CN113808083A - 基于图像识别的高压断路器分合闸速度检测方法和系统 - Google Patents

基于图像识别的高压断路器分合闸速度检测方法和系统 Download PDF

Info

Publication number
CN113808083A
CN113808083A CN202110976099.9A CN202110976099A CN113808083A CN 113808083 A CN113808083 A CN 113808083A CN 202110976099 A CN202110976099 A CN 202110976099A CN 113808083 A CN113808083 A CN 113808083A
Authority
CN
China
Prior art keywords
image
circuit breaker
camera
voltage circuit
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110976099.9A
Other languages
English (en)
Inventor
晏松
施雯
张晓明
章海斌
张纯
黄道均
马凯
刘鑫
黄伟民
陈旭东
贾凤鸣
李萌萌
张晨晨
张弛
彭翔天
刘锡禹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maintenace Co of State Grid Anhui Electric Power Co Ltd
Overhaul Branch of State Grid Anhui Electric Power Co Ltd
Original Assignee
Overhaul Branch of State Grid Anhui Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Overhaul Branch of State Grid Anhui Electric Power Co Ltd filed Critical Overhaul Branch of State Grid Anhui Electric Power Co Ltd
Priority to CN202110976099.9A priority Critical patent/CN113808083A/zh
Publication of CN113808083A publication Critical patent/CN113808083A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T5/80
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • G06T7/85Stereo camera calibration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose

Abstract

本发明结合视觉处理技术,采用非接触式的快速检测方法,使用摄像机拍摄与高压断路器动触头联动的检测对象的运动过程,对拍摄视频进行修复消除镜头畸变,还原真实坐标,通过计算分析得到高压断路器的分合闸速度。如此,摄像机采用无接触的方式对检测对象进行视频监控,提高试验过程的安全性,实现将检测过程简化,避免了对高压断路器工作的不利影响。通过摄像机镜头畸变参数的纠正,降低了摄像机的精度要求。相对现有的采用图像识别的断路器分合闸速度检测所需要的价值百万以上的高精度高速摄像机,本发明中可采用价值10万左右的摄像机进行拍摄,大大降低了成本需求。

Description

基于图像识别的高压断路器分合闸速度检测方法和系统
技术领域
本发明涉及电力系统监控领域,尤其涉及一种基于图像识别的高压断路器分合闸速度检测方法和系统。
背景技术
高压断路器是电力系统中的关键设备之一,具有控制和保护系统的重要作用,其可靠性对电力系统安全稳定运行有重要影响。高压断路器的分合闸速度直接影响断路器开断、关合性能,只有保证适当的分合闸速度才能充分发挥其性能。因此精确测量、计算并分析高压断路器的分合闸速度具有重要意义。
由于高压断路器的动触头和静触头都封装于灭弧室中,无法直接测量其运动特性,断路器分、合闸速度的测量通常采用间接式测量方法,即通过传感器测量与动触头相连接的运动机构的速度,来间接获得断路器速度特性。目前,用于检测高压断路器分合闸速度的传感器主要为滑阻式位移传感器、光栅传感器和旋转编码器。使用上述传感器测量高压断路器的分合闸速度都有安装固定不便、传感器对断路器速度特性产生影响、大量测量时拆装耗时等缺点。
针对上述缺点,有些研究机构提出了基于图像识别的高压断路器速度特性检测方法,使用高速摄像机对高压断路器的运动部件进行拍摄,进行图像识别,获得运动部件的位移数据,然后根据位移时间得到速度曲线。
但是,由于高压断路器的分合闸运动行程较小,为了避免拍摄误差,必须采用高精度摄像机。现有技术中,采用价值百万以上的高精度摄像机对高压断路器的分合闸进行运动监测。由于所需摄像机的成本过高,导致图像识别难以实际应用到高压断路器的分合闸监测领域,限制了图像识别在高压断路器的分合闸监测领域的发展。
发明内容
为了解决上述现有技术中由于摄像机成本过高限制了图像识别在高压断路器的分合闸监测领域的发展的缺陷,本发明提出了一种基于图像识别的高压断路器分合闸速度检测方法和系统,可通过普通摄像机对高压断路器进行监测,大大降低了监测成本。
本发明的目的之一采用以下技术方案:
一种基于图像识别的高压断路器分合闸速度检测方法,包括以下步骤:
步骤1、在高压断路器分合闸动作时,通过摄像机拍摄检测对象,获得拍摄视频,将拍摄视频中的每一帧图像记作原图像;所述检测对象为与高压断路器的动触头联动的标记特征,所述检测对象设置在高压断路器的动触头上或者与动触头联动的运动部件上,所述检测对象在高压断路器分合闸动作过程中的运动轨迹位于所述摄像机的拍摄范围内;
步骤2、结合所述摄像机的镜头畸变参数对拍摄视频中的每一帧原图像进行去畸变处理,将去畸变后的原图像记作校正图像;
步骤3、对校正图像进行图像识别,并结合校正图像对应的原图像在拍摄视频中的排列顺序获得检测对象的位移数据;
步骤4、根据检测对象的位移数据获得检测对象的运动速度,并根据检测对象的运动速度获得高压断路器的分合闸速度。
优选的,步骤2中对拍摄视频的每一帧图像进行去畸变处理的方法包括以下步骤:
步骤2.1、将拍摄视频分解后的图像记作原图像,将原图像的像素坐标系转换到相机坐标系;
步骤2.2、在相机坐标系下对原图像进行去畸变处理,对原图像像素点的位置进行校正,将校正后的图像从相机坐标系转回像素坐标系作为新图像;
步骤2.3、将新图像中的像素点逐一作为目标像素点,根据目标像素点在原图像中的像素值以及原图像中与目标像素点相邻的像素点的像素值对新图像中的目标像素点进行赋值,新图像中的像素点全部完成赋值后记作校正图像。
优选的,步骤2.3中,对新图像中的目标像素点进行赋值的公式为:
I2(u,v)=Ia+Ib+Ic+Id
Ia=([w+1]-w)*([h+1]-h)*I1([h],[w])
Ib=((w+1)-w)*(h-[h])*I1([h+1],[w])
Ic=(w-[w])*([h+1]-h)*I1([h],[w+1])
Id=(w-[w])*(h-[h])*I1([h+1],[w+1])
y=(u-u0)/β
x=(v-v0)/α
h=x*fx+u0
w=y′*fy+v0
其中,Ia、Ib、Ic、Id表示过渡参数,(u,v)表示新图像的像素坐标系,(h,w)表示原图像的像素坐标;I1(h,w)表示原图像I1中像素坐标为(h,w)的像素点的像素值,I2(u,v)表示像素坐标为(u,v)的目标像素点的像素值;
(x,y)表示原图像I1的相机坐标系,(u0,v0)是摄像机的像素坐标系的原点,α、β是摄像机的拍摄图像在像素坐标系下u轴的比例因子,β是摄像机的拍摄图像在像素坐标系下v轴的比例因子;fx=M(1,1),fy=M(2,2),M表示摄像机的内部参数矩阵;(x′,y′)表示原图像I1中相机坐标为(x,y)的像素点去畸变处理后的相机坐标。
优选的,步骤3中,获得检测对象的位移数据的方法包括以下分步骤:
步骤3.1、根据拍摄视频中的原图像排列顺序,将校正图像组成高速图像序列,并将高速图像序列中的校正图像转换为灰度图像,将转换为灰度图像的校正图像记作灰度校正图像;
步骤3.2、通过基于灰度的模板匹配算法对高速图像序列中的灰度校正图像进行逐帧搜索,以获得检测对象的位移数据。
优选的,步骤1中的标记特征为颜色标记。
优选的,步骤4包括以下分步骤:
步骤4.1、获取检测对象在高速图像序列中每一张灰度校正图像中对应的像素点记作标记点;
步骤4.2、获取高速图像序列中相邻两张灰度校正图像中的标记点的坐标距离记作图像行程s;
步骤4.3、将像素坐标系下的图像行程s转换为真实坐标系下的行程S,所述行程S即为时间t内检测对象的位移,t=T/(N-1),T为摄像机的拍摄时间,N为拍摄视频中的原图像帧数;
步骤4.4、计算检测对象的瞬时运动速度v,v=S/t。
优选的,步骤2中,通过张正友标定法对摄像机进行标定,以获取摄像机的镜头畸变参数。
一种基于图像识别的高压断路器分合闸速度检测系统,包括摄像机、控制模块和处理器;摄像机的拍摄区域覆盖高压断路器的检测对象在高压断路器分合闸动作过程中的运动轨迹;所述检测对象为与高压断路器的动触头联动的标记特征,所述检测对象设置在高压断路器的动触头上或者与动触头联动的运动部件上;
控制模块分别连接高压断路器和摄像机,控制模块用于根据上位机下发的分合闸指令控制高压断路器工作,控制模块还用于在接收到所述分合闸指令时控制摄像机工作,在分合闸动作结束后控制摄像机停止工作;
处理器与摄像机连接,处理器用于结合上述的基于图像识别的高压断路器分合闸速度检测方法对摄像机的拍摄视频进行处理,以获取高压断路器的分合闸速度。
优选的,还包括光源,光源的照射区域覆盖高压断路器的检测对象在高压断路器分合闸动作过程中的运动轨迹;控制模块还连接光源,控制模块用于在接收到所述分合闸指令时控制光源点亮,控制模块用于在分合闸动作结束后控制光源熄灭。
优选的,所述检测对象为设置高压断路器与动触头连接的运动连杆上的红色圆点。
本发明的优点在于:
(1)结合视觉处理技术,采用非接触式的快速检测方法,使用摄像机拍摄与高压断路器动触头联动的检测对象的运动过程,对拍摄视频进行修复消除镜头畸变,还原像素点的像素坐标系,从而实现对图像的真实坐标系的欢迎,通过计算分析得到高压断路器的分合闸速度。如此,摄像机采用无接触的方式对检测对象进行视频监控,提高试验过程的安全性,实现将检测过程简化,避免了对高压断路器工作的不利影响。通过摄像机镜头畸变参数的纠正,降低了摄像机的精度要求。相对现有的采用图像识别的断路器分合闸速度检测所需要的价值百万以上的高精度高速摄像机,本实施方式中可采用价值10万左右的摄像机进行拍摄,大大降低了成本需求。
(2)步骤1中,通过摄像机和检测对象的相对位置设置,可实现在高压断路器分合闸时,通过摄像机对检测对象进行运动跟踪。检测对象的设置,有利于提高作为检测对象的视频跟踪目标域背景图像的区别度,提高图像识别效果。
(3)通过步骤1设置好摄像机的拍摄位置、拍摄角度、镜头等,然后通过步骤2对摄像机进行镜头畸变标定,以获得镜头畸变参数,保证了步骤2中获得的镜头畸变参数与步骤1中摄像机拍摄的拍摄视频的镜头畸变的一致,从而保证了步骤2中结合镜头畸变参数对对拍摄视频进行校正的精确可靠。
(4)通过步骤2.1-4.2的坐标系转换,在相机坐标系下对原图像进行像素点的坐标校正,保证了转换后的新图像与真实坐标系的精确映射,通过步骤2.3结合原图像对新图像进行赋值,保证了校正图像的图像内容的精确程度,从而保证了通过差值图像计算高压断路器分合闸运动特性的可靠性,所述运动特性保护运动速度等。
(5)步骤3中,通过对高速序列图像的灰度处理,提高了检测对象与背景图像的对比度,进一步提高了图像识别的精确程度。
(6)本发明提出的一种基于图像识别的高压断路器分合闸速度检测系统,通过控制模块的自动控制,实现了摄像机在高压断路器分合闸时自动拍摄检测对象的运动轨迹,从而实现了高压断路器分合闸动作的自动监测。
(7)该系统中,可通过光源对检测对象进行补光,以保证检测对象的亮度,从而保证拍摄视频中检测对象的清晰度。同时,光源由控制模块控制机芯间歇性工作,有利于节约能源,还避免了光源长时间工作对高压断路器造成光老化的风险。
附图说明
图1为一种基于图像识别的高压断路器分合闸速度检测方法流程图;
图2为图像进行去畸变处理的方法流程图。
图3为获得检测对象的位移数据的方法流程图;
图4为图1中步骤4的分步骤示意图。
具体实施方式
本实施方式提出的一种基于图像识别的高压断路器分合闸速度检测方法,包括以下步骤。
步骤1、在高压断路器分合闸动作时,通过摄像机拍摄检测对象,获得拍摄视频,将拍摄视频中的每一帧图像记作原图像;所述检测对象为与高压断路器的动触头联动的标记特征,所述检测对象设置在高压断路器的动触头上或者与动触头联动的运动部件上,所述检测对象在高压断路器分合闸动作过程中的运动轨迹位于所述摄像机的拍摄范围内;
步骤2、结合所述摄像机的镜头畸变参数对拍摄视频中的每一帧原图像进行去畸变处理,将去畸变后的原图像记作校正图像;
步骤3、对校正图像进行图像识别,并结合校正图像对应的原图像在拍摄视频中的排列顺序获得检测对象的位移数据;
步骤4、根据检测对象的位移数据获得检测对象的运动速度,并根据检测对象的运动速度获得高压断路器的分合闸速度。
如此,步骤1中,通过摄像机和检测对象的相对位置设置,可实现在高压断路器分合闸时,通过摄像机对检测对象进行运动跟踪。检测对象的设置,有利于提高作为检测对象的视频跟踪目标域背景图像的区别度,提高图像识别效果。
通过步骤1设置好摄像机的拍摄位置、拍摄角度、镜头等,然后通过步骤2对摄像机进行镜头畸变标定,以获得镜头畸变参数,保证了步骤2中获得的镜头畸变参数与步骤1中摄像机拍摄的拍摄视频的镜头畸变的一致,从而保证了步骤2中结合镜头畸变参数对对拍摄视频进行校正的精确可靠。
本实施方式中,结合步骤1到步骤2对拍摄视频进行校正以获得校正视频,结合步骤3和步骤4对校正视频进行图像识别,以获得检测对象的位移数据,并基于该位移数据获得高压断路器的分合闸速度。
本实施方式中,结合视觉处理技术,采用非接触式的快速检测方法,使用摄像机拍摄与高压断路器动触头联动的检测对象的运动过程,对拍摄视频进行修复消除镜头畸变,还原真实坐标系,通过计算分析得到高压断路器的分合闸速度。如此,摄像机采用无接触的方式对检测对象进行视频监控,避免了对高压断路器工作的不利影响。通过摄像机镜头畸变参数的纠正,降低了摄像机的精度要求。相对现有的采用图像识别的断路器分合闸速度检测所需要的价值百万以上的高精度高速摄像机,本实施方式中可采用价值10万左右的摄像机进行拍摄,大大降低了成本需求。
步骤2中,通过张正友标定法对摄像机进行标定,以获取摄像机的镜头畸变参数。具体的,本实施方式中,使用张正友标定法对摄像机镜头畸变参数进行计算时,在固定的平板上粘贴黑白两色的棋盘格为正方形,大小为25mm;然后在摄像机拍摄范围内移动该棋盘格,通过摄像机对棋盘格进行拍摄,需要拍摄的图片数量为15~20张,再结合拍摄到的图像计算摄像机镜头畸变参数。本实施方式中,通过张正友标定法求解的是摄像机径向畸变参数,具体包括内部参数矩阵M和畸变系数D。
Figure BDA0003227646770000081
D=[k1 k2 k3 p1 p2];(1)
其中,(u0,v0)是摄像机的像素坐标系坐标的原点,α、β是摄像机的拍摄图像在像素坐标系下u轴的比例因子,β是摄像机的拍摄图像在像素坐标系下v轴的比例因子,с是描述两个坐标轴u轴和v轴倾斜角的参数;k1是1阶径向畸变系数、k2是2阶径向畸变系数、k3是3阶径向畸变系数、p1是1阶切向畸变系数、p2是2阶切向畸变系数。
步骤2中对拍摄视频的每一帧图像进行去畸变处理的方法包括以下步骤。
步骤2.1、将拍摄视频分解后的图像记作原图像,将原图像的像素坐标系转换到相机坐标系。
步骤2.2、在相机坐标系下对原图像进行去畸变处理,对原图像像素点的位置进行校正,将校正后的图像从相机坐标系转回像素坐标系作为新图像;
步骤2.3、将新图像中的像素点逐一作为目标像素点,根据目标像素点在原图像中的像素值以及原图像中与目标像素点相邻的像素点的像素值对新图像中的目标像素点进行赋值,新图像中的像素点全部完成赋值后记作校正图像。
如此,本实施方式中,通过步骤2.1-4.2的坐标系转换,保证了转换后的图像与真实坐标系的精确映射,通过步骤2.3结合原图像对新图像进行赋值,保证了校正图像的图像内容的精确程度,从而保证了通过差值图像计算高压断路器分合闸运动特性的可靠性,所述运动特性保护运动速度等。
具体的,步骤2.1中,结合公式(1)获得的镜头畸变参数矩阵中的内参矩阵M,将原图像的像素坐标系转换到相机坐标系。具体的,原图像从像素坐标系转换到相机坐标系的公式如下:
y=(u-u0)/β
x=(v-v0)/α (2)
其中,(u0,v0)是摄像机的像素坐标系的原点,u轴和v轴构成摄像机的像素坐标系,x轴和y轴构成原图像的相机坐标系;α、β是摄像机的拍摄图像在像素坐标系下u轴的比例因子,β是摄像机的拍摄图像在像素坐标系下v轴的比例因子。
步骤2.2中在相机坐标系下对原图像进行去畸变处理的公式如下:
r=x2+y2
x′=x*(1+k1*r+k2*r2+k3*r3)+2*p1*x*y+p2*(r+2*x2)
y′=y*(1+k1*r+k2*r2+k3*r3)+2*p2*x*y+p1*(r+2*y2)(3)
其中,x轴和y轴构成原图像的相机坐标系,x′轴和y′轴构成去畸变后的图像的相机坐标系;r表示原图像中图像像素点到像素坐标系原点的距离;k1是1阶径向畸变系数、k2是2阶径向畸变系数、k3是3阶径向畸变系数、p1是1阶切向畸变系数、p2是2阶切向畸变系数。
步骤2.2中,将像素点在相机坐标下校正后的图像转换到像素坐标系下作为新图像的公式如下:
h=x′*fx+u0
w=y′*fy+v0 (4)
其中,fx表示摄像机的内部参数矩阵M(1,1),即内部参数矩阵M第一行第一列的值,fy表示摄像机的内部参数矩阵M(2,2),即内部参数矩阵M第二行第二列的值;h轴和w轴构成新图像的像素坐标系。
步骤2.3中,通过原图像的像素值对新图像的像素点进行插值的公式为:
I2(u,v)=Ia+Ib+Ic+Id
Ia=([w+1]-w)*([h+1]-h)*I1([h],[w])
Ib=((w+1)-w)*(h-[h])*I1([h+1],[w])
Ic=(w-[w])*([h+1]-h)*I1([h],[w+1])
Id=(w-[w])*(h-[h])*I1([h+1],[w+1]) (5)
其中,Ia、Ib、Ic、Id表示过渡参数,u轴和v轴构成摄像机的像素坐标系,(h,w)表示原图像I1中相机坐标为(x,y)的像素点在新图像中的像素坐标,I1(h,w)为原图像I1中像素坐标为(h,w)的像素点的像素值,I1([h],[w])为原图像I1中像素坐标为([h],[w])的像素点的像素值,I2(u,v)表示新图像中像素坐标为(u,v)的像素点经步骤2.3赋值后的像素值,即校正图像中像素坐标为(u,v)的像素点的像素值。
上述公式(5)中,坐标值u、v、h、w的转换关系参照以上公式(2)(3)(4)。
经过步骤2.2的去畸变操作得到的新图像中,像素点的像素坐标相对于原图像发生变化,新图像中的像素点的像素坐标不一定是整数,本实施方式中,通过以上公式对像素坐标(h,w)取整,以纠正图像的像素坐标的畸变。
步骤3中,获得检测对象的位移数据的方法包括以下分步骤。
步骤3.1、根据拍摄视频中的原图像排列顺序,将校正图像组成高速图像序列,并将高速图像序列中的校正图像转换为灰度图像,将转换为灰度图像的校正图像记作灰度校正图像;
步骤3.2、通过基于灰度的模板匹配算法对高速图像序列中的灰度校正图像进行逐帧搜索,以获得检测对象的位移数据。
具体实施时,步骤3.1中,将校正图像首先进行色阶调整以提高检测对象与背景图像的对比度,然后对色阶调整后的图像先后进行中值滤波和颜色空间转换,以获得灰度校正图像。
具体实施时,步骤1中的标记特征为颜色标记,可具体设置为圆形红色标记,以保证在对校正图像进行灰度处理后,灰度校正图像中检测对象对应的标记点与背景图像具有明显色阶差,保证对所述标记点的精确高效的识别。
本实施方式的步骤3.2中,具体采用序贯相似性检测算法(SequentialSimiliarity DetectionAlgorithm,简称SSDA算法)作为模板匹配算法,以通过SSDA算法对高速图像序列中的灰度校正图像进行逐帧搜索,从而获得得到标记点在高速图像序列各帧中的位置。
本实施方式中,步骤4包括以下分步骤:
步骤4.1、获取检测对象在高速图像序列中每一张灰度校正图像中对应的像素点记作标记点。
步骤4.2、获取高速图像序列中相邻两张灰度校正图像中的标记点的坐标距离记作图像行程s。
步骤4.3、将像素坐标系下的图像行程s转换为真实坐标系下的行程S,所述行程S即为时间t内检测对象的位移,t=T/(N-1),T为摄像机的拍摄时间,N为拍摄视频中的原图像帧数。
步骤4.4、计算检测对象的瞬时运动速度v,v=S/t。
高压断路器分合闸速度的计算主要包括实际运动行程的计算、运动时间的计算和运动速度的计算。具体实施时,可加工检测对象设置在高压断路器与动触头相连的运动连杆上,高压断路器分合闸动作时,运动连杆有直线运动与转动两种运动方式。当运动连杆为直线运动时,标记点在所述高速图像序列中前后两张灰度校正图像中的位置差可以表示运动连杆的行程;当运动连杆为转动时,高速摄像机的拍摄帧数足够高时,标记点在所述高速图像序列中前后两张灰度校正图像中的位置差也可以看作标记点的行程。
具体的,步骤4.2中,假设标记点在高速图像序列中第k张灰度校正图像的像素坐标系下的坐标为(uk,vk),标记点在高速图像序列中第k+1张灰度校正图像的像素坐标系下的坐标为(uk+1,vk+1),故而标记点在第k张灰度校正图像第k+1张灰度校正图像对应的图像行程
Figure BDA0003227646770000121
步骤4.3中,结合像素坐标系和真实坐标系的转换关系,可获得标记点在第k张灰度校正图像对应的原图像采集时间到第k+1张灰度校正图像对应的原图像采集时间这一时间段t上的行程S。
具体实施时,设置第k张灰度校正图像对应的原图像采集时间为tk,将标记点在时间段tk+1-tk上的行程记作Sk,则可知:
以标记点在时间点t1时的位置为标记点的运动起点,在时间点tk时,标记点相对于运动起点的总行程为ΔSk=S1+S2+......+Sk-1,标记点在时间段tk+1-tk上的运动速度平均值为vk=Sk/t。t为摄像机的拍摄视频中相邻两帧图像的采集时间间隔,即tk+1-tk恒等于t,由于t取值较小,故而标记点在时间段tk+1-tk上的运动速度平均值可视为检测对象的瞬时运动速度。
本实施方式中,为了便于观察检测对象的运动特性,可使用MATLAB等绘图软件绘制标记点的运动特性图像即检测对象的运动特性图像,也是高压断路器的运动特性图像,运动特性图像可包括位移时间图像和/或速度时间图像。
本实施方式中还提供了一种基于图像识别的高压断路器分合闸速度检测系统,包括摄像机、控制模块和处理器;摄像机的拍摄区域覆盖高压断路器的检测对象在高压断路器分合闸动作过程中的运动轨迹;所述检测对象为与高压断路器的动触头联动的标记特征,所述检测对象设置在高压断路器的动触头上或者与动触头联动的运动部件上。
控制模块分别连接高压断路器和摄像机,控制模块用于根据上位机下发的分合闸指令控制高压断路器工作,控制模块还用于在接收到所述分合闸指令时控制摄像机工作。以便摄像机在高压断路器分合闸时自动拍摄检测对象的运动轨迹,从而实现高压断路器分合闸动作的自动监测。
处理器与摄像机连接,处理器用于结合上述的基于图像识别的高压断路器分合闸速度检测方法对摄像机的拍摄视频进行处理,以获取高压断路器的分合闸速度。具体的,处理器中可预存根据张正友标定法或者其他标定法获得的镜头畸变参数,然后结合畸变参数对摄像机的拍摄视频进行处理,以获得高压断路器分合闸速度。
该系统还包括光源,光源的照射区域覆盖高压断路器的检测对象在高压断路器分合闸动作过程中的运动轨迹。如此,可通过光源对检测对象进行补光,以保证检测对象的亮度,从而保证拍摄视频中检测对象的清晰度。具体实施时,可设置控制模块还连接光源,以便控制模块还用于在接收到所述分合闸指令时控制光源点亮,以实现补光。如此,光源间歇性工作,有利于节约能源,还避免了光源长时间工作对高压断路器造成光老化的风险。
值得注意的时,控制模块还用于在高压断路器的分合闸动作结束后控制摄像机停止拍摄且光源熄灭。
本实施方式中,所述检测对象为设置高压断路器与动触头连接的运动连杆上的红色圆点。
以上仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。

Claims (10)

1.一种基于图像识别的高压断路器分合闸速度检测方法,其特征在于,包括以下步骤:
步骤1、在高压断路器分合闸动作时,通过摄像机拍摄检测对象,获得拍摄视频,将拍摄视频中的每一帧图像记作原图像;所述检测对象为与高压断路器的动触头联动的标记特征,所述检测对象设置在高压断路器的动触头上或者与动触头联动的运动部件上,所述检测对象在高压断路器分合闸动作过程中的运动轨迹位于所述摄像机的拍摄范围内;
步骤2、结合所述摄像机的镜头畸变参数对拍摄视频中的每一帧原图像进行去畸变处理,将去畸变后的原图像记作校正图像;
步骤3、对校正图像进行图像识别,并结合校正图像对应的原图像在拍摄视频中的排列顺序获得检测对象的位移数据;
步骤4、根据检测对象的位移数据获得检测对象的运动速度,并根据检测对象的运动速度获得高压断路器的分合闸速度。
2.如权利要求1所述的基于图像识别的高压断路器分合闸速度检测方法,其特征在于,步骤2中对拍摄视频的每一帧图像进行去畸变处理的方法包括以下步骤:
步骤2.1、将拍摄视频分解后的图像记作原图像,将原图像的像素坐标系转换到相机坐标系;
步骤2.2、在相机坐标系下对原图像进行去畸变处理,对原图像像素点的位置进行校正,将校正后的图像从相机坐标系转回像素坐标系作为新图像;
步骤2.3、将新图像中的像素点逐一作为目标像素点,根据目标像素点在原图像中的像素值以及原图像中与目标像素点相邻的像素点的像素值对新图像中的目标像素点进行赋值,新图像中的像素点全部完成赋值后记作校正图像。
3.如权利要求2所述的基于图像识别的高压断路器分合闸速度检测方法,其特征在于,步骤2.3中,对新图像中的目标像素点进行赋值的公式为:
I2(u,v)=Ia+Ib+Ic+Id
Ia=([w+1]-w)*([h+1]-h)*I1([h],[w])
Ib=((w+1)-w)*(h-[h])*I1([h+1],[w])
Ic=(w-[w])*([h+1]-h)*I1([h],[w+1])
Id=(w-[w])*(h-[h])*I1([h+1],[w+1])
y=(u-u0)/β
x=(v-v0)/α
h=x′*fx+u0
w=y′*fy+v0
其中,Ia、Ib、Ic、Id表示过渡参数,(u,v)表示新图像的像素坐标系,(h,w)表示原图像的像素坐标;I1(h,w)表示原图像I1中像素坐标为(h,w)的像素点的像素值,I2(u,v)表示新图像中像素坐标为(u,v)的目标像素点的像素值;
(x,y)表示原图像I1的相机坐标系,(u0,v0)是摄像机的像素坐标系的原点,α、β是摄像机的拍摄图像在像素坐标系下u轴的比例因子,β是摄像机的拍摄图像在像素坐标系下v轴的比例因子;fx=M(1,1),fy=M(2,2),M表示摄像机的内部参数矩阵;(x′,y′)表示原图像I1中相机坐标为(x,y)的像素点去畸变处理后的相机坐标。
4.如权利要求1所述的基于图像识别的高压断路器分合闸速度检测方法,其特征在于,步骤3中,获得检测对象的位移数据的方法包括以下分步骤:
步骤3.1、根据拍摄视频中的原图像排列顺序,将校正图像组成高速图像序列,并将高速图像序列中的校正图像转换为灰度图像,将转换为灰度图像的校正图像记作灰度校正图像;
步骤3.2、通过基于灰度的模板匹配算法对高速图像序列中的灰度校正图像进行逐帧搜索,以获得检测对象的位移数据。
5.如权利要求4所述的基于图像识别的高压断路器分合闸速度检测方法,其特征在于,步骤1中的标记特征为颜色标记。
6.如权利要求5所述的基于图像识别的高压断路器分合闸速度检测方法,其特征在于,步骤4包括以下分步骤:
步骤4.1、获取检测对象在高速图像序列中每一张灰度校正图像中对应的像素点记作标记点;
步骤4.2、获取高速图像序列中相邻两张灰度校正图像中的标记点的坐标距离记作图像行程s;
步骤4.3、将像素坐标系下的图像行程s转换为真实坐标系下的行程S,所述行程S即为时间t内检测对象的位移,t=T/(N-1),T为摄像机的拍摄时间,N为拍摄视频中的原图像帧数;
步骤4.4、计算检测对象的瞬时运动速度v,v=S/t。
7.如权利要求1所述的基于图像识别的高压断路器分合闸速度检测方法,其特征在于,步骤2中,通过张正友标定法对摄像机进行标定,以获取摄像机的镜头畸变参数。
8.一种基于图像识别的高压断路器分合闸速度检测系统,其特征在于,包括摄像机、控制模块和处理器;摄像机的拍摄区域覆盖高压断路器的检测对象在高压断路器分合闸动作过程中的运动轨迹;所述检测对象为与高压断路器的动触头联动的标记特征,所述检测对象设置在高压断路器的动触头上或者与动触头联动的运动部件上;
控制模块分别连接高压断路器和摄像机,控制模块用于根据上位机下发的分合闸指令控制高压断路器工作,控制模块还用于在接收到所述分合闸指令时控制摄像机工作,在分合闸动作结束后控制摄像机停止工作;
处理器与摄像机连接,处理器用于结合上述权利要求1至7任一项所述的基于图像识别的高压断路器分合闸速度检测方法对摄像机的拍摄视频进行处理,以获取高压断路器的分合闸速度。
9.如权利要求8所述的基于图像识别的高压断路器分合闸速度检测系统,其特征在于,还包括光源,光源的照射区域覆盖高压断路器的检测对象在高压断路器分合闸动作过程中的运动轨迹;控制模块还连接光源,控制模块用于在接收到所述分合闸指令时控制光源点亮,控制模块用于在分合闸动作结束后控制光源熄灭。
10.如权利要求8所述的基于图像识别的高压断路器分合闸速度检测系统,其特征在于,所述检测对象为设置高压断路器与动触头连接的运动连杆上的红色圆点。
CN202110976099.9A 2021-08-24 2021-08-24 基于图像识别的高压断路器分合闸速度检测方法和系统 Pending CN113808083A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110976099.9A CN113808083A (zh) 2021-08-24 2021-08-24 基于图像识别的高压断路器分合闸速度检测方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110976099.9A CN113808083A (zh) 2021-08-24 2021-08-24 基于图像识别的高压断路器分合闸速度检测方法和系统

Publications (1)

Publication Number Publication Date
CN113808083A true CN113808083A (zh) 2021-12-17

Family

ID=78941586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110976099.9A Pending CN113808083A (zh) 2021-08-24 2021-08-24 基于图像识别的高压断路器分合闸速度检测方法和系统

Country Status (1)

Country Link
CN (1) CN113808083A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195790A (ja) * 2005-01-14 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> レンズ歪推定装置、レンズ歪推定方法、及びレンズ歪推定プログラム
CN106526467A (zh) * 2016-10-14 2017-03-22 西安交通大学 一种基于机器视觉的高压断路器分合闸速度特性测量方法
CN106650551A (zh) * 2015-10-30 2017-05-10 国网山西省电力公司电力科学研究院 一种基于先验知识的高压断路器动触头运动轨迹实时识别方法
CN109345471A (zh) * 2018-09-07 2019-02-15 贵州宽凳智云科技有限公司北京分公司 基于高精轨迹数据测量绘制高精地图数据方法
CN110657965A (zh) * 2019-09-06 2020-01-07 国网浙江省电力有限公司嘉兴供电公司 一种基于图像识别的高压断路器机械特性检测方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006195790A (ja) * 2005-01-14 2006-07-27 Nippon Telegr & Teleph Corp <Ntt> レンズ歪推定装置、レンズ歪推定方法、及びレンズ歪推定プログラム
CN106650551A (zh) * 2015-10-30 2017-05-10 国网山西省电力公司电力科学研究院 一种基于先验知识的高压断路器动触头运动轨迹实时识别方法
CN106526467A (zh) * 2016-10-14 2017-03-22 西安交通大学 一种基于机器视觉的高压断路器分合闸速度特性测量方法
CN109345471A (zh) * 2018-09-07 2019-02-15 贵州宽凳智云科技有限公司北京分公司 基于高精轨迹数据测量绘制高精地图数据方法
CN110657965A (zh) * 2019-09-06 2020-01-07 国网浙江省电力有限公司嘉兴供电公司 一种基于图像识别的高压断路器机械特性检测方法及装置

Similar Documents

Publication Publication Date Title
CN108682365B (zh) 一种oled色斑检测与修复一体化系统、方法
CN109872309B (zh) 检测系统、方法、装置及计算机可读存储介质
CN105675610A (zh) 一种物体表面质感特征在线检测系统及工作原理
US11119016B2 (en) Image measurement device and method for the surface deformation of specimen based on sub-pixel corner detection
CN111288967A (zh) 一种基于机器视觉的远距离高精度位移检测方法
CN110428762B (zh) 基于像素点亮度的oled面板老化测试发光特性检测方法
CN108871185B (zh) 零件检测的方法、装置、设备以及计算机可读存储介质
CN111624203A (zh) 一种基于机器视觉的继电器接点齐度非接触式测量方法
CN109788281A (zh) 一种摄像模组的漏光检测方法及装置
CN112749656A (zh) 基于ORB特征匹配与yolo的空气开关状态检测方法及装置
CN114719749B (zh) 基于机器视觉的金属表面裂纹检测及真实尺寸测量方法及系统
CN112070762A (zh) 液晶面板的mura缺陷检测方法、装置、存储介质及终端
CN115482194A (zh) 一种pcb板的异型元件aoi缺陷检测方法与系统
CN113808083A (zh) 基于图像识别的高压断路器分合闸速度检测方法和系统
CN116008794A (zh) 高压断路器分合闸速度特性的测试装置、系统、方法
CN115375608A (zh) 检测方法及装置、检测设备和存储介质
CN113077447A (zh) 一种可探测高压设备微弱放电并进行缺陷分析的方法
CN112150375A (zh) 带检查系统、带检查方法和带检查程序的存储介质
JP2001004339A (ja) 画像認識検査システムの照明むら測定方法および画像認識検査方法
CN103905762B (zh) 投影模块的投影画面自动检查方法
CN116074495A (zh) 一种图像传感器坏点的存储方法、检测校正方法及装置
CN114018299A (zh) 双通道旋转变压器型电感式轴角编码器的控制方法和系统
WO2001022070A1 (en) Method and system of lcd inspection by pattern comparison
CN110781731A (zh) 一种基于镜面反射去除的巡检机器人仪表识别方法
CN114119477B (zh) 一种基于线结构光的夜间高压输电线路异物检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination