计算体能量密度,式中η表示体能量密度、p表示激光器功率、v表示扫描速率、h表示铺粉厚度、s表示扫描线间距,其中为了制造效率,层厚固定选择为40μm,具体参数设计见下表2。
表2 K418B合金实体参数设计
Figure BDA0003210881010000042
(4)按照设计的多组实体参数对三维模型进行赋值,保证一次试验能出多组试验结果。将烘干后的粉末装入3D打印机中,保证粉末舱原材料充足,在氩气气氛下进行激光选区熔化成形加工,成形舱内氧含量需≤0.1%,基板需预热到150℃,基板材质为钢板即可。检查就绪后启动设备,逐层进行打印,最终得到实体。
(5)打印后的多参数10mm3实体与基板紧密相连,如图1所示,需使用反复走丝电火花线切割机床进行线切割,切割前注意实体的区分,防止混淆。切割时沿着基板与实体交界处切割,实体区分需注意在增材制造过程中打上的数字标签。同时在打印完成后用记号笔进行打印方向标注,与设计图纸核对一致,保证实体区分。
将切割后的K418B合金实体进行金相制样及组织观察,注意每组参数对应的实体样品需要同时观察XY和XZ两个方向的组织。
经过金相制样及组织观察,本实施例选择以下编号的试验例作为实例进行比较,其它试验例的数据不再赘述。
试验编号20:实体选用激光参数为:激光功率270W、激光扫描线速度1150mm·s-1和扫描线间距0.11mm,经金相制样和组织观察后,合金微观组织见图2,可以看到在此参数下能量输入密度较低,无法完全熔化合金粉末,打印合金横纵向孔隙都较多,不能选用。
试验编号4:实体选用激光参数为:激光功率325W、激光扫描线速度905mm·s-1和扫描线间距0.11mm,经金相制样和组织观察后,合金微观组织见下图3,可以看到在此参数下打印合金能量输入较高,打印过程中容易热裂,实体横纵向裂纹程度都很深,不能选用。
试验编号31:实体选用激光参数为:激光功率330W、激光扫描线速度1100mm·s-1和扫描线间距0.12mm,经金相制样和组织观察后,合金微观组织见下图4,可以看到在此参数下打印合金孔隙度较好且横纵向均无裂纹,合金能量输入适中,参数可以选用。
试验编号1:实体选用激光参数为:激光功率265W、激光扫描线速度905mm·s-1和扫描线间距0.11mm,经金相制样和组织观察后,合金微观组织见图5,可以看到在此参数下能量输入密度较高,虽然纵向打印结果较好,但横向打印过程中出现热裂,参数不能选用。
试验编号5:实体选用激光参数为:激光功率265W、激光扫描线速度955mm·s-1和扫描线间距0.11mm,经金相制样和组织观察后,合金微观组织见图6,可以看到在此参数下打印合金孔隙度较好且横纵向均无裂纹,合金能量输入适中,参数可以选用。
试验编号28:实体选用激光参数为:激光功率270W、激光扫描线速度1150mm·s-1和扫描线间距0.12mm,经金相制样和组织观察后,合金微观组织见图7,可以看到在此参数下能量输入密度较低,虽然整体打印效果尚可,但远不如优选参数,打印合金横纵向孔隙都较多,不能选用。
K418B合金时效强化型高温合金,合金含有较多的γ`相,在900℃以上高温条件下γ`相未完全固溶,仍有较高的强化作用,而现在增材制造常用的GH3536、GH3625、IN718等合金,在900℃以上,几乎完全固溶,强化作用降低,远不如K418B合金,本实施例与几种典型合金高温合金的数据对比见表3,几种典型合金的数据来源是《中国高温合金手册(上、下)卷》。
表3
Figure BDA0003210881010000061
Figure BDA0003210881010000071
除上述实施外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (5)

1.一种高铝钛K418B合金增材的制造方法,包括以下步骤:
第一步、准备符合SLM技术要求的K418B合金粉末,所述K418B粉末的粒径范围为15-53μm,粉末流动性≤25s/50g;
第二步、设计三维模型,按照无裂纹的K418B合金实体要求选择10mm3无支撑的立方体;
第三步、设计SLM制备过程中的至少两组实体参数,包括激光扫描速度、激光功率和扫描线间距,根据激光能量密度,采用公式η=p/vhs计算体能量密度,式中η表示体能量密度、p表示激光器功率、v表示扫描速率、h表示铺粉厚度、s表示扫描线间距,铺粉厚度为40μm;
第四步、按照设计的至少两组实体参数对三维模型进行赋值,将烘干后的粉末装入3D打印机中,保证粉末舱原材料充足,在氩气气氛下进行激光选区熔化成形加工,成形舱内氧含量≤0.1%,基板预热到150℃,逐层进行打印,最终得到实体;
第五步、线切割实体,将打印后的实体切割,即得K418B合金增材。
2.根据权利要求1所述高铝钛K418B合金增材的制造方法,其特征在于:由C 0.03-0.07,Cr 11.0-13.0,Co≤1.00,Mo 3.8-5.2,Al 5.50-6.50,Ti 0.4-1.0,Nb 1.50-2.50,S≤0.015,P≤0.015,O≤0.02,N≤0.015,Fe≤0.50,B 0.005-0.01,Zr 0.050-0.150,Mn≤0.25,Si≤0.50,Cu≤0.50和余量的Ni组成。
3.根据权利要求1所述高铝钛K418B合金增材的制造方法,其特征在于:第三步中,激光功率为265-330W,激光扫描速率为955-1100mm·s-1,扫描线间距0.11-0.12mm。
4.根据权利要求1所述高铝钛K418B合金增材的制造方法,其特征在于:所述激光功率330W,激光扫描线速度1100mm·s-1,扫描线间距0.12mm。
5.根据权利要求1所述高铝钛K418B合金增材的制造方法,其特征在于:所述第四步中,粉末烘干的条件是100℃保温2小时,基板材质为钢板。
CN202110931351.4A 2021-08-13 2021-08-13 一种高铝钛k418b合金增材制造方法 Pending CN113814411A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110931351.4A CN113814411A (zh) 2021-08-13 2021-08-13 一种高铝钛k418b合金增材制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110931351.4A CN113814411A (zh) 2021-08-13 2021-08-13 一种高铝钛k418b合金增材制造方法

Publications (1)

Publication Number Publication Date
CN113814411A true CN113814411A (zh) 2021-12-21

Family

ID=78922844

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110931351.4A Pending CN113814411A (zh) 2021-08-13 2021-08-13 一种高铝钛k418b合金增材制造方法

Country Status (1)

Country Link
CN (1) CN113814411A (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538664A (zh) * 2008-03-19 2009-09-23 中国科学院金属研究所 一种低密度高熔点镍基高温合金及其制备工艺
CN102011004A (zh) * 2010-12-28 2011-04-13 江苏美特林科特殊合金有限公司 一种镍基镍硼中间合金及其制备方法
CN107790720A (zh) * 2017-11-21 2018-03-13 湖南顶立科技有限公司 一种高温合金增材制造方法
CN108555296A (zh) * 2018-05-07 2018-09-21 四川省有色冶金研究院有限公司 一种k465合金粉末的增材制造方法
CN110468305A (zh) * 2019-08-26 2019-11-19 飞而康快速制造科技有限责任公司 一种镍基高温合金及其制备方法
WO2020001848A1 (en) * 2018-06-26 2020-01-02 Siemens Aktiengesellschaft Control method for layerwise additive manufacturing, computer program product and control apparatus
CN111390180A (zh) * 2020-04-27 2020-07-10 南京国重新金属材料研究院有限公司 一种提高由激光选区熔化技术制造的gh3536合金的持久性能的方法
CN112317753A (zh) * 2020-11-13 2021-02-05 黑龙江省科学院高技术研究院 一种3d打印用球形镍基高温合金粉末的制备方法
CN112371996A (zh) * 2020-10-15 2021-02-19 航天海鹰(哈尔滨)钛业有限公司 一种基于激光选区熔化成形技术制备k418镍基高温合金增压涡轮的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101538664A (zh) * 2008-03-19 2009-09-23 中国科学院金属研究所 一种低密度高熔点镍基高温合金及其制备工艺
CN102011004A (zh) * 2010-12-28 2011-04-13 江苏美特林科特殊合金有限公司 一种镍基镍硼中间合金及其制备方法
CN107790720A (zh) * 2017-11-21 2018-03-13 湖南顶立科技有限公司 一种高温合金增材制造方法
CN108555296A (zh) * 2018-05-07 2018-09-21 四川省有色冶金研究院有限公司 一种k465合金粉末的增材制造方法
WO2020001848A1 (en) * 2018-06-26 2020-01-02 Siemens Aktiengesellschaft Control method for layerwise additive manufacturing, computer program product and control apparatus
CN110468305A (zh) * 2019-08-26 2019-11-19 飞而康快速制造科技有限责任公司 一种镍基高温合金及其制备方法
CN111390180A (zh) * 2020-04-27 2020-07-10 南京国重新金属材料研究院有限公司 一种提高由激光选区熔化技术制造的gh3536合金的持久性能的方法
CN112371996A (zh) * 2020-10-15 2021-02-19 航天海鹰(哈尔滨)钛业有限公司 一种基于激光选区熔化成形技术制备k418镍基高温合金增压涡轮的方法
CN112317753A (zh) * 2020-11-13 2021-02-05 黑龙江省科学院高技术研究院 一种3d打印用球形镍基高温合金粉末的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《工程材料实用手册》编辑委员会: "《工程材料实用手册(第2卷) 变形高温合金 铸造高温合金(第2版)》", vol. 2, 中国标准出版社, pages: 622 - 624 *

Similar Documents

Publication Publication Date Title
CN107747019B (zh) 一种Ni-Co-Cr-Al-W-Ta-Mo系高熵高温合金及其制备方法
CN108588498A (zh) 一种镍基梯度材料及选区激光熔化法制备镍基梯度材料的方法
CN105154701A (zh) 一种采用选择性激光熔化快速成形技术制备高温钛合金的方法
CN109967739B (zh) 一种基于增材制造技术制备梯度结构金属件的方法
CN103949646B (zh) 一种Nb-Si基超高温合金涡轮叶片的制备方法
CN108555296A (zh) 一种k465合金粉末的增材制造方法
CN103008657A (zh) 一种快速成形制备氧化物弥散强化合金的方法
CN102941343B (zh) 一种钛铝合金复杂零件的快速制造方法
US20220033946A1 (en) Composition design optimization method of aluminum alloy for selective laser melting
CN112371996A (zh) 一种基于激光选区熔化成形技术制备k418镍基高温合金增压涡轮的方法
CN103509973B (zh) 一种精密铸造的叶片及其制造方法
CN107338370B (zh) 一种k465镍基高温合金结构件的激光增材制造工艺
CN113305285A (zh) 用于增材制造的镍基高温合金金属粉末
CN112191843A (zh) 一种激光选区熔化制备Ti-1Al-8V-5Fe合金材料的方法
CN108339984A (zh) 基于丝材3d打印的铸锻件表面生长复杂结构的方法
CN115430844B (zh) 一种变层厚金属零件激光选区熔化成形方法
Raza et al. Modeling of the mechanical properties of directionally solidified Al-4.3% Cu alloy using response surface methodology
CN113897516A (zh) 镍基高温合金及其制备方法
CN113814411A (zh) 一种高铝钛k418b合金增材制造方法
WO2024021218A1 (zh) 钽钨合金制品及其制备方法
CN102230100A (zh) 一种粉末冶金法制备Ti-Nb-Zr-Sn合金的方法
CN114570941B (zh) 一种电子束制备17-4ph马氏体沉淀不锈钢的工艺
CN114559054A (zh) 一种激光粉末床熔融制备gh99镍基合金成形工艺
CN114951694A (zh) NiCr20TiAl合金的船用燃烧室SLM成型方法
CN112276112A (zh) 一种k438镍基高温合金激光增材制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination