CN113809190B - 一种全无机钙钛矿薄膜的低温制备方法及其应用 - Google Patents

一种全无机钙钛矿薄膜的低温制备方法及其应用 Download PDF

Info

Publication number
CN113809190B
CN113809190B CN202111072739.XA CN202111072739A CN113809190B CN 113809190 B CN113809190 B CN 113809190B CN 202111072739 A CN202111072739 A CN 202111072739A CN 113809190 B CN113809190 B CN 113809190B
Authority
CN
China
Prior art keywords
inorganic perovskite
solvent
film
precursor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111072739.XA
Other languages
English (en)
Other versions
CN113809190A (zh
Inventor
吴武强
田甜
杨梅芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
Original Assignee
Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University filed Critical Sun Yat Sen University
Priority to CN202111072739.XA priority Critical patent/CN113809190B/zh
Publication of CN113809190A publication Critical patent/CN113809190A/zh
Application granted granted Critical
Publication of CN113809190B publication Critical patent/CN113809190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于钙钛矿太阳能电池技术领域,具体涉及一种全无机钙钛矿薄膜的低温制备方法及其应用,本发明采用普适性极强的晶体回溶以及有机配体辅助的溶液法,回溶后获得的前驱体溶剂2可以通过旋涂法、刮涂法、滴涂法、喷涂法等任意成膜方法在30~150℃的热基板上获得均匀致密的黑相全无机钙钛矿薄膜,在不采用热基板的情况下,也可以采用一步或者二步退火处理得到,且成膜温度低;实现了低温制备高稳定性的ABX3钙钛矿薄膜的目的,且获得的全无机钙钛矿薄膜晶粒尺寸大小分布均匀且覆盖率较高,在可见光与近红外光波长区域具有很好的吸光活性,并且具有极高的稳定性,制备得到的太阳电池器件可实现超过6%的光电转换效率。

Description

一种全无机钙钛矿薄膜的低温制备方法及其应用
技术领域
本发明属于钙钛矿太阳能电池技术领域,具体涉及一种全无机钙钛矿薄膜的低温制备方法及其应用。
背景技术
近年来,钙钛矿太阳能电池因具有高光电转换效率和简易溶液法制备的优势,成为最具发展潜力的光伏技术之一。目前,钙钛矿太阳能电池的光电转化效率(PCE)已从3.8%迅速提升到25.5%的认证效率。研究发现,有机无机杂化钙钛矿材料在高的温度、氧气和湿度条件下,其组分容易发生分解而导致光学活性失效,从而降低器件的性能和稳定性。而全无机钙钛矿ABX3材料由于无机阳离子取代了挥发性有机无机杂化钙钛矿中的有机阳离子,展现出更好的薄膜和器件稳定性。
自2012年以来,经国内外研究团队的深入研究,已将全无机钙钛矿太阳电池的PCE从0.88%提高到了20.80%。虽然,基于全无机钙钛矿的太阳电池在近几年有了突飞猛进的进展,但如何稳定具有高光学活性的晶相仍然是全无机钙钛矿材料和光电器件发展所面临的主要挑战。以CsPbI3为例,黑色立方相的CsPbI3(a-CsPbI3)具有~1.73eV的带隙,是构建晶硅叠层太阳电池的理想材料之一。但是,CsPbI3钙钛矿由于其小尺寸的Cs+与大半径的I-不匹配,加剧了晶体结构中Pb-I的畸变,造成CsPbI3晶体结构容忍因子小,易发生相变。a-CsPbI3薄膜通常需要~350℃左右的高温退火制备,而冷却至室温的过程中a-CsPbI3很容易相变成黄色非钙钛矿相(d-CsPbI3)。而在X位掺入其它卤素阴离子是提高全无机钙钛矿材料和薄膜稳定性的一种有效策略,其中以I与Br的结合最为常见。Br的引入虽然会降低钙钛矿薄膜的退火温度(如CsPbI2Br为260℃、CsPbIBr2为250℃),但仍然需要较高的操作温度。通常,组分里的Br-含量越多,CsPbX3薄膜的带隙越大,相稳定性也越好。但目前针对CsPbX3的研究,基于CsPbI3和CsPbI2Br组分的电池效率较高,但稳定性较差。而基于CsPbIBr2和CsPbBr3组分的电池虽然稳定性得以改善,但是局限于其较大的光学带隙,导致效率较低。
可见,全无机钙钛矿ABX3的制备不仅需要较高的温度才能获得具有高光学活性的晶相,而且依然面临着易相变的难题,使得器件的效率和稳定性的进一步提高依然面临着巨大的挑战。因此,有必要研制一种新的全无机钙钛矿ABX3材料的制备方法,以降低其制备温度,并改善其稳定性。
发明内容
为了克服上述现有技术的不足,本发明提出了一种全无机钙钛矿薄膜的低温制备方法,采用普适性极强的晶体回溶以及有机配体辅助的溶液法,实现了低温制备高稳定性的ABX3钙钛矿薄膜的目的,从而使其可以应用于制备太阳能电池器件。
为了实现上述目的,本发明所采用的技术方案是:
本发明提供了一种全无机钙钛矿薄膜的低温制备方法,包括以下步骤:
S1、将金属卤化物BX2和无机卤化盐AX溶解于有机溶剂中,获得全无机钙钛矿ABX3前驱体溶剂1;
S2、将前驱体溶剂1注入高速搅拌的抗溶剂中,析出晶体并烘干后获得全无机钙钛矿粉末,将所述粉末回溶到有机溶剂中,获得前驱体溶剂2;
S3、往前驱体溶剂2中添加氢碘酸(HI)和二甲氨基苯乙烯基甲基吡啶盐类修饰剂(对全无机钙钛矿的缺陷进行钝化)后,在30~150℃下经成膜即可制备得到全无机钙钛矿薄膜。
优选地,在所述全无机钙钛矿ABX3前驱体溶剂1中,所述A选自Cs+,Rb+中的一种或两种,B选自Pb2+,Sn2+中的一种或两种,X选自Cl-,Br-,I-中的一种或多种的混合。进一步地,所述A为Cs+,B为Pb2+,X为I-或I-与r-的混合物。
优选地,前驱体溶剂1和前驱体溶剂2的摩尔浓度相同,均为0.5~1.5M。进一步地,前驱体溶剂1和前驱体溶剂2的摩尔浓度均为1.0M。
优选地,步骤S2所述的有机溶剂与步骤S1所述的有机溶剂相同,所述有机溶剂选自DMSO(二甲基亚砜)、MF(甲酸甲酯)、DMAC(二甲基乙酰胺)、NMF-1(N-甲基甲酰胺-1)、NMF-2(N-甲基甲酰胺-2)和NMP(1-甲基2-吡咯烷)中的一种或多种的混合。进一步地,所述有机溶剂为DMSO和DMF混合溶液,DMSO与DMF的体积比为2:3。
优选地,所述抗溶剂选自甲醇、乙醇、正丙醇、异丙醇、丁醇、异丁醇、2-丁醇、戊醇、异戊醇、乙二醇、丙三醇、丙酮、丁酮、甲醚、乙醚、乙二醇丙醚、乙二醇丁醚、乙二醇己醚、乙腈、丙烯腈、氯仿、四氯化碳、二氯乙烷、二硫化碳和环己烷中的一种或多种的混合。进一步地,所述抗溶剂为甲醇。
优选地,所述二甲氨基苯乙烯基甲基吡啶盐类修饰剂选自DAST【4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲苯磺酸盐】、DSTMS【4-(4-二甲氨基苯乙烯基)甲基吡啶2,4,6-三甲基苯磺酸盐】、DSNS-1(甲基吡啶萘磺酸盐)、DSSS【4-(4-二甲氨基苯乙烯基)甲基吡啶对乙烯基苯磺酸盐】、DSNS-2【4-(4-二甲氨基苯乙烯基)甲基吡啶2-萘磺酸盐】、DSPAS【4-(4-二甲氨基苯乙烯基)甲基吡啶对苯氨基苯磺酸】、DSANS(4-(4-二甲氨基苯乙烯基)甲基吡啶4-氨基萘磺酸)、DSMO(4-(4-二甲氨基苯乙烯基)甲基吡啶4-(4-二甲氨基苯基)偶氮甲基苯磺酸)、DSDMS和DSCS中的一种或多种的混合,添加量为0.01M~0.5M。进一步地,所述二甲氨基苯乙烯基甲基吡啶盐类修饰剂为DAST。
优选地,所述氢碘酸的添加量为前驱体溶剂2体积的0.05%~2%。进一步地,所述氢碘酸的添加量为前驱体溶剂2体积的0.1%。
优选地,所述成膜的方法普适性极强,成膜的方法包括但不限于吹气法(氮气、氩气和氦气,操作温度范围30~70℃)、热旋涂法(转速:2000rpm~10000rpm,操作温度:60~150℃)、吹气辅助旋涂法(转速:2000rpm~10000rpm,使用氮气、氩气或氦气等惰性气体,操作温度范围25~70℃)、热刮涂法(操作温度:60~150℃)、吹气辅助刮涂法(使用氮气、氩气或氦气等惰性气体,操作温度范围25~70℃)、抗溶剂辅助旋涂法(转速:2000rpm~10000rpm,操作温度:60~150℃)、狭缝涂布法、滴涂法以及喷涂法等。
此外,在不采用热基板的情况下,也可以采用一步或者二步退火法进行成膜。其中,一步退火处理的温度为80~150℃,退火时间为1~60分钟;二步退火处理的温度为:先50~90℃退火5~30分钟,然后再90~150℃退火5~30分钟。
本发明还提供了采用上述的制备方法制备得到的全无机钙钛矿薄膜。
本发明还提供了采用上述的全无机钙钛矿薄膜在制备太阳能电池中的应用。
本发明还提供了一种基于全无机钙钛矿薄膜的太阳电池器件,所述太阳电池器件为平面结构或者介孔结构,从下到上依次包括导电基底、电子传输层、采用上述的制备方法制备得到的全无机钙钛矿薄膜、空穴传输层以及顶电极。
优选地,所述电子传输层致密或介孔结构的电子传输层。所述电子传输层可为TiO2、ZnO和SnO2等金属氧化物或富勒烯及其衍生物(C60,PCBM,ICBA等)中的任一种。
优选地,所述导电基底可为氟掺杂的二氧化锡(FTO)导电玻璃、铟掺杂的二氧化锡(ITO)导电玻璃或柔性导电塑料(PET/ITO)等。
优选地,所述空穴传输层材料选自P3HT、PTAA、Spiro-OMeTAD、CuSCN、CuI、PEDOT:PSS、PolyTPD和NiOx中的任一种。
优选地,所述顶电极为功函数较高的金属材料,包括但不限于金(Au)、银(Ag)、铜(Cu);或导电碳材料,包括但不限于碳纳米颗粒、碳纳米管、石墨烯、石墨炔。
与现有技术相比,本发明的有益效果是:
本发明提供了一种全无机钙钛矿薄膜的低温制备方法,先将金属卤化物BX2和无机卤化盐AX粉末溶解于有机溶剂中,获得全无机钙钛矿ABX3前驱体溶剂1,将前驱体溶剂1注入到快速搅拌的抗溶剂中,析出晶体以及烘干后获得全无机钙钛矿粉末,然后将上述粉末回溶到有机溶剂中,获得前驱体溶剂2,再添加氢碘酸和二甲氨基苯乙烯基甲基吡啶盐类修饰剂后,该前驱体溶液2可以通过旋涂法、刮涂法、滴涂法、喷涂法等任意成膜方法在30~150℃的热基板上获得均匀致密的黑相全无机钙钛矿薄膜,在不采用热基板的情况下,也可以采用一步或者二步退火处理得到均匀致密的黑相全无机钙钛矿薄膜,且成膜温度低。可见,本发明采用普适性极强的晶体回溶以及有机配体辅助的溶液法,实现了低温制备高稳定性的ABX3钙钛矿薄膜的目的,且获得的全无机钙钛矿薄膜晶粒尺寸大小分布均匀且覆盖率较高,在可见光与近红外光波长区域具有很好的吸光活性,并且具有极高的稳定性,可应用于太阳能电池、发光以及光电探测等领域,制备得到的太阳电池器件可实现超过6%的光电转换效率。
附图说明
图1为无机钙钛矿CsPbI3薄膜的制备流程图;
图2为实施例1中直接旋涂前驱体溶剂2制备得到的CsPbI3薄膜的SEM图;
图3为实施例1中直接旋涂前驱体溶剂1制备得到的CsPbI3薄膜的SEM图;
图4为实施例1中旋涂前驱体溶剂1和前驱体溶剂2的CsPbI3薄膜的紫外可见吸收光谱图;
图5为旋涂前驱体溶剂2获得的CsPbI3钙钛矿薄膜在放置3周后的XRD衍射图谱;
图6为实施例2中直接刮涂前驱体溶剂2制备的CsPbI3薄膜的SEM图;
图7为实施例3中制备的高性能太阳能电池的J-V测试曲线以及其电池结构图。
具体实施方式
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到。
实施例1一种全无机钙钛矿CsPbI3薄膜的低温制备方法
成膜方法为旋涂法,操作过程如图1所示,具体包括以下步骤:
(1)选用CsI、PbI2为钙钛矿前驱体溶液的原料,按1:1的摩尔比溶解在DMSO和DMF混合溶液中,DMSO与DMF的体积比为2:3,60℃下搅拌2小时,配置得到1M的无机钙钛矿前驱体溶剂1;
(2)将无机钙钛矿前驱体溶剂1(1mL)注入到高速搅拌的5mL(800rpm/min)甲醇溶剂中,析出晶体并烘干后获得全无机钙钛矿粉末,将得到的全无机钙钛矿粉末重新溶解到DMSO和DMF混合溶液中,获得前驱体溶剂2(1M);
(3)向前驱体溶剂2中加入HI(相当于前驱体溶液体积比的0.1%)和DAST(二甲氨基苯乙烯基甲基吡啶盐类修饰剂中的一种,添加量为0.01M)后,将前驱体溶剂2预热至80℃后,在120℃的预热基板(1.5cm×1.5cm)上,使用旋涂法进行铺展,旋涂的转速为7000rpm/min,制备得到全无机钙钛矿CsPbI3薄膜。通过电子扫描图(SEM)进行表征,本实施例的薄膜形貌如图2所示。可以看出本实施例制备的全无机钙钛矿CsPbI3薄膜的晶粒尺寸大小为150nm左右,均匀地覆盖在基底表面。
同时,为了进一步说明再沉淀法可以对CsPbI3的晶体大小和形貌进行调控,直接以前驱体溶剂1进行旋涂,其微观相貌如图3所示。可以看出直接前驱体溶剂1制备的全无机钙钛矿CsPbI3薄膜的晶粒尺寸大小分布极不均且覆盖率较低,这根本无法使其应用在太阳能电池上。
进一步对采用前驱体溶液1和前驱体溶液2旋涂得到的CsPbI3薄膜进行紫外可见吸收光谱观察(图4),可以看出前驱体1的CsPbI3薄膜的光吸收在450nm处急剧下降,这一现象符合非钙钛矿相的CsPbI3的吸收结果。而前驱体2制备的CsPbI3薄膜的光吸收边约为740nm,即吸收边带在540-770nm之间,说明其在可见光与近红外光波长区域具有很好的吸光活性。
此外,对旋涂前驱体2获得的CsPbI3钙钛矿薄膜进行XRD衍射图谱分析。如图5所示,其中在14.85°、20.97°、23.14°和29.64°处对应的衍射峰分别代表黑相CsPbI3钙钛矿晶体的(100)、(110)、(111)和(200)晶面。*标的衍射峰归属于FTO导电玻璃基底。此外,室外放置3周后薄膜的XRD谱图并没有检测到在12.65°归属于PbI2以及在10.2°归属于黄色非钙钛矿相(δ相)的衍射峰,说明使用本发明方法获得了纯黑相(α或β相)且稳定性好的CsPbI3无机钙钛矿薄膜。
实施例2一种全无机钙钛矿CsPbI3薄膜的低温制备方法
具体制备方法同实施例1,不同点在于,本实施例的成膜方法为刮涂法。即在100℃的预热FTO基板上,使用热刮涂法进行成膜。此外,也可以使用吹气辅助刮涂法成膜,使用氮气吹气,操作温度为60℃,吹氮气可以加速DMF/DMSO溶剂的快速挥发,从而实现CsPbI3薄层在FTO基板上的均匀覆盖。本实施例的CsPbI3薄膜的微观形貌如图6所示。可以看出本实施例制备的全无机钙钛矿CsPbI3薄膜的晶粒尺寸大小分布均匀且覆盖率较高。
实施例3一种基于全无机钙钛矿CsPbI3薄膜的太阳电池器件的制备
所述太阳电池器件的结构如图7所示,从下到上依次包括FTO导电玻璃衬底、SnO2电子传输层、实施例1的全无机钙钛矿CsPbI3薄膜、Spiro-OMeTAD空穴传输层以及Au电极。
具体制备方法包括以下步骤:
(1)将氟掺杂的FTO导电玻璃衬底依次置于去离子水、丙酮和异丙醇中,分别超声清洗20分钟,然后氮气枪吹干备用。配制浓度为6mg/mL的SnO2水溶液,将该溶液旋涂于干净的FTO导电玻璃衬底(1.5cm×1.5cm)表面,旋涂转速为5000rpm/min,旋涂时间为30秒;然后于加热台(150℃)上放置30分钟待溶剂挥发完全后得到厚度20nm的SnO2电子传输层;
(2)将实施1中的配制的前驱体溶液2(加入HI和DAST后)旋涂在90°预热后的FTO/SnO2电子传输层基底上,旋涂转速为5000rpm/min,旋涂时间为50s,得到厚度300~500nm的CsPbI3层;
(3)将520mg的LiTFSI溶解于1mL乙腈中,得到LiTFSI的乙腈溶液;再量取17.5μLLiTFSI的乙腈溶液、72.3mg Spiro-OMeTAD和28.8μL 4-叔丁基吡啶溶解于1mL氯苯中,搅拌后得到Spiro-OMeTAD空穴传输层溶液;将Spiro-OMeTAD空穴传输层溶液旋涂于CsPbI3钙钛矿薄膜表面,旋涂转速为4000rpm/min,旋涂时间为30s,无需退火处理,得到厚度为150nm的Spiro-OMeTAD空穴传输层;
(4)在真空度为5×10-4Pa真空条件下,在Spiro-OMeTAD空穴传输层表面蒸镀80nm厚的Au电极,制备得到基于全无机钙钛矿CsPbI3薄膜的太阳电池器件。
对制备得到的太阳电池器件进行J-V曲线测试,由图7可以看出采用本发明方法制备的CsPbI3钙钛矿薄膜是具有光伏活性的,可以实现超过6%的光电转换效率(PCE),因此可以应用在太阳能电池器件上。
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。

Claims (7)

1.一种全无机钙钛矿薄膜的低温制备方法,其特征在于,包括以下步骤:
S1、将金属卤化物BX2和无机卤化盐AX溶解于有机溶剂中,获得全无机钙钛矿ABX3前驱体溶剂1;在所述全无机钙钛矿ABX3前驱体溶剂1中,所述A选自Cs+,Rb+中的一种或两种,B选自Pb2+,Sn2+中的一种或两种,X选自Cl-,Br-,I-中的一种或多种的混合;
S2、将前驱体溶剂1注入高速搅拌的抗溶剂中,析出晶体并烘干后获得全无机钙钛矿粉末,将所述粉末回溶到有机溶剂中,获得前驱体溶剂2;所述抗溶剂选自甲醇、乙醇、正丙醇、异丙醇、丁醇、戊醇、乙二醇、丙三醇、丙酮、丁酮、甲醚、乙醚、乙二醇丙醚、乙二醇丁醚、乙二醇己醚、乙腈、丙烯腈、氯仿、四氯化碳、二氯乙烷、二硫化碳和环己烷中的一种或多种的混合;
S3、往前驱体溶剂2中添加氢碘酸和二甲氨基苯乙烯基甲基吡啶盐类修饰剂后,在30~150℃下经成膜即可制备得到全无机钙钛矿薄膜;所述二甲氨基苯乙烯基甲基吡啶盐类修饰剂选自DAST、DSTMS、DSNS-1、DSSS、DSDMS、DSNS-2、DSPAS、DSANS、DSMO和DSCS中的一种或多种的混合,添加量为0.01M~0.5M。
2.根据权利要求1所述的一种全无机钙钛矿薄膜的低温制备方法,其特征在于,前驱体溶剂1和前驱体溶剂2的摩尔浓度相同,均为0.5~1.5M。
3.根据权利要求1所述的一种全无机钙钛矿薄膜的低温制备方法,其特征在于,步骤S2所述的有机溶剂与步骤S1所述的有机溶剂相同,所述有机溶剂选自DMSO、DMF、DMAC、NMF-1、NMF-2和NMP中的一种或多种的混合。
4.根据权利要求1所述的一种全无机钙钛矿薄膜的低温制备方法,其特征在于,所述氢碘酸的添加量为前驱体溶剂2体积的0.05%~2%。
5.采用权利要求1-4任一项所述的制备方法制备得到的全无机钙钛矿薄膜。
6.权利要求5所述的全无机钙钛矿薄膜在制备太阳能电池中的应用。
7.一种基于全无机钙钛矿薄膜的太阳电池器件,其特征在于,所述太阳电池器件从下到上依次包括导电基底、电子传输层、权利要求5所述的全无机钙钛矿薄膜、空穴传输层以及顶电极。
CN202111072739.XA 2021-09-14 2021-09-14 一种全无机钙钛矿薄膜的低温制备方法及其应用 Active CN113809190B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111072739.XA CN113809190B (zh) 2021-09-14 2021-09-14 一种全无机钙钛矿薄膜的低温制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111072739.XA CN113809190B (zh) 2021-09-14 2021-09-14 一种全无机钙钛矿薄膜的低温制备方法及其应用

Publications (2)

Publication Number Publication Date
CN113809190A CN113809190A (zh) 2021-12-17
CN113809190B true CN113809190B (zh) 2024-07-19

Family

ID=78895268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111072739.XA Active CN113809190B (zh) 2021-09-14 2021-09-14 一种全无机钙钛矿薄膜的低温制备方法及其应用

Country Status (1)

Country Link
CN (1) CN113809190B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115124256B (zh) * 2022-06-24 2024-02-20 北京大学深圳研究生院 一种全无机钙钛矿薄膜制备方法及窄带光电探测器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061139A (zh) * 2013-12-17 2019-07-26 牛津大学科技创新有限公司 包含金属卤化物钙钛矿和钝化剂的光伏装置
CN113130765A (zh) * 2021-04-13 2021-07-16 吉林大学 一种基于无机CsPbI2Br粉末的钙钛矿太阳能电池及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112382724A (zh) * 2020-10-30 2021-02-19 中国科学院青岛生物能源与过程研究所 一种制备钙钛矿薄膜的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061139A (zh) * 2013-12-17 2019-07-26 牛津大学科技创新有限公司 包含金属卤化物钙钛矿和钝化剂的光伏装置
CN113130765A (zh) * 2021-04-13 2021-07-16 吉林大学 一种基于无机CsPbI2Br粉末的钙钛矿太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN113809190A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
Peng et al. Fully doctor-bladed planar heterojunction perovskite solar cells under ambient condition
Huang et al. Multi-step slow annealing perovskite films for high performance planar perovskite solar cells
Ahmed et al. Long-term stable and hysteresis-free planar perovskite solar cells using green antisolvent strategy
CN108598268B (zh) 环境条件下印刷制备平面异质结钙钛矿太阳电池的方法
Mohammed et al. Adaption of MAPbI3 perovskite with copper phthalocyanine inorganic hole transport layer via nitrosonium tetrafluoroborate additive to enhance performance and stability of perovskite solar cells
WO2015165259A1 (zh) 一种溶液加工的有机-无机平面异质结太阳电池及其制备
KR101853342B1 (ko) 페로브스카이트 태양전지 및 이의 제조방법
Ma et al. Negligible hysteresis planar perovskite solar cells using Ga-doped SnO2 nanocrystal as electron transport layers
KR101810155B1 (ko) 고효율 페로브스카이트 화합물계 막의 제조방법 및 이를 포함하는 태양전지
CN107240643B (zh) 溴元素掺杂甲胺铅碘钙钛矿太阳能电池及其制作方法
Zhou et al. Doping amino-functionalized ionic liquid in perovskite crystal for enhancing performances of hole-conductor free solar cells with carbon electrode
Huang et al. Efficient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity
Ko et al. Improved performance of sol–gel ZnO-based perovskite solar cells via TiCl4 interfacial modification
Zhang et al. An inorganic hole-transport material of CuInSe2 for stable and efficient perovskite solar cells
Wang et al. Recent progress of scalable perovskite solar cells and modules
Wang et al. Systematic optimization of perovskite solar cells via green solvent systems
Ye et al. Recent advances of Cu-based hole transport materials and their interface engineering concerning different processing methods in perovskite solar cells
CN113903861B (zh) 空气中快速退火的钙钛矿太阳能电池及其制备方法
Li et al. High-quality CH3NH3PbI3 thin film fabricated via intramolecular exchange for efficient planar heterojunction perovskite solar cells
EP4002505B1 (en) Functionalized ionic liquids as stabilizers for perovskite solar cells
CN103466696A (zh) 一种高分散性TiO2纳米晶的制备方法和应用
CN111092157A (zh) 一种高效稳定钙钛矿太阳能电池的制备方法
CN114975795A (zh) 一种对倒置钙钛矿太阳电池中空穴提取界面的修饰方法及其应用
Rad et al. 4-tert-butyl pyridine additive for moisture-resistant wide bandgap perovskite solar cells
Zhang et al. Precisely control the morphology and crystallization of temperature-dependent aggregation bulk heterojunction by using co-solvent system for optimized light intensity distribution and its effect on thick active layer polymer solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant