CN113813406A - 一种mri和化学激发光动力治疗动脉粥样硬化的纳米颗粒 - Google Patents
一种mri和化学激发光动力治疗动脉粥样硬化的纳米颗粒 Download PDFInfo
- Publication number
- CN113813406A CN113813406A CN202111163702.8A CN202111163702A CN113813406A CN 113813406 A CN113813406 A CN 113813406A CN 202111163702 A CN202111163702 A CN 202111163702A CN 113813406 A CN113813406 A CN 113813406A
- Authority
- CN
- China
- Prior art keywords
- plys
- mpeg
- polyethylene glycol
- oxalate
- fecnps
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/08—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
- A61K49/10—Organic compounds
- A61K49/12—Macromolecular compounds
- A61K49/126—Linear polymers, e.g. dextran, inulin, PEG
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/21—Esters, e.g. nitroglycerine, selenocyanates
- A61K31/215—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
- A61K31/235—Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K41/00—Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
- A61K41/0057—Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
- A61K41/0071—PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/56—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
- A61K47/59—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
- A61K47/60—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K49/00—Preparations for testing in vivo
- A61K49/06—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
- A61K49/18—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
- A61K49/1818—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
- A61K49/1821—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
- A61K49/1824—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
- A61K49/1827—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
- A61K49/1851—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule
- A61K49/1857—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA
- A61K49/186—Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with an organic macromolecular compound, i.e. oligomeric, polymeric, dendrimeric organic molecule the organic macromolecular compound being obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. PLGA the organic macromolecular compound being polyethyleneglycol [PEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y15/00—Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Radiology & Medical Imaging (AREA)
- Urology & Nephrology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Vascular Medicine (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Emergency Medicine (AREA)
- Immunology (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明属于靶向动脉粥样硬化斑块的诊疗一体化纳米颗粒制备技术领域,提供一种结合MRI和过氧化氢激发光动力治疗动脉粥样硬化的纳米颗粒,所述纳米颗粒为Fe3+‑邻苯二酚交联的双草酸酯负载的mPEG‑Plys‑(DA‑Ce6)纳米颗粒FeCNPs,FeCNPs可以有效地聚集到动脉粥样硬化斑块中;FeCNPs在pH7.4和pH6.5条件下都表现出较钆双胺高的T1磁共振成像效果;在炎性巨噬细胞或泡沫巨噬细胞内过表达的高浓度过氧化氢的作用下,CPPO转化为高能中间体,该中间体将能量转移给光敏剂二氢卟吩e6(Ce6),受激发的光敏剂将氧转变为单线态氧,从而引起细胞死亡,实现针对动脉粥样硬化的化学激发光动力治疗。
Description
技术领域
本发明属于靶向动脉粥样硬化斑块的诊疗一体化纳米颗粒制备技术领域,具体涉及一种MRI和化学激发光动力治疗动脉粥样硬化的纳米颗粒及其制备方法。
背景技术
光动力疗法(PDT)已成为一种新兴的肿瘤治疗方法。光动力疗法具有创伤小,副作用小,选择性和适用性好等优势,它的功能需要三个要素:光敏剂、用于激活光敏剂的光源和氧。在激发光照射下,光敏剂将细胞内的氧转化为单线态氧,从而杀死目标细胞。而巨噬细胞在动脉粥样硬化斑块中大量富集,且对疾病的进展发挥重要作用,已经证明清除斑块内的巨噬细胞是治疗动脉粥样硬化的有效方法。因此,光动力疗法在治疗动脉粥样硬化上具有极大潜力。然而,近红外光的组织穿透深度只有几毫米,不能满足动脉粥样硬化的治疗要求,导致光动力疗法治疗动脉粥样硬化的试验大多停留在细胞层面。
为了克服光的组织穿透能力差的问题,当前多使用插入主动脉的光纤导管实现局部给药并激发光敏剂。但插入导管的方式也增加了感染的风险,这可能会促进动脉粥样硬化的进展。另一种方法是使用低强度超声(更强的组织穿透能力)激发光敏剂,也称为声动力疗法。尽管这两种方法在克服光穿透性差方面表现出明显的优势,但它们在斑块诊断和定位方面表现不理想,这对于提高治疗效果和减少副作用至关重要。
动脉粥样硬化是一种慢性炎症疾病,斑块内炎性巨噬细胞和泡沫巨噬细胞中高表达过氧化氢。化学激发光动力疗法是利用过氧化氢和高能化合物之间的化学反应来原位激发附近的光敏剂,摆脱了外部光源的限制,且提高了对板块中巨噬细胞的选择性杀伤。双草酸酯(CPPO)是常用的高能化合物,它可以和过氧化氢(H2O2)反应,产生化学能激活光敏剂。然而迄今为止,还没有化学激发光动力疗法治疗动脉粥样硬化的案例。
发明内容
为解决上述问题,本发明公开了一种结合磁共振成像(MRI)和化学激发光动力治疗动脉粥样硬化的纳米颗粒,克服了光动力疗法治疗疾病(如动脉粥样硬化)过程中外部光组织穿透能力差的缺陷,实现了炎症部位特定条件(高浓度过氧化氢)激发的光动力治疗。
为了达到上述目的,本发明提供如下技术方案:
本发明提供一种MRI和化学激发光动力治疗动脉粥样硬化的纳米颗粒,所述纳米颗粒为mPEG-Plys-(DA-Ce6)、双草酸酯、Fe3+的复合材料FeCNPs。
进一步地,所述mPEG-Plys-(DA-Ce6)的结构式如式Ⅰ所示:
其中,a为3~9的整数;b为2~5的整数;q为40~50的整数。
本发明还提供一种MRI和化学激发光动力治疗动脉粥样硬化的纳米颗粒的制备方法,包括以下步骤:
(1)将双草酸酯和mPEG-Plys-(DA-Ce6)溶于溶剂中,用纯水透析得到悬浮液;
(2)将悬浮液通过0.45μm孔径的微孔膜过滤获得负载双草酸酯的mPEG-Plys-(DA-Ce6)纳米颗粒;
(3)将FeCl3加入步骤(2)得到的负载双草酸酯的mPEG-Plys-(DA-Ce6)纳米颗粒中,避光搅拌,得到Fe3+-邻苯二酚交联的双草酸酯负载的mPEG-Plys-(DA-Ce6)纳米颗粒FeCNPs。
进一步地,所述步骤(1)中双草酸酯与mPEG-Plys-(DA-Ce6)的质量比为1:8~12;所述双草酸酯(mg)与溶剂(mL)的质量体积比为1:0.2~0.5。
进一步地,所述溶剂为二甲基亚砜、N, N-二甲基甲酰胺中的一种或多种。
进一步地,所述步骤(3)中FeCl3与负载双草酸酯的mPEG-Plys-(DA-Ce6)的邻苯二酚基团的质量比为1:0.6~1.5。
进一步地,所述mPEG-Plys-(DA-Ce6)的制备方法,包括以下步骤:
(1)将单甲醚聚乙二醇胺和N6-苄氧羰基-L-赖氨酸环内酸酐溶解在无水DMF中,氮气气氛下,35~45℃下反应48~72小时,减压除去溶剂,残余物溶于二氯甲烷后滴加于冰乙醚中,形成沉淀,得到聚乙二醇-聚苄氧羰基赖氨酸;
(2)将聚乙二醇-聚苄氧羰基赖氨酸溶解于三氟乙酸中,0~5℃下,滴加浓度为33wt%的溴化氢乙酸溶液,反应30~60分钟,升温至20~30℃继续反应1~2小时,反应液滴加至冰乙醚中,分离油状沉淀,纯化、冷冻干燥得到聚乙二醇-聚赖氨酸;
(3)将聚乙二醇-聚赖氨酸与活化的二氢卟吩e6混合,20~30℃搅拌反应24~48小时,加入活化的3,4-二羟基苯乙酸,继续搅拌反应24~48小时,过滤、纯化得到mPEG-Plys-(DA-Ce6)。
进一步地,所述步骤(1)中单甲醚聚乙二醇胺与N6-苄氧羰基-L-赖氨酸环内酸酐的质量比为1:1~2;所述单单甲醚聚乙二醇胺(g)与DMF(mL)的质量体积比为1:1~20;所述二氯甲烷与DMF的体积比为1:1~2。
进一步地,所述步骤(2)中聚乙二醇-聚苄氧羰基赖氨酸(g)与三氟乙酸(mL)的质量体积比为1:5~10;所述三氟乙酸与溴化氢乙酸溶液的体积比为1:1~2。
进一步地,所述步骤(3)中所述二氢卟吩e6与聚乙二醇-聚赖氨酸的质量比为1:2~3;所述3,4-二羟基苯乙酸与聚乙二醇-聚赖氨酸的质量比为1:2~3。
与现有技术相比,本发明具有如下优点和有益效果:
本发明提供的一种Fe3+-邻苯二酚交联的CPPO负载的mPEG-Plys-(DA-Ce6)纳米颗粒子FeCNPs,FeCNPs可以有效地聚集到动脉粥样硬化斑块中;FeCNPs在pH7.4和pH6.5条件下都表现出较钆双胺高的T1磁共振成像效果;在炎性巨噬细胞或泡沫巨噬细胞内过表达的高浓度过氧化氢的作用下,CPPO转化为高能中间体,该中间体将能量转移给光敏剂二氢卟吩e6(Ce6),受激发的光敏剂将氧转变为单线态氧,从而引起细胞死亡,实现针对动脉粥样硬化的化学激发光动力治疗。
附图说明
图1A为本发明纳米颗粒子FeCNPs的结构示意图,B为FeCNPs工作原理示意图;
图2为本发明纳米颗粒子FeCNPs的透射电镜图;
图3为本发明FeCNPs和钆双胺在pH7.4和6.5下的MRI图片和弛豫率,其中,左图为MRI图片,右图为弛豫率;
图4为本发明FeCNPs产生单线态氧随时间的变化图;
图5为FeCNPs与RAW264.7共孵育不同时间的共聚焦图像;
图6为本发明FeCNPs、CPPO和未载药纳米颗粒的细胞毒性,其中,A为未载药纳米颗粒、B为CPPO、C为FeCNPs;
图7为不同时间点钆双胺和FeCPNs对动脉粥样硬化斑块的磁共振成像图。
具体实施方式
以下将结合具体实施例对本发明提供的技术方案进行详细说明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
实施例1
聚合物mPEG-Plys-(DA-Ce6)的合成
将1g单甲醚聚乙二醇胺(Mw2000)和1gN6-苄氧羰基-L-赖氨酸环内酸酐溶解在10mL无水DMF中。在氮气气氛下于35℃搅拌3天。随后减压除去溶剂,将残余物溶解在10 mL二氯甲烷中,逐滴加入冰乙醚中,形成沉淀。重复沉淀操作3次,获得聚乙二醇-聚苄氧羰基赖氨酸。
取1g聚乙二醇-聚苄氧羰基赖氨酸溶于5 mL三氟乙酸中,0oC条件下,滴加5 mL溴化氢乙酸溶液(33wt%)。0oC条件下搅拌30分钟后,将反应在25oC下再搅拌1小时。随后将反应液滴加到冰乙醚中,分离出油状沉淀,并用纯水透析(MWCO 5000 Da)进一步纯化,最后冷冻干燥得到聚乙二醇-聚赖氨酸。
取0.56g聚乙二醇-聚赖氨酸,溶解在5 mL DMSO中,加入0.21 g NHS/DCC活化的二氢卟吩e6,25oC搅拌24小时,再加入0.25 g NHS/DCC活化的3,4-二羟基苯乙酸,25oC下再搅拌24小时。之后,将反应液过滤并用纯水透析纯化,得到聚合物mPEG-Plys-(DA-Ce6)。mPEG-Plys-(DA-Ce6)的结构如式Ⅰ所示:
其中,a为8;b为3;q为44。
实施例2
FeCNPs纳米颗粒的制备
5mg CPPO和50 mg mPEG-Plys-(DA-Ce6)溶解在2mL DMSO中,然后用纯水透析(MWCO 3500)24小时。之后,将悬浮液通过0.45μm孔径的微孔膜过滤获得负载CPPO的mPEG-Plys-(DA-Ce6)纳米颗粒53.6mg;加入3.6 mgFeCl3,避光搅拌30min,得到FeCNPs,其结构示意图如图1所示,透射电镜图如图2所示。
实施例3
体外MRI成像实验
钆双胺:欧乃影®通用电气药业(上海);
FeCNPs采用上述方法制得。
分别用磷酸缓冲溶液配置pH为7.4和6.5的钆双胺和FeCNPs,其中Gd或Fe的摩尔浓度分别0.1、0.2、0.4、0.6和0.8 mM。体外分别测试其MRI信号值,拟合曲线,计算弛豫率,结果如图3所示。
尽管当pH从7.4变为6.5后,FeCNPs的弛豫率减小了5.6%,而钆双胺的弛豫率增大了54%,但是FeCNPs的弛豫率是钆双胺的2.86倍以上。以上结果表明,FeCNPs的MRI效果优于临床使用的钆双胺。
实施例4
使用单线态氧特异性分子探针9,10-蒽基-双(亚甲基)二丙二酸(ABDA)研究了在过氧化氢存在下由FeCNPs产生的单线态氧。将ABDA添加到FeCNPs悬浮液中,FeCNPs和ABDA的最终浓度分别为0.5mg/mL和100μM。将混合物分成五等份装在小瓶中,并在37oC下避光孵育。同时将过氧化氢添加到每个小瓶中至终浓度为10mM,每两分钟测量一个小瓶的紫外吸收光谱光谱;FeCNPs产生单线态氧随时间的变化如图4所示,随着孵育时间的延长,ABDA的吸收强度逐渐降低,表明单线态氧的逐渐生成。
实施例5
将小鼠巨噬细胞RAW264.7接种在玻璃底板中并孵育12小时。细胞与磷酸缓冲液配制的FeNPs (0.2 mg/mL)共培养1小时、3小时和6小时,然后吸取上清液,用4%多聚甲醛固定并用DAPI标记。通过共聚焦激光扫描显微镜(CLSM,Leica SP5)拍摄细胞的荧光图像,如图5所示,随着培养时间的延长,细胞内观察到的荧光越来越强,表明更多的FeCNPs被细胞摄取。
实施例6
取经LPS刺激小鼠巨噬细胞RAW264.7和经oxLDL刺激的RAW264.7,分别接种在96孔板中,用不同浓度的未载CPPO的纳米颗粒(FeNPs:Fe3+-邻苯二酚交联的mPEG-Plys-(DA-Ce6)纳米粒),CPPO和FeCNPs处理细胞48h,MTT法计算细胞存活率。测试结果如图6所示,在测试浓度下,未载药纳米颗粒和CPPO几乎没有细胞毒性,而FeCNPs表现出明显的浓度依赖性细胞毒性,且RAW264.7细胞经刺激后,FeCNPs的细胞毒性更强。
实施例7
取2只经过4周高脂饮食的ApoE-/-小鼠,分别尾静脉注射0.2 mL gadodiamide(50mM)和FeCNPs(3.5 mg/mL),立即进行磁共振成像,并且每隔半个小时再次成像。如图7所示,与gadodiamide相比,FeCNPs可以有效地聚集到动脉粥样硬化斑块中,增强斑块的T1磁共振造影,观察到明显的动脉粥样硬化斑块。
综上所述,FeCNPs可以有效地被巨噬细胞摄取,例如,动脉粥样硬化斑块,利用炎症部位的氧化应激,实现诊断-治疗一体的MRI成像和光动力治疗。
本发明方案所公开的技术手段不仅限于上述实施方式所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
Claims (10)
1.一种MRI和化学激发光动力治疗动脉粥样硬化的纳米颗粒,其特征在于,所述纳米颗粒为包括mPEG-Plys-(DA-Ce6)、双草酸酯、Fe3+的复合材料FeCNPs。
3.一种如权利要求1-2任一项所述的MRI和化学激发光动力治疗动脉粥样硬化的纳米颗粒的制备方法,其特征在于,包括以下步骤:
(1)将双草酸酯和mPEG-Plys-(DA-Ce6)溶于溶剂中,用纯水透析得到悬浮液;
(2)将悬浮液通过0.45μm孔径的微孔膜过滤获得负载双草酸酯的mPEG-Plys-(DA-Ce6)纳米颗粒;
(3)将FeCl3加入步骤(2)得到的负载双草酸酯的mPEG-Plys-(DA-Ce6)纳米颗粒中,避光搅拌,得到FeCNPs。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤(1)中双草酸酯与mPEG-Plys-(DA-Ce6)的质量比为1:8~12;所述双草酸酯与溶剂的质量体积比为1:0.2~0.5。
5.根据权利要求4所述的制备方法,其特征在于,所述溶剂为二甲基亚砜、N, N-二甲基甲酰胺中的一种或多种。
6.根据权利要求3所述的制备方法,其特征在于,所述步骤(3)中FeCl3与负载双草酸酯的mPEG-Plys-(DA-Ce6)的质量比为1: 7~18。
7.根据权利要求3所述的制备方法,其特征在于,所述mPEG-Plys-(DA-Ce6)的制备方法,包括以下步骤:
(1)将单甲醚聚乙二醇胺和N6-苄氧羰基-L-赖氨酸环内酸酐溶解在无水DMF中,氮气气氛下,35~45℃下反应48~72小时,减压除去溶剂,残余物溶于二氯甲烷后滴加于冰乙醚中,形成沉淀,得到聚乙二醇-聚苄氧羰基赖氨酸;
(2)将聚乙二醇-聚苄氧羰基赖氨酸溶解于三氟乙酸中,0~5℃下,滴加浓度为33wt%的溴化氢乙酸溶液,反应30~60分钟,升温至20~30℃继续反应1~2小时,反应液滴加至冰乙醚中,分离油状沉淀,纯化、冷冻干燥得到聚乙二醇-聚赖氨酸;
(3)将聚乙二醇-聚赖氨酸与活化的二氢卟吩e6混合,20~30℃搅拌反应24~48小时,加入活化的3,4-二羟基苯乙酸,继续搅拌反应24~48小时,过滤、纯化得到mPEG-Plys-(DA-Ce6)。
8.根据权利要求7所述的制备方法,其特征在于,所述步骤(1)中单甲醚聚乙二醇胺与N6-苄氧羰基-L-赖氨酸环内酸酐的质量比为1:1~2;所述单甲醚聚乙二醇胺与DMF的质量体积比为1:1~20;所述二氯甲烷与DMF的体积比为1:1~2。
9.根据权利要求7所述的制备方法,其特征在于,所述步骤(2)中聚乙二醇-聚苄氧羰基赖氨酸与三氟乙酸的质量体积比为1:5~10;所述三氟乙酸与溴化氢乙酸溶液的体积比为1:1~2。
10.根据权利要求7所述的制备方法,其特征在于,所述步骤(3)中所述二氢卟吩e6与聚乙二醇-聚赖氨酸的质量比为1:2~3;所述3,4-二羟基苯乙酸与聚乙二醇-聚赖氨酸的质量比为1:2~3。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111163702.8A CN113813406B (zh) | 2021-09-30 | 2021-09-30 | 一种mri和化学激发光动力治疗动脉粥样硬化的纳米颗粒 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111163702.8A CN113813406B (zh) | 2021-09-30 | 2021-09-30 | 一种mri和化学激发光动力治疗动脉粥样硬化的纳米颗粒 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113813406A true CN113813406A (zh) | 2021-12-21 |
CN113813406B CN113813406B (zh) | 2023-03-24 |
Family
ID=78919918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111163702.8A Active CN113813406B (zh) | 2021-09-30 | 2021-09-30 | 一种mri和化学激发光动力治疗动脉粥样硬化的纳米颗粒 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113813406B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116850300A (zh) * | 2023-07-04 | 2023-10-10 | 深圳市第二人民医院(深圳市转化医学研究院) | 一种同时负载能量供体和受体的载药铁蛋白及其制备方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103585644A (zh) * | 2013-11-13 | 2014-02-19 | 苏州大学 | 一种聚乙二醇修饰的磁性纳米颗粒及其应用 |
-
2021
- 2021-09-30 CN CN202111163702.8A patent/CN113813406B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103585644A (zh) * | 2013-11-13 | 2014-02-19 | 苏州大学 | 一种聚乙二醇修饰的磁性纳米颗粒及其应用 |
Non-Patent Citations (1)
Title |
---|
CHAEMIN LIM等: "A charge-reversible nanocarrier using PEG-PLL(-g-Ce6,DMA)-PLA for photodynamic therapy", 《INTERNATIONAL JOURNAL OF NANOMEDICINE》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116850300A (zh) * | 2023-07-04 | 2023-10-10 | 深圳市第二人民医院(深圳市转化医学研究院) | 一种同时负载能量供体和受体的载药铁蛋白及其制备方法 |
CN116850300B (zh) * | 2023-07-04 | 2024-05-28 | 深圳市第二人民医院(深圳市转化医学研究院) | 一种同时负载能量供体和受体的载药铁蛋白及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113813406B (zh) | 2023-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Acetylated hyaluronic acid/photosensitizer conjugate for the preparation of nanogels with controllable phototoxicity: synthesis, characterization, autophotoquenching properties, and in vitro phototoxicity against HeLa cells | |
Li et al. | Hyaluronic acid-conjugated graphene oxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy | |
Yao et al. | Construction of magnetic-carbon-quantum-dots-probe-labeled apoferritin nanocages for bioimaging and targeted therapy | |
Li et al. | Synthesis and biological evaluation of peptide-conjugated phthalocyanine photosensitizers with highly hydrophilic modifications | |
US9750827B2 (en) | Near-infrared dye-conjugated hyaluronic acid derivative and contrast agent for optical imaging including them | |
KR20140027096A (ko) | 광역학 진단 또는 치료를 위한 결합체 및 이의 제조방법 | |
Wang et al. | An intelligent and biocompatible photosensitizer conjugated silicon quantum dots–MnO 2 nanosystem for fluorescence imaging-guided efficient photodynamic therapy | |
CN105288623B (zh) | 一种用于肿瘤治疗的药物及其制备方法 | |
Xia et al. | Enhanced photodynamic therapy through supramolecular photosensitizers with an adamantyl-functionalized porphyrin and a cyclodextrin dimer | |
CN113248408B (zh) | 一种多模态分子影像探针P-FFGd-TCO及其制备方法与应用 | |
He et al. | D‐type neuropeptide decorated AIEgen/RENP hybrid nanoprobes with light‐driven ROS generation ability for NIR‐II fluorescence imaging‐guided through‐skull photodynamic therapy of gliomas | |
CN113813406B (zh) | 一种mri和化学激发光动力治疗动脉粥样硬化的纳米颗粒 | |
Zhang et al. | GSH-triggered size increase of porphyrin-containing nanosystems for enhanced retention and photodynamic activity | |
Wei et al. | Excitation-selectable nanoprobe for tumor fluorescence imaging and near-infrared thermal therapy | |
KR20160003488A (ko) | 히알루론산-탄소나노물질 결합체 및 이를 포함하는 광역학 치료용 조성물 | |
Guo et al. | Chlorin e6-loaded goat milk-derived extracellular vesicles for Cerenkov luminescence-induced photodynamic therapy | |
CN113694023A (zh) | 一种氧化响应型纳米胶束及其制法与应用 | |
Zhang et al. | Versatile gadolinium (III)-phthalocyaninate photoagent for MR/PA imaging-guided parallel photocavitation and photodynamic oxidation at single-laser irradiation | |
Gao et al. | Water-soluble dendritic polyaspartic porphyrins: potential photosensitizers for photodynamic therapy | |
CN110354276B (zh) | 一种前药及其制备方法和应用 | |
WO2017123052A1 (ko) | 이미징 및 다중 광 치료용 광분해성 나노입자 및 이의 용도 | |
CN115887686A (zh) | 一种ros响应释放的抗肿瘤纳米前药及其制备方法和应用 | |
CN111973742B (zh) | 一种能够可视化指导光动力治疗的纳米探针及其制备方法与应用 | |
KR101701036B1 (ko) | 폴리에틸렌글리콜 숲을 이용한 광역학 치료용 고분자 나노접합체 및 이의 제조방법 | |
CN114209850A (zh) | 一种负载阿霉素靶向碳点的制备及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |