CN113793319A - 基于类别约束字典学习模型的织物图像瑕疵检测方法及系统 - Google Patents
基于类别约束字典学习模型的织物图像瑕疵检测方法及系统 Download PDFInfo
- Publication number
- CN113793319A CN113793319A CN202111070376.6A CN202111070376A CN113793319A CN 113793319 A CN113793319 A CN 113793319A CN 202111070376 A CN202111070376 A CN 202111070376A CN 113793319 A CN113793319 A CN 113793319A
- Authority
- CN
- China
- Prior art keywords
- dictionary
- learning
- sparse
- samples
- class
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/28—Determining representative reference patterns, e.g. by averaging or distorting; Generating dictionaries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30124—Fabrics; Textile; Paper
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Quality & Reliability (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域
本发明属于图像分类技术领域,具体涉及一种基于类别约束字典学习模型的织物图像瑕疵检测方法及系统。
背景技术
基于稀疏表示的分类的字典学习一直是机器学习和模式识别领域内的热门课题。判别字典学习(DDL)是稀疏表示和字典学习理论的一个研究分支,主要目的是通过重构训练样本得到样本的表示字典,并通过构造不同的约束项模型来增强字典的判别性能。其中,面向特征的面向字典的字典学习(DFDL)方法主要强调的是抑制类内差异和类间模糊,并在组织病理图像分类得到了应用实验。但纺织图像瑕疵分类在图像分类任务中是一个具有挑战性的任务,由于织物图像与组织图像有明显差异,对于特征提取的工作要求高,且相同类别的织物中纹路与材料结构变化较大,非同类的织物中特征也存在一定的相似性,因此可能会导致织物类与类的特征之间的距离大于同类织物里的特征之间的距离。即正常织物字典与瑕疵织物字典可能较为相似,使得正常样本与瑕疵样本的判别性低,分类性能有待提高由于织物疵点的特征区分不够明显,不同瑕疵之间的区分判别不是很完善,分类性能有待提高。因此,亟需研发一种基于类别约束字典学习模型的织物图像瑕疵检测技术方案。
发明内容
本发明的目的是针对纺织瑕疵图像的特点以及目前字典学习分类方法存在的问题,重新构建稀疏表示模型,在抑制类内差异和类间模糊基础上结合对稀疏系数进行线性判别约束,使得不同类的稀疏系数具有较好的鉴别能力,获得具有特定判别特征的字典,提出一种基于类别约束字典学习模型的织物图像瑕疵检测方法及系统。
为了实现以上目的,本发明采用以下技术方案:
一种基于类别约束字典学习模型的织物图像瑕疵检测方法,包括如下步骤:
S1、随机将正常和瑕疵两个织物数据集样本中的各m张图片作为训练集样本,数据集样本中的其余图片作为测试集样本;
式中:λ为尺度因子;N为第i类样本特征个数;互补样本特征个数;||S||1为稀疏系数的控制稀疏项;为互补样本的稀疏系数的控制稀疏项;为第i类样本的稀疏系数;为第i类互补样本的稀疏系数;|| ||F表示Frobenius范数;μS和μ分别表示第i类稀疏系数的类中心以及所有稀疏系数的类中心;ρ为正则化参数;ε、β为了权衡类别内差异和类别间差异;σ为常量为了权衡和等式的关系。
作为优选方案,步骤S4中判别字典学习具体包括以下步骤:
S4.1、稀疏编码
最优解为
式中:μS表示第i类稀疏系数的类中心;λ,ρ,λ2为正则化参数;
S4.2、字典更新
通过以下迭代来更新D*直到收敛:
作为优选方案,步骤S5具体包括:根据得到的学习字典D*,以及测试集样本的特征向量ytest,利用所学习的字典对测试样本进行稀疏表示,可分别求出测试样本在正常字典与瑕疵字典下的稀疏重构误差,构造分类统计量实现组织病理图像的分类。
本发明还公开了一种基于类别约束字典学习模型的织物图像瑕疵检测系统,包括如下模块:
样本分类模块:随机将正常和瑕疵两个织物数据集样本中的各m张图片作为训练集样本,数据集样本中的其余图片作为测试集样本;
式中:λ为尺度因子;N为第i类样本特征个数;互补样本特征个数;表示训练样本在字典D分解得到的稀疏系数;表示互补训练样本在字典D分解得到的稀疏系数;||S||1为稀疏系数的控制稀疏项;为互补样本的稀疏系数的控制稀疏项;|| ||F表示Frobenius范数;μS和μ分别表示第i类稀疏系数的类中心以及所有稀疏系数的类中心;ρ为正则化参数;ε、β为了权衡类别内差异和类别间差异,两项结合使得类别内差异最小,类别间差异最大;σ为常量为了权衡和等式的关系。
优选的,学习字典更新模块中判别字典学习具体包括:
稀疏编码子模块:
最优解为
式中:μS表示第i类稀疏系数的类中心;λ,ρ,λ2为正则化参数;
字典更新子模块:
通过以下迭代来更新D*直到收敛:
优选的,分类模块中,根据得到的学习字典D*,以及测试集样本的特征向量ytest,利用所学习的字典对测试样本进行稀疏表示,能够分别求出测试样本在正常字典与瑕疵字典下的稀疏重构误差,构造分类统计量实现组织病理图像的分类。
本发明的有益效果是:本发明充分利用了样本的潜在类间结构,且结合了稀疏系数判别约束,有效地提高了纺织图像识别的准确度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是一种基于类别约束字典学习模型的织物图像瑕疵检测方法流程图;
图2是瑕疵织物图像样本;
图3是正常织物图像样本;
图4是一种基于类别约束字典学习模型的织物图像瑕疵检测系统框图。
具体实施方式
以下通过特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
本发明所采集的图像来自浙江理工大学实验室中自行拍摄提取的织物疵点图像,参见图2、3所示,图像中主要是正常和瑕疵的织物瑕疵图组成并对提取的图像按照下述本发明提供的分类方法进行分类。
实施例1
参照图1,本实施例提供了一种基于类别约束字典学习模型的织物图像瑕疵检测方法,包括如下步骤:
S1、随机将正常和瑕疵两个织物数据集样本中的各40张图片作为训练集样本,数据集样本中的其余110张图片作为测试集样本;
具体的:
步骤S1中,随机选取数据集样本各40张为训练集样本,剩余110张数为测试集样本;
步骤S2中,每张图像提取250个图块,块的尺寸为20像素×20像素,则正常和瑕疵样本分别为10000个图块,将每个图块的RGB三通道串成列向量作为训练样本,则Y,字典D,迭代50次,正则化参数λ,λ2和ρ分别设为0.001、0.001和0.001;
步骤S3中,初始化训练集样本字典学习中的学习字典D,和稀疏表示矩阵;因为希望不同类分解的稀疏系数距离尽可能的远,以此来使字典的判别性得到增强。因此,首先需要定义类内散度矩阵Sw和类间散度矩阵Sb,由文献可知散度矩阵求的是协方差矩阵而F-范数求的是距离,该范数的平方正好是协方差矩阵的迹,所以第i类的类内散度矩阵Sw的迹是同类各个样本到类中心距离的平方和,迹越大说明样本的离散程度距离越远,虽然新的Sw代替协方差矩阵忽略了其结构,但是易于研究,类间散度矩阵Sb也是如此。综上,所以需要:
为了方便,以下仅考虑一个类,即使用Y,D,S,N代替Yi,Di,Si,Ni等。基于上面的论点,可以定义新的目标函数:
式中:ρ为正则化参数;ε、β为了权衡Sw、Sb;上述优化问题中的第一项将类别内差异最小化,第二项强调类别间差异,两项中使得Sw最小,Sb最大,为了解决非凸且不稳定的问题,σ为常量为了权衡和等式的关系;
步骤S4.1中,稀疏编码中,在实际应用中选择合适的正则化参数λ,λ2和ρ分别设为0.001、0.001和0.001,则目标函数的Hessian矩阵可以是半正定的,因此目标函数对于S是凸的。因此可以将其一阶导数设为零并获得解析解。令函数F(S),
其中第一项求和是字典学习的基本目标函数。这里,对S利用一个简单的2-范数约束
步骤S4.2中,在固定稀疏编码S更新字典D步骤中,需要优化以下目标函数
式中:λmin是F的最小特征值,矩阵F*=(F-λmin(F)Ik)是半正定的,其所有特征值都是非负的,所以目标函数是凸的。因此本质上与目标函数(12)相同。
而此类更新字典问题与Online Learning for Matrix Factorization andSparse Coding字典更新问题类似,所以可以通过以下迭代来更新D*直到收敛:
下表1是一种基于类别约束字典学习模型的织物图像瑕疵检测算法训练过程。
表1
为了验证本法分类方法的性能,通过交叉验证来进行评估。实验过程执行十次,每次实验过程都在数据集样本中随机抽取40张数的图像作为训练集。执行十次后,将它们的平均值作为最终检测结果,实验结果如下表2所示,本发明提出的判别字典学习算法都获得最佳检测结果。
表2不同方法的织物疵点图像分类结果对比表
实施例2
一种基于类别约束字典学习模型的织物图像瑕疵检测系统,包括如下模块:
样本分类模块:随机将正常和瑕疵两个织物数据集样本中的各m张图片作为训练集样本,数据集样本中的其余图片作为测试集样本;
式中:λ为尺度因子;N为第i类样本特征个数;互补样本特征个数;表示训练样本在字典D分解得到的稀疏系数;表示互补训练样本在字典D分解得到的稀疏系数;||S||1为稀疏系数的控制稀疏项;为互补样本的稀疏系数的控制稀疏项;|| ||F表示Frobenius范数;μS和μ分别表示第i类稀疏系数的类中心以及所有稀疏系数的类中心;ρ为正则化参数;ε、β为了权衡类别内差异和类别间差异,两项结合使得类别内差异最小,类别间差异最大;σ为常量为了权衡和等式的关系。
本实施例的学习字典更新模块中判别字典学习具体包括:
稀疏编码子模块:
式中:表示训练样本在字典D分解得到的稀疏系数;||S||1为稀疏系数的控制稀疏项;|| ||F表示Frobenius范数;μS和μ分别表示第i类稀疏系数的类中心以及所有稀疏系数的类中心;;ε、β为了权衡类别内差异和类别间差异;K为常数;λ1,λ2和η为正则化参数。
第i类稀疏系数Si *的最优解为
式中:μS表示第i类稀疏系数的类中心;λ,ρ,λ2为正则化参数;
字典更新子模块:
通过以下迭代来更新D*直到收敛:
本实施例的分类模块中,根据得到的学习字典D*,以及测试集样本的特征向量ytest,利用所学习的字典对测试样本进行稀疏表示,能够分别求出测试样本在正常字典与瑕疵字典下的稀疏重构误差,构造分类统计量实现组织病理图像的分类。
本发明利用抑制类内差异和类间模糊基础上结合对稀疏系数进行线性判别约束,使得不同类的稀疏系数具有较好的鉴别能力,获得具有特定判别特征的字典,从而提升纺织图像识别的准确度。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明的保护范围内。
Claims (10)
1.一种基于类别约束字典学习模型的织物图像瑕疵检测方法,其特征在于,包括如下步骤:
S1、随机将正常和瑕疵两个织物数据集样本中的各m张图片作为训练集样本,数据集样本中的其余图片作为测试集样本;
6.一种基于类别约束字典学习模型的织物图像瑕疵检测系统,其特征在于,包括如下模块:
样本分类模块:随机将正常和瑕疵两个织物数据集样本中的各m张图片作为训练集样本,数据集样本中的其余图片作为测试集样本;
8.根据权利要求7所述的一种基于类别约束字典学习模型的织物图像瑕疵检测系统,其特征在于,训练集矩阵初始化模块中,随机生成训练集样本字典学习中的学习字典D,和稀疏系数S,并对他们进行初始化,初始化结果为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111070376.6A CN113793319B (zh) | 2021-09-13 | 2021-09-13 | 基于类别约束字典学习模型的织物图像瑕疵检测方法及系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111070376.6A CN113793319B (zh) | 2021-09-13 | 2021-09-13 | 基于类别约束字典学习模型的织物图像瑕疵检测方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113793319A true CN113793319A (zh) | 2021-12-14 |
CN113793319B CN113793319B (zh) | 2023-08-25 |
Family
ID=79183111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111070376.6A Active CN113793319B (zh) | 2021-09-13 | 2021-09-13 | 基于类别约束字典学习模型的织物图像瑕疵检测方法及系统 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113793319B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114612453A (zh) * | 2022-03-18 | 2022-06-10 | 西北工业大学 | 基于深度学习和稀疏表示模型的基建表面缺陷检测方法 |
CN115049619A (zh) * | 2022-06-16 | 2022-09-13 | 浙江理工大学 | 一种针对复杂场景的高效瑕疵检测方法 |
CN115588487A (zh) * | 2022-11-07 | 2023-01-10 | 重庆邮电大学 | 一种基于联邦学习和生成对抗网络的医学图像数据集制作方法 |
CN117172294A (zh) * | 2023-11-02 | 2023-12-05 | 烟台大学 | 一种稀疏脑网络的构建方法、系统、设备和存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106845551A (zh) * | 2017-01-24 | 2017-06-13 | 湘潭大学 | 一种组织病理图像识别方法 |
CN111667453A (zh) * | 2020-04-21 | 2020-09-15 | 浙江工业大学 | 一种基于局部特征和类标嵌入约束字典学习的胃肠镜图像异常检测方法 |
CN112183660A (zh) * | 2020-10-19 | 2021-01-05 | 浙江理工大学 | 一种基于类间模糊抑制的判别字典学习纺织图像分类方法 |
-
2021
- 2021-09-13 CN CN202111070376.6A patent/CN113793319B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106845551A (zh) * | 2017-01-24 | 2017-06-13 | 湘潭大学 | 一种组织病理图像识别方法 |
CN111667453A (zh) * | 2020-04-21 | 2020-09-15 | 浙江工业大学 | 一种基于局部特征和类标嵌入约束字典学习的胃肠镜图像异常检测方法 |
CN112183660A (zh) * | 2020-10-19 | 2021-01-05 | 浙江理工大学 | 一种基于类间模糊抑制的判别字典学习纺织图像分类方法 |
Non-Patent Citations (2)
Title |
---|
赵雅等: "一种快速低秩的判别子字典学习算法及图像分类", 《智能计算机与应用》, pages 51 - 54 * |
赵雅等: "基于判别子字典学习的图像分类优化方法", 《智能计算机与应用》, pages 11 - 14 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114612453A (zh) * | 2022-03-18 | 2022-06-10 | 西北工业大学 | 基于深度学习和稀疏表示模型的基建表面缺陷检测方法 |
CN114612453B (zh) * | 2022-03-18 | 2024-03-26 | 西北工业大学 | 基于深度学习和稀疏表示模型的基建表面缺陷检测方法 |
CN115049619A (zh) * | 2022-06-16 | 2022-09-13 | 浙江理工大学 | 一种针对复杂场景的高效瑕疵检测方法 |
CN115049619B (zh) * | 2022-06-16 | 2024-04-09 | 浙江理工大学 | 一种针对复杂场景的高效瑕疵检测方法 |
CN115588487A (zh) * | 2022-11-07 | 2023-01-10 | 重庆邮电大学 | 一种基于联邦学习和生成对抗网络的医学图像数据集制作方法 |
CN115588487B (zh) * | 2022-11-07 | 2024-07-05 | 重庆邮电大学 | 一种基于联邦学习和生成对抗网络的医学图像数据集制作方法 |
CN117172294A (zh) * | 2023-11-02 | 2023-12-05 | 烟台大学 | 一种稀疏脑网络的构建方法、系统、设备和存储介质 |
CN117172294B (zh) * | 2023-11-02 | 2024-01-26 | 烟台大学 | 一种稀疏脑网络的构建方法、系统、设备和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN113793319B (zh) | 2023-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113793319A (zh) | 基于类别约束字典学习模型的织物图像瑕疵检测方法及系统 | |
CN105740912B (zh) | 基于核范数正则化的低秩图像特征提取的识别方法及系统 | |
CN105678788B (zh) | 一种基于hog和低秩分解的织物疵点检测方法 | |
CN109766858A (zh) | 结合双边滤波的三维卷积神经网络高光谱影像分类方法 | |
CN108805223B (zh) | 一种基于Incep-CapsNet网络的篆文识别方法及系统 | |
CN108734199B (zh) | 基于分段深度特征及低秩表示的高光谱图像鲁棒分类方法 | |
CN106845551B (zh) | 一种组织病理图像识别方法 | |
Shrivastava et al. | Learning discriminative dictionaries with partially labeled data | |
CN108182449A (zh) | 一种高光谱图像分类方法 | |
CN112800927B (zh) | 一种基于AM-Softmax损失的蝴蝶图像细粒度识别方法 | |
CN104123560A (zh) | 基于相位编码特征和多度量学习的模糊人脸图像验证方法 | |
CN105654122B (zh) | 基于核函数匹配的空间金字塔物体识别方法 | |
CN104978569B (zh) | 一种基于稀疏表示的增量人脸识别方法 | |
CN111508043B (zh) | 一种基于判别共享字典的机织物纹理重构方法 | |
CN111126169B (zh) | 基于正交化的图正则非负矩阵分解的人脸识别方法及系统 | |
Yang et al. | High throughput analysis of breast cancer specimens on the grid | |
CN106650769A (zh) | 基于线性表示多视图鉴别字典学习的分类方法 | |
CN105760872B (zh) | 一种基于鲁棒图像特征提取的识别方法及系统 | |
CN107563287B (zh) | 人脸识别方法和装置 | |
CN111931665B (zh) | 一种基于类内变化字典建模的欠采样人脸识别方法 | |
CN113313153B (zh) | 基于自适应图正则化的低秩nmf图像聚类方法与系统 | |
CN112183660B (zh) | 一种基于类间模糊抑制的判别字典学习纺织图像分类方法 | |
Zhou et al. | JCS: An explainable surface defects detection method for steel sheet by joint classification and segmentation | |
CN105139353B (zh) | 一种置换混叠图像的盲分离方法 | |
CN114418041B (zh) | 一种基于ig-hsic-svm的电子舌白酒检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |