CN113803847B - 一种多联空调冷媒泄漏的检测方法及空调器 - Google Patents

一种多联空调冷媒泄漏的检测方法及空调器 Download PDF

Info

Publication number
CN113803847B
CN113803847B CN202111186113.1A CN202111186113A CN113803847B CN 113803847 B CN113803847 B CN 113803847B CN 202111186113 A CN202111186113 A CN 202111186113A CN 113803847 B CN113803847 B CN 113803847B
Authority
CN
China
Prior art keywords
preparation
temperature
stage
air conditioner
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111186113.1A
Other languages
English (en)
Other versions
CN113803847A (zh
Inventor
肖旭东
黄春
陈东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aux Air Conditioning Co Ltd
Ningbo Aux Electric Co Ltd
Original Assignee
Aux Air Conditioning Co Ltd
Ningbo Aux Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aux Air Conditioning Co Ltd, Ningbo Aux Electric Co Ltd filed Critical Aux Air Conditioning Co Ltd
Priority to CN202111186113.1A priority Critical patent/CN113803847B/zh
Publication of CN113803847A publication Critical patent/CN113803847A/zh
Application granted granted Critical
Publication of CN113803847B publication Critical patent/CN113803847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明提供一种多联空调冷媒泄漏的检测方法及空调器,包括步骤:S1:多联空调系统完成调试运行后,系统进入“冷媒泄漏检测模式”的获取初始参数阶段,S2:当机组累积运行时间t满足t1时,进行第一阶段判断;S3:系统继续累积运行时间,当t满足t2时,进行第二阶段判断;S4:系统继续累积运行时间,当t满足t3时,进行第三阶段判断;若三个阶段均判断为冷媒无泄漏,t清零,重复第三阶段控制;若任一阶段判断为冷媒轻微泄漏,则提示系统漏氟;若任一阶段判断为严重泄漏,则系统强制进入收液模式,回收冷媒。本发明公开的多联空调冷媒泄漏的检测方法及空调器,解决了检测方法单一,很容易发生误判的问题。

Description

一种多联空调冷媒泄漏的检测方法及空调器
技术领域
本发明涉及空调器技术领域,特别涉及一种多联空调冷媒泄漏的检测方法及空调器。
背景技术
多联空调在安装场景中,通常会配较多数量的室内机和一台或多台外机,由于内机数量较多,且安装方式是在联管的两端使用铜螺母与管接头联接,对于分体式空调器来说,存在短时间内的微露与长时间后空调的冷媒存在泄漏的风险。当冷媒泄漏后,在用户不知情的情况下长时间启动空调器运行,不仅会造成空调器性能下降,泄漏严重时甚至出现压缩机损坏的情况。
在现有冷媒泄漏检测方法中,存在检测不方便、维护难度大和运行可靠性低等缺陷,通过利用室内盘管温度与设定盘管温度的比较来判断冷媒是否发生泄漏,但此方法单一,很容易发生误判。
发明内容
有鉴于此,本发明旨在提出一种多联空调冷媒泄漏的检测方法及空调器,以解决现有技术中检测方法单一,很容易发生误判的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种多联空调冷媒泄漏的检测方法,包括如下检测步骤:
S1:多联空调系统完成调试运行后,系统进入“冷媒泄漏检测模式”的获取初始参数阶段,初始参数包括内环温度Tai0、外环温度Tao0、排气高压Pd0、排气温度Td0、冷凝器出管温度Tdef0、各内机阀步PMV0-N,N为内机序号;
S2:当机组累积运行时间t满足t1时,进行第一阶段判断;
其中,第一阶段判断条件包括:获取第一阶段参数,通过计算平均阀步变化率、高压对应饱和温度与冷凝器出管温度差值、以及统计运行内机阀步数分别与对应的预设值进行比较,判断冷媒泄漏情况;
若第一阶段判断为冷媒无泄漏,则进入S3;若第一阶段判断为冷媒轻微泄漏,则进入S5;若第一阶段判断为严重泄漏,则进入S6;
S3:系统继续累积运行时间,当t满足t2时,进行第二阶段判断,重复S2中的第一阶段判断条件;
若第二阶段中的检测判断条件,判断为冷媒无泄漏,则进入S4;若第二阶段判断为冷媒轻微泄漏,则进入S5;若第二阶段判断为严重泄漏,则进入S6;
S4:系统继续累积运行时间,当t满足t3时,进行第三阶段判断,重复S2中的第一阶段判断条件,其中,t1<t2<t3
若第三阶段中的检测判断条件,判断为冷媒无泄漏,t清零,重复第三阶段控制;若第三阶段判断为冷媒轻微泄漏,则进入S5;若第三阶段判断为严重泄漏,则进入S6;
S5:指示灯亮灯预警,提示系统漏氟;
S6:指示灯亮灯警示,系统强制进入收液模式,回收冷媒。
本发明公开的一种多联空调冷媒泄漏的检测方法,通过对多联空调系统在调试运行后,将系统中所有内机开机运行,通过获取内环温度、外环温度、排气高压、排气温度、冷凝器出管温度、各内机阀步以及平均阀步信息进行多个层级检测判断,能够及时、有效、准确的检测冷媒泄漏是否泄漏,并做出相应的措施,从而提升售后的维修和处理效率,并防止大量冷媒泄漏污染环境。
进一步的,在步骤S1、S2、S3、S4中获取检测参数时,空调室内机均在低风档制冷模式下运行。
该设置一方面减小对客户的影响,同时降低不必要功耗,节能降噪,同时低风档检测已经能够满足检测判断的可靠性要求。
进一步的,在步骤S1中,包括如下步骤:
S11:在多联空调系统完成调试运行后,系统进入“冷媒泄漏检测模式”获取初始参数阶段;
S12:系统中所有内机开机,低风档运转制冷模式,屏蔽达温控制,设定温度T0,t0分钟后获取以下初始参数;
初始参数包括内环温度Tai0、外环温度Tao0、排气高压Pd0、排气温度Td0、冷凝器出管温度Tdef0、各内机阀步PMV0-N,N为内机序号,计算平均阀步
Figure BDA0003299282560000031
S13:参数获取完成后,系统停机,用户自主选择运行模式运行,开始记录机组累积运行时间t;
S14:当t≥t1时,进入S2;
其中,T0为预设温度,t0为第一预设时间,t1为第二预设时间。
该设置避免多个内机初始运行时系统获取参数的不稳定,降低检测误差,保证本发明所述多联空调冷媒泄漏的检测方法检测判断的精准性。
进一步的,在步骤S2中,包括如下步骤:
S21:间隔时间tj,检测内环温度Tai、外环温度Tao;
S22:当|Tao-Tao0|<T预0,|Tai-Tai0|<T预1时,进入S23;
S23:系统所有内机转低风档制冷模式,屏蔽达温控制,设定温度T1,t4分钟后获取以下参数;
获取内环温度Tai1、外环温度Tao1、排气高压Pd1,排气温度Td1,高压对应饱和温度Pdt1,冷凝器出管温度Tdef1,各内机阀步PMV1-N,计算平均阀步
Figure BDA0003299282560000032
S24:计算平均阀步变化率:
Figure BDA0003299282560000033
令X1:内机阀步值在K1范围内的内机数量占总内机的比例,其中,K1=Mpls~(M+A)pls);
X2:内机阀步值在K2范围内的内机数量占总内机的比例,其中,K2=(M+A)pls~(M+B)pls;
X3:内机阀步值在K3范围内的内机数量占总内机的比例,其中,K3=(M+B)pls~(M+C)pls;
其中,M、A、B、C为内机阀步值的预设经验参数,A<B<C,计算X1、X2、X3;
S25:若:
Figure BDA0003299282560000041
且T预3≤Pdt1-Tdef1≤T预2,或者,X预2≥X1+X2+X3≥X预1,进入S5;
若:
Figure BDA0003299282560000043
且Pdt1-Tdef1≤T预3,或者,
Figure BDA0003299282560000042
且Td1≥Td预1,或者,X1+X2+X3≥X预2,进入S6;
S26:若检测数据不满足S25中的条件,系统恢复原模式运行,进入S3;
其中,tj、T预0、T预1、T1、t4、η预1、T预2、T预3、X预1、X预2、η预2、Td预1均为预设经验参数。
该设置使得系统在第一阶段获取参数时,所有房间每个内机均满足以上内环温度和外环温度的判断条件,排除因环境温度差异大,参数变化大,导致系统误判,以及通过对检测参数的合理判断,从而保证本发明所述多联空调冷媒泄漏的检测方法检测判断的精准性。
进一步的,K1的取值范围为200pls~300pls,K2的取值范围为300pls~400pls,K1的取值范围为400pls~480pls,η预1的取值范围为10%~30%,T预2的取值范围6℃~8℃,X预1的取值范围30%~45%;X预2的取值范围50%-65%;η预2的取值范围30%~50%;T预3的取值范围为4℃~6℃;Td预1的取值范围95℃~105℃。
进一步的,在步骤S3中,包括如下步骤:
S31:系统按照S13中用户自主选择运行模式运行继续运行;
S32:当机组累积运行时间t满足t2时,重复S2的检测判断;
S33:当机组累积运行时间t满足t3时,进入S4的检测判断。
该设置公开了一种二次检测判断的具体程序,通过合理的时间界定,既保证了本发明所述多联空调冷媒泄漏的检测方法检测判断的精准性,又避免使用冗余复杂的多种判断。
进一步的,在步骤S4中,包括如下步骤:
S41:间隔时间tk,检测内环温度Taik、外环温度Taok;
S42:若Taik>Tai,Taok>Tao时,进入S43;
S43:系统所有内机转低风档制冷模式,屏蔽达温控制,设定温度T2,t5分钟后获取以下参数;
获取内环温度Tai3、外环温度Tao3、排气高压Pd3,排气温度Td3,高压对应饱和温度Pdt3,冷凝器出管温度Tdef3,各内机阀步PMV3-N,计算平均阀步
Figure BDA0003299282560000051
S44:若PMV3≥PMV预1且T预3≤Pdt3-Tdef3≤T预2则进入S5;若PMV3≥PMV预2,且Pdt3-Tdef3≤T预3,且Td3≥Td预2,则进入S6;或者,若X2+X3≥X预2,则进入S6;
S45:若检测数据不满足S44中的条件,t清零,系统恢复原模式运行,返回至S41;
其中,tk、Tai、Tao、T2、t5、PMV预1、PMV预2、Td预2为预设经验参数。
进一步的,t2的取值范围为50h~100h;t3的取值范围为600h~800h,PMV预1的取值范围为150pls~200pls,PMV预2的取值范围为200pls~250pls。
该设置通过多联空调运行时间的累积,在不同阶段,通过相同检测检测参数,设置与时间相关联的检测判断条件,满足多联空调在不同阶段冷媒泄漏检测的可靠性和精准性。
进一步的,在步骤S5中,包括如下步骤:
S51:判定系统处于微漏状态,不进行保护,但提示系统漏氟,开始计时tf
S52:维修人员完成维修,手动解除预警,参数清零;
S53:当tf≥t6时,且预警未解除,进入S6。
该设置避免多联空调系统在冷媒微漏状态下由于持续微漏带来的安全隐患,保证多联空调系统使用的安全性和可靠性。
相对于现有技术,本发明所述的多联空调冷媒泄漏的检测方法具有以下优势:
本发明所述的多联空调冷媒泄漏的检测方法,通过分阶段实现所有室内机的冷媒泄漏检测,通过多联空调运行时间的累积,在不同阶段,通过相同检测检测参数,设置与时间相关联的检测判断条件,满足多联空调在不同阶段冷媒泄漏检测的可靠性和精准性,并通过控制器控制,及时、有效、准确的检测冷媒泄漏是否泄漏,并做出相应的措施,从而提升售后的维修和处理效率,并防止大量冷媒泄漏污染环境,保证多联空调系统使用的安全性和可靠性。
本发明的另一目的在于提出一种空调器,包括室外机和多个室内机,在多联空调器上应用如上述所述的多联空调冷媒泄漏的检测方法。
所述空调器与上述多联空调冷媒泄漏的检测方法相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例所述多联空调冷媒泄漏的检测方法的系统循环图;
图2为本发明实施例所述多联空调冷媒泄漏的检测方法的逻辑框图;
图3为本发明实施例所述多联空调冷媒泄漏的检测方法的具体逻辑框图。
具体实施方式
为了使本发明的技术手段及达到目的与功效易于理解,下面结合具体图示对本发明的实施例进行详细说明。
实施例1
如图1~3所示,本发明公开了一种多联空调冷媒泄漏的检测方法,包括如下检测步骤:
S1:多联空调系统完成调试运行后,系统进入“冷媒泄漏检测模式”的获取初始参数阶段,初始参数包括内环温度Tai0、外环温度Tao0、排气高压Pd0、排气温度Td0、冷凝器出管温度Tdef0、各内机阀步PMV0-N,N为内机序号,计算平均阀步
Figure BDA0003299282560000071
S2:当机组累积运行时间t满足t1时,进行第一阶段判断;
其中,第一阶段判断条件包括:获取第一阶段参数,通过计算平均阀步变化率、高压对应饱和温度与冷凝器出管温度差值、以及统计运行内机阀步数分别与对应的预设值进行比较,判断冷媒泄漏情况;
若第一阶段判断为冷媒无泄漏,则进入S3;若第一阶段判断为冷媒轻微泄漏,则进入S5;若第一阶段判断为严重泄漏,则进入S6;
S3:系统继续累积运行时间,当t满足t2时,进行第二阶段判断,重复S2中的第一阶段判断条件;
若第二阶段中的检测判断条件,判断为冷媒无泄漏,则进入S4;若第二阶段判断为冷媒轻微泄漏,则进入S5;若第二阶段判断为严重泄漏,则进入S6;
S4:系统继续累积运行时间,当t满足t3时,进行第三阶段判断,重复S2中的第一阶段判断条件,其中,t1<t2<t3
若第三阶段中的检测判断条件,判断为冷媒无泄漏,t清零,重复第三阶段控制;若第三阶段判断为冷媒轻微泄漏,则进入S5;若第三阶段判断为严重泄漏,则进入S6;
S5:指示灯亮灯预警,提示系统漏氟;
S6:指示灯亮灯警示,系统强制进入收液模式,回收冷媒。
本发明公开了一种多联空调冷媒泄漏的检测方法,在本实施例中,多联空调包括室外机和多个室内机,在多联空调系统完成调试运行后,系统中所有内机开机,在开启多个内机的情况下进行冷媒泄漏检测,系统进入“冷媒泄漏检测模式”获取初始参数阶段,初始参数包括内环温度Tai0、外环温度Tao0、排气高压Pd0、排气温度Td0、冷凝器出管温度Tdef0、各内机阀步PMV0-N,N为内机序号等信息,计算平均阀步
Figure BDA0003299282560000081
等待机组累积运行时间t满足t1后,进入第一阶段判断步骤,通过获取第一阶段的检测参数,与S1中获取的初始参数进行计算,通过计算平均阀步变化率、高压对应饱和温度与冷凝器出管温度差值、以及统计运行内机阀步数分别与对应的预设值进行比较,进而完成初步的冷媒泄漏检测;若在S2的第一阶段判断中,判定为冷媒无泄漏,待系统继续累积运行时间t达到t2时,则进入第二阶段判断步骤,通过获取第二阶段的检测参数,重复第一阶段判断条件,完成二次冷媒泄漏检测;若在S3的第二阶段判断中,判定为冷媒无泄漏,待系统继续累积运行时间t达到t3时,则进入第三阶段判断步骤,通过获取第三阶段的检测参数,重复第一阶段判断条件,完成三次冷媒泄漏检测,若冷媒检测无泄漏,则将时间t清零,重复第三阶段控制,进行周期性检测判断;若在第一阶段判断或者第二阶段判断或者第三阶段判断过程中检测判断为冷媒轻微泄漏,则通过提示灯进行预警,提示系统漏;若在第一阶段判断或者第二阶段判断或者第三阶段判断过程中检测判断为冷媒严重泄漏,则通过提示灯进行提示,系统强制进入收液模式,回收冷媒,保护多联机空调的安全使用。
本发明公开的一种多联空调冷媒泄漏的检测方法,通过对多联空调系统在调试运行后,将系统中所有内机开机运行,通过获取内环温度Tai0、外环温度Tao0、排气高压Pd0、排气温度Td0、冷凝器出管温度Tdef0、各内机阀步PMV0-N以及平均阀步
Figure BDA0003299282560000091
信息进行多个层级检测判断,能够及时、有效、准确的检测冷媒泄漏是否泄漏,并做出相应的措施,从而提升售后的维修和处理效率,并防止大量冷媒泄漏污染环境。
优选的,作为本发明的一个较佳示例,在步骤S1、S2、S3、S4中获取检测参数时,空调室内机均在低风档制冷模式下运行。
通过在低风制冷模式下进行检测判断,该设置一方面减小对客户的影响,同时降低不必要功耗,节能降噪,同时低风档检测已经能够满足检测判断的可靠性要求。
作为本发明的一个较佳示例,在步骤S1中,包括如下步骤:
S11:在多联空调系统完成调试运行后,系统进入“冷媒泄漏检测模式”获取初始参数阶段;
S12:系统中所有内机开机,低风档运转制冷模式,屏蔽达温控制,设定温度T0,t0分钟后获取以下初始参数;
初始参数包括内环温度Tai0、外环温度Tao0、排气高压Pd0、排气温度Td0、冷凝器出管温度Tdef0、各内机阀步PMV0-N,N为内机序号,计算平均阀步
Figure BDA0003299282560000092
S13:参数获取完成后,系统停机,用户自主选择运行模式运行,开始记录机组累积运行时间t;
S14:当t≥t1时,进入S2;
其中,T0为预设温度,t0为第一预设时间,t1为第二预设时间。
作为本发明的参考示例,T0为获取初始参数阶段运行的设定温度,T0的取值范围为16℃~32℃,优选的,T0取16℃;该设置既能够满足检测判断的可靠性要求,同时也减少了对客户的影响。
t0为系统运行稳定的预设时间,t0的取值范围为5min~30min,优选的,t0取15min~25min之间的任意参数。该设置避免多个内机初始运行时系统获取参数的不稳定,降低检测误差,保证本发明所述多联空调冷媒泄漏的检测方法检测判断的精准性。
t1为累积运行稳定进入S2的预设时间,t1的取值范围为5h~10h。该设置使得多联空调系统在获取初始参数阶段试运行一段时间,检验系统是否泄漏,避免冷媒严重泄漏时,多联空调系统运行带来的安全隐患。
作为本发明的一个较佳示例,在步骤S2中,包括如下步骤:
S21:间隔时间tj,检测内环温度Tai、外环温度Tao;
S22:当|Tao-Tao0|<T预0,|Tai-Tai0|<T预1时,进入S23;
S23:系统所有内机转低风档制冷模式,屏蔽达温控制,设定温度T1,t4分钟后获取以下参数;
获取内环温度Tai1、外环温度Tao1、排气高压Pd1,排气温度Td1,高压对应饱和温度Pdt1,冷凝器出管温度Tdef1,各内机阀步PMV1-N,计算平均阀步
Figure BDA0003299282560000101
S24:计算平均阀步变化率:
Figure BDA0003299282560000102
令X1:内机阀步值在K1范围内的内机数量占总内机的比例(K1=Mpls~(M+A)pls);
X2:内机阀步值在K2范围内的内机数量占总内机的比例(K2=(M+A)pls~(M+B)pls);
X3:内机阀步值在K3范围内的内机数量占总内机的比例(K3=(M+B)pls~(M+C)pls);
其中,M、A、B、C为内机阀步值的预设经验参数值,计算X1、X2、X3;
S25:若:
Figure BDA0003299282560000111
且T预3≤Pdt1-Tdef1≤T预2,或者,X预2≥X1+X2+X3≥X预1,进入S5;
若:
Figure BDA0003299282560000112
且Pdt1-Tdef1≤T预3,或者,
Figure BDA0003299282560000113
预2=30%-50%),且Td1≥Td预1,或者,X1+X2+X3≥X预2,进入S6;
S26:若检测数据不满足S25中的条件,系统恢复原模式运行,进入S3;
其中,tj、T预0、T预1、T1、t4、η预1、T预2、T预3、X预1、X预2、η预2、Td预1均为预设参数。
作为本发明的具体示例,tj为累积运行时间t满足t1之后的时间,tj的取值范围30s~80s。优选的,tj=60s。
T预0和T预1的取值可以相同,也可以不同,T预0和T预1的取值范围均为2℃~4℃,优选的,T预0=T预1。该设置使得系统在第一阶段获取参数时,所有房间每个内机均满足以上内环温度和外环温度的判断条件,排除因环境温度差异大,参数变化大,导致系统误判,从而保证本发明所述多联空调冷媒泄漏的检测方法检测判断的精准性。
T1的取值范围与T0一致,可以令T1=T0。该设置减少了系统占用得存储内存,简化了计算程序,同时也减少了对客户的影响,保证检测判断精准、可靠。
t4的取值范围与t0一致,可以令t4=t0。该设置进一步减少了系统占用的存储内存,简化了计算程序。
作为本发明的较佳示例,M=200,A=100,B=200、C=280,η预1的取值范围为10%~30%,T预2的取值范围6℃~8℃,X预1的取值范围30%~45%;X预2的取值范围50%-65%;η预2的取值范围30%~50%;T预3的取值范围为4℃~6℃;Td预1的取值范围95℃~105℃。
即:
X1:内机阀步值在K1范围内的内机数量占总内机的比例(K1=200pls~300pls);
X2:内机阀步值在K2范围内的内机数量占总内机的比例(K2=300pls~400pls);
X3:内机阀步值在K3范围内的内机数量占总内机的比例(K3=400pls~480pls);
若:
Figure BDA0003299282560000121
η预1=10%~30%,且T预3≤Pdt1-Tdef1≤T预2,T预2=6℃~8℃,T预3=4℃~6℃;
条件一
Figure BDA0003299282560000122
限定过热度不足,室内机换热器的换热不满足需求,多联内机的阀步会变大,这是系统控制必然导致的;
条件二(T预3≤Pdt1~Tdef1≤T预2)限定冷媒不足,高压温度与冷出的差异也会减小,从而达不到换热需求。当同时满足条件一以及条件二时,说明冷媒轻微泄漏,进入S5。
或者,在S25中检测到X预2≥X1+X2+X3≥X预1,X预1=30%~45%;X预2=50%~65%。当冷媒不足时,内机阀会普遍开大,泄漏越多,阀步会开的越大,阀步大的内机数量也越多。因此,通过X1+X2+X3的占比比例,确定冷媒是否轻微泄漏。
若,在S25中检测到:
Figure BDA0003299282560000123
η预2=30%~50%,且Pdt1-Tdef1≤T预3,T预3=4~6℃;
或者,
Figure BDA0003299282560000124
η预2=30%~50%,且Td1≥Td预1,Td预1=95~105℃,当冷媒泄漏严重时,排气会明细偏高;
或者,X1+X2+X3≥X预2
则判定冷媒发生严重泄漏,进入S6。
该设置通过对室内外环境温度、高压对应饱和温度,冷凝器出管温度,各内机阀步以及平均阀步变化率的占比综合判定冷媒是否发生泄漏或者发生泄漏的程度进行提示,判断精准,检测可靠,保证多联空调系统的安全运行。
作为本发明的一个较佳示例,在步骤S3中,包括如下步骤:
S31:系统按照S13中用户自主选择运行模式运行继续运行;
S32:当机组累积运行时间t满足t2时,重复S2的检测判断;
S33:当机组累积运行时间t满足t3时,进入S4的检测判断。
作为本发明的较佳示例,所述t2的取值范围为50h~100h;t3的取值范围为600h~800h。
该设置公开了一种二次检测判断的具体程序,通过合理的时间界定,既保证了本发明所述多联空调冷媒泄漏的检测方法检测判断的精准性,又避免使用冗余复杂的多种判断。
作为本发明的一个较佳示例,在步骤S4中,包括如下步骤:
S41:间隔时间tk,检测内环温度Taik、外环温度Taok;
S42:若Taik>Tai,Taok>Tao时,进入S43;
S43:系统所有内机转低风档制冷模式,屏蔽达温控制,设定温度T2,t5分钟后获取以下参数;
获取内环温度Tai3、外环温度Tao3、排气高压Pd3,排气温度Td3,高压对应饱和温度Pdt3,冷凝器出管温度Tdef3,各内机阀步PMV3-N,计算平均阀步
Figure BDA0003299282560000131
S44:若PMV3≥PMV预1且T预3≤Pdt3-Tdef3≤T预2则进入S5;若PMV3≥PMV预2,且Pdt3-Tdef3≤T预3,且Td3≥Td预2,则进入S6;或者,若X2+X3≥X预2,则进入S6;
S45:若检测数据不满足S44中的条件,t清零,系统恢复原模式运行,返回至S41;
其中,tk、Tai、Tao、T2、t5、PMV预1、PMV预2、Td预2为预设经验参数。
作为本发明的示例,tk为累积运行时间t满足t3之后的时间,tk的取值范围30s~80s。优选的,tk=60s。
T2=T1=T0;t5=t4=tn
Tai的取值范围为20℃~25℃,Tao的取值范围为20℃~25℃。作为本发明的示例,Tai=Tao
Td预2的取值范围95℃~105℃。优选的,Td预2=Td预1
作为本发明的示例,PMV预1的取值范围为150pls~200pls,PMV预2的取值范围为200pls~250pls。此阶段判断时,对比初始参数,环境温度已发生较大变化,初始参数已不适用,PMV预1、PMV预2作为预设值参与判断。
该设置通过多联空调运行时间的累积,在不同阶段,通过相同检测检测参数,设置与时间相关联的检测判断条件,满足多联空调在不同阶段冷媒泄漏检测的可靠性和精准性。
作为本发明的一个较佳示例,在步骤S5中,包括如下步骤:
S51:判定系统处于微漏状态,不进行保护,但提示系统漏氟,开始计时tf;
S52:维修人员完成维修,手动解除预警,参数清零;
S53:当tf≥t6时,且预警未解除,进入S6。
作为本发明的参考示例,所述t6的取值范围为50h~80h。
该设置避免多联空调系统在冷媒微漏状态下由于持续微漏带来的安全隐患,保证多联空调系统使用的安全性和可靠性。
作为本发明的一个较佳示例,步骤S5中与步骤S6中亮起指示灯颜色不同。具体的,在S5中,系统处于微漏状态,指示灯亮黄灯;在S6中,系统处于严重泄漏状态,指示灯亮红灯。
该设置直观、可靠的向用户显示冷媒泄漏状态,便于用户能够进行及时、合理的处理,并作出相应的措施。
本发明所述的多联空调冷媒泄漏的检测方法,通过分阶段实现所有室内机的冷媒泄漏检测,通过多联空调运行时间的累积,在不同阶段,通过相同检测检测参数,设置与时间相关联的检测判断条件,满足多联空调在不同阶段冷媒泄漏检测的可靠性和精准性,并通过控制器控制,及时、有效、准确的检测冷媒泄漏是否泄漏,并做出相应的措施,从而提升售后的维修和处理效率,并防止大量冷媒泄漏污染环境,保证多联空调系统使用的安全性和可靠性。
实施例2
本发明还公开一种空调器,包括室外机和多个室内机,在多个室内机上应用如实施例1中所述的多联空调冷媒泄漏的检测方法。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种多联空调冷媒泄漏的检测方法,其特征在于,包括如下检测步骤:
S1:多联空调系统完成调试运行后,系统进入“冷媒泄漏检测模式”的获取初始参数阶段,初始参数包括内环温度Tai0、外环温度Tao0、排气高压Pd0、排气温度Td0、冷凝器出管温度Tdef0、各内机阀步PMV0-N,N为内机序号;
S2:当机组累积运行时间t满足t1时,进行第一阶段判断;
其中,第一阶段判断条件包括:获取第一阶段参数,通过计算平均阀步变化率、高压对应饱和温度与冷凝器出管温度差值、以及统计运行内机阀步数分别与对应的预设值进行比较,判断冷媒泄漏情况;
若第一阶段判断为冷媒无泄漏,则进入S3;若第一阶段判断为冷媒轻微泄漏,则进入S5;若第一阶段判断为严重泄漏,则进入S6;
S3:系统继续累积运行时间,当t满足t2时,进行第二阶段判断,重复S2中的第一阶段判断条件;
若第二阶段中的检测判断条件,判断为冷媒无泄漏,则进入S4;若第二阶段判断为冷媒轻微泄漏,则进入S5;若第二阶段判断为严重泄漏,则进入S6;
S4:系统继续累积运行时间,当t满足t3时,进行第三阶段判断,重复S2中的第一阶段判断条件,其中,t1<t2<t3
若第三阶段中的检测判断条件,判断为冷媒无泄漏,t清零,重复第三阶段控制;若第三阶段判断为冷媒轻微泄漏,则进入S5;若第三阶段判断为严重泄漏,则进入S6;
S5:指示灯亮灯预警,提示系统漏氟;
S6:指示灯亮灯警示,系统强制进入收液模式,回收冷媒;
其中,在步骤S2中,包括如下步骤:
S21:间隔时间tj,检测内环温度Tai、外环温度Tao;
S22:当∣Tao-Tao0∣<T预0,∣Tai-Tai0∣<T预1时,进入S23;
S23:系统所有内机转低风档制冷模式,屏蔽达温控制,设定温度T1,t4分钟后获取以下参数;
获取内环温度Tai1、外环温度Tao1、排气高压Pd1,排气温度Td1,高压对应饱和温度Pdt1,冷凝器出管温度Tdef1,各内机阀步PMV1-N,计算平均阀步
Figure FDA0003757713700000021
S24:计算平均阀步变化率:
Figure FDA0003757713700000022
令X1:内机阀步值在K1范围内的内机数量占总内机的比例,其中,K1=Mpls~(M+A)pls;
X2:内机阀步值在K2范围内的内机数量占总内机的比例,其中,K2=(M+A)pls~(M+B)pls;
X3:内机阀步值在K3范围内的内机数量占总内机的比例,其中,K3=(M+B)pls~(M+C)pls;
其中,M、A、B、C为内机阀步值的预设经验参数值,A<B<C,计算X1、X2、X3;
S25:若:ηPMV1≥η预1且T预3≤Pdt1-Tdef1≤T预2,或者,X预2≥X1+X2+X3≥X预1,进入S5;
若:ηPMV1≥η预2,且Pdt1-Tdef1≤T预3,或者,ηPMV1≥η预2,且Td1≥Td预1,或者,X1+X2+X3≥X预2,进入S6;
S26:若检测数据不满足S25中的条件,系统恢复原模式运行,进入S3;
其中,tj、T预0、T预1、T1、t4、η预1、T预2、T预3、X预1、X预2、η预2、Td预1均为预设经验参数。
2.根据权利要求1所述的多联空调冷媒泄漏的检测方法,其特征在于,在步骤S1、S2、S3、S4中获取检测参数时,空调室内机均在低风档制冷模式下运行。
3.根据权利要求2所述的多联空调冷媒泄漏的检测方法,其特征在于,在步骤S1中,包括如下步骤:
S11:在多联空调系统完成调试运行后,系统进入“冷媒泄漏检测模式”获取初始参数阶段;
S12:系统中所有内机开机,低风档运转制冷模式,屏蔽达温控制,设定温度T0,t0分钟后获取以下初始参数;
初始参数包括内环温度Tai0、外环温度Tao0、排气高压Pd0、排气温度Td0、冷凝器出管温度Tdef0、各内机阀步PMV0-N,N为内机序号,计算平均阀步
Figure FDA0003757713700000031
S13:参数获取完成后,系统停机,用户自主选择运行模式运行,开始记录机组累积运行时间t;
S14:当t≥t1时,进入S2;
其中,T0为预设温度,t0为第一预设时间,t1为第二预设时间。
4.根据权利要求1所述的多联空调冷媒泄漏的检测方法,其特征在于,K1的取值范围为200pls~300pls,K2的取值范围为300pls~400pls,K1的取值范围为400pls~480pls,η预1的取值范围为10%~30%,T预2的取值范围6℃~8℃,X预1的取值范围30%~45%;X预2的取值范围50%-65%;η预2的取值范围30%~50%;T预3的取值范围为4℃~6℃;Td预1的取值范围95℃~105℃。
5.根据权利要求1所述的多联空调冷媒泄漏的检测方法,其特征在于,在步骤S3中,包括如下步骤:
S31:系统按照S13中用户自主选择运行模式运行继续运行;
S32:当机组累积运行时间t满足t2时,重复S2的检测判断;
S33:当机组累积运行时间t满足t3时,进入S4的检测判断。
6.根据权利要求5所述的多联空调冷媒泄漏的检测方法,其特征在于,在步骤S4中,包括如下步骤:
S41:间隔时间tk,检测内环温度Taik、外环温度Taok;
S42:若Taik>Tai,Taok>Tao时,进入S43;
S43:系统所有内机转低风档制冷模式,屏蔽达温控制,设定温度T2,t5分钟后获取以下参数;
获取内环温度Tai3、外环温度Tao3、排气高压Pd3,排气温度Td3,高压对应饱和温度Pdt3,冷凝器出管温度Tdef3,各内机阀步PMV3-N,计算平均阀步
Figure FDA0003757713700000041
S44:若PMV3≥PMV预1且T预3≤Pdt3-Tdef3≤T预2则进入S5;若PMV3≥PMV预2,且Pdt3-Tdef3≤T预3,且Td3≥Td预2,则进入S6;或者,若X2+X3≥X预2,则进入S6;
S45:若检测数据不满足S44中的条件,t清零,系统恢复原模式运行,返回至S41;
其中,tk、Tai、Tao、T2、t5、PMV预1、PMV预2、Td预2为预设经验参数。
7.根据权利要求6所述的多联空调冷媒泄漏的检测方法,其特征在于,t2的取值范围为50h~100h;t3的取值范围为600h~800h,PMV预1的取值范围为150pls~200pls,PMV预2的取值范围为200pls~250pls。
8.根据权利要求1或2或3或4或6或7所述的多联空调冷媒泄漏的检测方法,其特征在于,在步骤S5中,包括如下步骤:
S51:判定系统处于微漏状态,不进行保护,但提示系统漏氟,开始计时tf
S52:维修人员完成维修,手动解除预警,参数清零;
S53:当tf≥t6时,且预警未解除,进入S6。
9.一种空调器,包括室外机和多个室内机,在多个室内机上应用如权利要求1~8任意一项所述的多联空调冷媒泄漏的检测方法。
CN202111186113.1A 2021-10-12 2021-10-12 一种多联空调冷媒泄漏的检测方法及空调器 Active CN113803847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111186113.1A CN113803847B (zh) 2021-10-12 2021-10-12 一种多联空调冷媒泄漏的检测方法及空调器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111186113.1A CN113803847B (zh) 2021-10-12 2021-10-12 一种多联空调冷媒泄漏的检测方法及空调器

Publications (2)

Publication Number Publication Date
CN113803847A CN113803847A (zh) 2021-12-17
CN113803847B true CN113803847B (zh) 2022-10-28

Family

ID=78939465

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111186113.1A Active CN113803847B (zh) 2021-10-12 2021-10-12 一种多联空调冷媒泄漏的检测方法及空调器

Country Status (1)

Country Link
CN (1) CN113803847B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749825A (zh) * 2008-12-04 2010-06-23 珠海格力电器股份有限公司 用于复合型空调器的冷媒追加控制方法
CN110895024A (zh) * 2018-09-12 2020-03-20 奥克斯空调股份有限公司 一种冷媒泄漏检测方法及空调器
CN111076360A (zh) * 2019-12-30 2020-04-28 宁波奥克斯电气股份有限公司 一种多联机冷媒泄漏检测方法、装置及空调器
CN113203166A (zh) * 2021-04-27 2021-08-03 宁波奥克斯电气股份有限公司 一种多联空调的降噪控制方法、装置及多联空调
CN113218035A (zh) * 2021-05-14 2021-08-06 宁波奥克斯电气股份有限公司 一种多联机回油降噪的控制方法、存储介质和多联机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749825A (zh) * 2008-12-04 2010-06-23 珠海格力电器股份有限公司 用于复合型空调器的冷媒追加控制方法
CN110895024A (zh) * 2018-09-12 2020-03-20 奥克斯空调股份有限公司 一种冷媒泄漏检测方法及空调器
CN111076360A (zh) * 2019-12-30 2020-04-28 宁波奥克斯电气股份有限公司 一种多联机冷媒泄漏检测方法、装置及空调器
CN113203166A (zh) * 2021-04-27 2021-08-03 宁波奥克斯电气股份有限公司 一种多联空调的降噪控制方法、装置及多联空调
CN113218035A (zh) * 2021-05-14 2021-08-06 宁波奥克斯电气股份有限公司 一种多联机回油降噪的控制方法、存储介质和多联机

Also Published As

Publication number Publication date
CN113803847A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN103293010B (zh) 空调器冷媒的检测方法、装置及系统
CN100529604C (zh) 制冷剂充注量损失和膨胀阀故障的检测
US10837872B2 (en) Diagnosis control method of air conditioner
EP2333461B1 (en) Leakage diagnosing device, leakage diagnosing method, and refrigerating device
US20130086932A1 (en) Vehicle Air-Conditioning Device, and Refrigerant Leakage Diagnosis Method for Vehicle Air-Conditioning Device
CN102563819A (zh) 一种空调器及其故障排查方法
US20120053898A1 (en) Performance evaluation device for centrifugal chiller
CN104819547A (zh) 一种变频空调系统开机时的缺氟检测及保护方法和系统
CN109631229A (zh) 制冷系统制冷剂快速泄漏的判定方法
CN101846414A (zh) 空调装置及能量设备
CN110195910B (zh) 制冷系统冷媒存量检测方法
CN111271818A (zh) 一种多联内机管路错接的检测方法、空调器及计算机可读存储介质
CN111076358B (zh) 一种空调外机除尘方法、装置及空调器
KR20070017269A (ko) 멀티 에어컨시스템의 배관점검운전방법 및 배관점검방법
CN113803847B (zh) 一种多联空调冷媒泄漏的检测方法及空调器
CN105402936A (zh) 空调热水机及其冷媒泄漏检测方法和装置
US11835428B2 (en) Diagnosis control method of air conditioner
CN102967450A (zh) 多联式空调机组的外机单向阀是否装反的检测方法
CN113280417B (zh) 冷水机组压缩机性能劣化诊断方法
JP2000105032A (ja) 冷凍機の冷媒リーク検知システム
CN110926544B (zh) 一种换热机组用检测设备及其在线自动检测方法
CN202442730U (zh) 空调器冷媒的检测装置和检测系统
CN111720966A (zh) 空调器的控制方法
CN114234360B (zh) 空调器及其制冷剂泄漏检测方法
CN116734391A (zh) 空调系统及其检测方法以及空调器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220923

Address after: 315191 No. 1166 Mingguang North Road, Jiangshan Town, Ningbo, Zhejiang, Yinzhou District

Applicant after: NINGBO AUX ELECTRIC Co.,Ltd.

Applicant after: AUX AIR CONDITIONING LIMITED BY SHARE Ltd.

Address before: 315191 No. 1166 Mingguang North Road, Jiangshan Town, Ningbo, Zhejiang, Yinzhou District

Applicant before: NINGBO AUX ELECTRIC Co.,Ltd.

Applicant before: Ningbo Oxfam intelligent commercial air conditioning manufacturing Co.,Ltd.

GR01 Patent grant
GR01 Patent grant