CN113789513A - 一种基于正负脉冲的陶瓷基板表面镀铜方法 - Google Patents

一种基于正负脉冲的陶瓷基板表面镀铜方法 Download PDF

Info

Publication number
CN113789513A
CN113789513A CN202110952652.5A CN202110952652A CN113789513A CN 113789513 A CN113789513 A CN 113789513A CN 202110952652 A CN202110952652 A CN 202110952652A CN 113789513 A CN113789513 A CN 113789513A
Authority
CN
China
Prior art keywords
positive
copper plating
ceramic substrate
substrate surface
plating method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110952652.5A
Other languages
English (en)
Inventor
管鹏飞
贺贤汉
王斌
葛荘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Fulewa Semiconductor Technology Co Ltd
Original Assignee
Shanghai Fulewa Semiconductor Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Fulewa Semiconductor Technology Co Ltd filed Critical Shanghai Fulewa Semiconductor Technology Co Ltd
Priority to CN202110952652.5A priority Critical patent/CN113789513A/zh
Publication of CN113789513A publication Critical patent/CN113789513A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/18Electroplating using modulated, pulsed or reversing current
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/241Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种基于正负脉冲的陶瓷基板表面镀铜方法,具体步骤如下:步骤一、瓷片清洗,去除陶瓷表面污渍;步骤二、磁控溅射;步骤三、图形转移,利用黄光微影制程完成图形转移;步骤四、正反脉冲电镀,使金属层增厚;其中:正向脉冲电流密度为1—5ASD,正向脉冲持续时间10—100ms,反向脉冲电流密度为2—20ASD,反向脉冲持续时间0.5—8ms;步骤五、去膜蚀刻,蚀刻出所需的图形;步骤六、表面处理。该方法镀出来的铜层晶粒细小、均匀、致密,镀层纯度高,可用于制作精细线路。

Description

一种基于正负脉冲的陶瓷基板表面镀铜方法
技术领域
本发明属于陶瓷金属化领域,涉及一种基于正负脉冲的陶瓷基板表面镀铜方法。
背景技术
陶瓷镀铜基板,是一种高机械强度、化学稳定性好、高导热和具有电绝缘性的电路基板,主要应用于大功率半导体模块、半导体致冷器及LED散热基板及太阳能电池组件等。目前市场上陶瓷镀铜基板的制程主要包括:采用磁控溅射的方法在陶瓷基板上溅射种子层、表面图形化、电镀铜增厚、表面处理等。
关于脉冲电镀铜的研究主要集中在冶金级电镀和印刷电路板(PCB)布线方面,现有技术中未见脉冲电镀有效应用于陶瓷基板上的报道。
现有技术中陶瓷基板电镀铜工艺镀得的铜层晶粒尺寸较大,不利于制作精细线路。
发明内容
本发明的目的主要在于提供一种基于正负脉冲的陶瓷基板表面镀铜方法,该方法镀出来的铜层晶粒细小、均匀、致密,镀层纯度高,可用于制作精细线路。
本发明的技术方案是:一种基于正负脉冲的陶瓷基板表面镀铜方法,具体步骤如下:
步骤一、瓷片清洗,去除陶瓷表面污渍;
步骤二、磁控溅射;
步骤三、图形转移,利用黄光微影制程完成图形转移;
步骤四、正反脉冲电镀,使金属层增厚;
其中:正向脉冲电流密度为1—5ASD,正向脉冲持续时间10—100ms,反向脉冲电流密度为2—20ASD,反向脉冲持续时间0.5—8ms;
步骤五、去膜蚀刻,蚀刻出所需的图形;
步骤六、表面处理。
进一步的,步骤四中正反脉冲电镀采用的电镀液为酸性镀铜溶液,CuSO4·5H2O浓度为 40—140g/L,H2SO4浓度为180—240g/L,HCl浓度为40—80ppm,光亮剂浓度1—3ml/L,整平剂浓度10—20ml/L,余量为水。
进一步的,所述光亮剂聚二硫二丙烷磺酸钠、甲苯基聚二硫丙烷磺酸钠、醇硫基丙烷磺酸钠中的一种或几种混合;所述整平剂为乙基硫脲、氨基硫脲、酰基硫脲中的一种或几种混合。
进一步的,步骤二中所述磁控溅射是利用辉光放电产生的Ar离子轰击靶材来实现金属薄膜在瓷片上沉积。
进一步的,步骤二中所述磁控溅射为在陶瓷基板表面溅射一层TiW层和一层Cu层,使陶瓷表面导电。
进一步的,TiW层厚度为50—300nm,Cu层厚度为100—1000nm。
进一步的,步骤一中所述清洗为通过除油剂和酸洗去除陶瓷表面的油污和杂质。
进一步的,所述清洗具体方式为在无水乙醇、异丙醇、丙酮中的一种溶剂或几种混合液中常温超声5min-30min,随后在HF溶液中进行微蚀1-3min、超声水洗1-3min、溢流水洗、吸水滚轮、80℃-100℃的热风烘干3-5min。
进一步的,步骤六中,所述表面处理方式为防氧化、化学镍金、化学镀银或电镀镍金。其中,OSP是印刷电路板(PCB)铜箔表面处理的符合RoHS指令要求的一种工艺。
本发明的有益效果是:1)提供了一种用于制作陶瓷基板的新型的正负脉冲电镀铜方法; 2)该方法电镀铜一小时以上仍能够获得细小、均匀、致密的铜晶粒,从而可以制备精细的铜线路;3)本发明提供的方法经济有效,适配性强,操作简单,能够应用于工业量产。
附图说明
图1为不采用脉冲电镀铜层的SEM图片(晶粒大、均匀性差)。
图2为实施例1中脉冲电镀铜层的SEM图片。
图3为实施例2中脉冲电镀铜层的SEM图片。
图4为实施例3中脉冲电镀铜层的SEM图片。
具体实施方式
下面结合附图对本发明做进一步的说明。
实施例1
一种基于正负脉冲的陶瓷基板表面镀铜方法,具体步骤如下:
步骤一、瓷片清洗,去除陶瓷表面污渍。所述清洗为通过除油剂和酸洗去除陶瓷表面的油污和杂质。清洗具体方式为在无水乙醇、异丙醇、丙酮中的一种溶剂或几种混合液中常温超声5min-30min,随后在HF溶液中进行微蚀1-3min、超声水洗1-3min、溢流水洗、吸水滚轮、80℃-100℃的热风烘干3-5min。
步骤二、磁控溅射,利用辉光放电产生的Ar离子轰击靶材来实现金属薄膜在瓷片上沉积。具体的,所述磁控溅射是利用辉光放电产生的Ar离子轰击靶材来实现金属薄膜在瓷片上沉积。 TiW层厚度为100nm,Cu层厚度为500nm。
步骤三、图形转移,利用黄光微影制程完成图形转移。
步骤四、正反脉冲电镀,使金属层增厚。
其中:正向脉冲电流密度为2ASD,正向脉冲持续时间20ms,反向脉冲电流密度为6ASD,反向脉冲持续时间1ms,电镀时间1小时。
正反脉冲电镀采用的电镀液为酸性镀铜溶液,CuSO4·5H2O浓度为80g/L,H2SO4浓度为 220g/L,HCl浓度为60ppm,聚二硫二丙烷磺酸钠浓度2ml/L,乙基硫脲浓度18ml/L。余量为水。
步骤五、去膜蚀刻,蚀刻出所需的图形。
步骤六、表面处理,表面处理方式为OSP、化学镍金、化学镀银或电镀镍金均可。
图2为实施例1中脉冲电镀铜层的SEM图片。
实施例2
一种基于正负脉冲的陶瓷基板表面镀铜方法,具体步骤如下:
步骤一、瓷片清洗,去除陶瓷表面污渍。所述清洗为通过除油剂和酸洗去除陶瓷表面的油污和杂质。清洗具体方式为在无水乙醇、异丙醇、丙酮中的一种溶剂或几种混合液中常温超声5min-30min,随后在HF溶液中进行微蚀1-3min、超声水洗1-3min、溢流水洗、吸水滚轮、80℃-100℃的热风烘干3-5min。
步骤二、磁控溅射,利用辉光放电产生的Ar离子轰击靶材来实现金属薄膜在瓷片上沉积。具体的,所述磁控溅射是利用辉光放电产生的Ar离子轰击靶材来实现金属薄膜在瓷片上沉积。 TiW层厚度为100nm,Cu层厚度为500nm。
步骤三、图形转移,利用黄光微影制程完成图形转移。
步骤四、正反脉冲电镀,使金属层增厚。
其中:正向脉冲电流密度为3ASD,正向脉冲持续时间20ms,反向脉冲电流密度为9ASD,反向脉冲持续时间1ms,电镀时间1小时。
正反脉冲电镀采用的电镀液为酸性镀铜溶液,CuSO4·5H2O浓度为80g/L,H2SO4浓度为 220g/L,HCl浓度为60ppm,甲苯基聚二硫丙烷磺酸钠浓度2ml/L,氨基硫脲浓度18ml/L。
步骤五、去膜蚀刻,蚀刻出所需的图形。
步骤六、表面处理,表面处理方式为OSP、化学镍金、化学镀银或电镀镍金均可。
图3为实施例2中脉冲电镀铜层的SEM图片。
实施例3
一种基于正负脉冲的陶瓷基板表面镀铜方法,具体步骤如下:
步骤一、瓷片清洗,去除陶瓷表面污渍。所述清洗为通过除油剂和酸洗去除陶瓷表面的油污和杂质。清洗具体方式为在无水乙醇、异丙醇、丙酮中的一种溶剂或几种混合液中常温超声5min-30min,随后在HF溶液中进行微蚀1-3min、超声水洗1-3min、溢流水洗、吸水滚轮、80℃-100℃的热风烘干3-5min。
步骤二、磁控溅射,利用辉光放电产生的Ar离子轰击靶材来实现金属薄膜在瓷片上沉积。具体的,所述磁控溅射是利用辉光放电产生的Ar离子轰击靶材来实现金属薄膜在瓷片上沉积。 TiW层厚度为150nm,Cu层厚度为800nm。
步骤三、图形转移,利用黄光微影制程完成图形转移。
步骤四、正反脉冲电镀,使金属层增厚。
其中:正向脉冲电流密度为3ASD,正向脉冲持续时间10ms,反向脉冲电流密度为9ASD,反向脉冲持续时间0.7ms,电镀时间1小时。
正反脉冲电镀采用的电镀液为酸性镀铜溶液,CuSO4·5H2O浓度为80g/L,H2SO4浓度为 220g/L,HCl浓度为60ppm,醇硫基丙烷磺酸钠2ml/L,酰基硫脲18ml/L。
步骤五、去膜蚀刻,蚀刻出所需的图形。
步骤六、表面处理,表面处理方式为OSP、化学镍金、化学镀银或电镀镍金均可。
图4为实施例3中脉冲电镀铜层的SEM图片。
表1
Figure BDA0003219118830000041
Figure BDA0003219118830000051
由表1可知,该方法能够获得细小、均匀、致密的铜晶粒,从而可以制备精细的铜线路。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (9)

1.一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:具体步骤如下:
步骤一、瓷片清洗,去除陶瓷表面污渍;
步骤二、磁控溅射;
步骤三、图形转移,利用黄光微影制程完成图形转移;
步骤四、正反脉冲电镀,使金属层增厚;
其中:正向脉冲电流密度为1—5ASD,正向脉冲持续时间10—100ms,反向脉冲电流密度为2—20ASD,反向脉冲持续时间0.5—8ms;
步骤五、去膜蚀刻,蚀刻出所需的图形;
步骤六、表面处理。
2.根据权利要求1所述的一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:步骤四中正反脉冲电镀采用的电镀液为酸性镀铜溶液,CuSO4·5H2O浓度为40—140g/L,H2SO4浓度为180—240g/L,HCl浓度为40—80ppm,光亮剂浓度1—3ml/L,整平剂浓度10—20ml/L,余量为水。
3.根据权利要求2所述的一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:所述光亮剂聚二硫二丙烷磺酸钠、甲苯基聚二硫丙烷磺酸钠、醇硫基丙烷磺酸钠中的一种或几种混合;所述整平剂为乙基硫脲、氨基硫脲、酰基硫脲中的一种或几种混合。
4.根据权利要求1所述的一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:步骤二中所述磁控溅射是利用辉光放电产生的Ar离子轰击靶材来实现金属薄膜在瓷片上沉积。
5.根据权利要求1所述的一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:步骤二中所述磁控溅射为在陶瓷基板表面溅射一层TiW层和一层Cu层,使陶瓷表面导电。
6.根据权利要求5所述的一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:TiW层厚度为50—300nm,Cu层厚度为100—1000nm。
7.根据权利要求1所述的一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:步骤一中所述清洗为通过除油剂和酸洗去除陶瓷表面的油污和杂质。
8.根据权利要求7所述的一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:所述清洗具体方式为在无水乙醇、异丙醇、丙酮中的一种溶剂或几种混合液中常温超声5min-30min,随后在HF溶液中进行微蚀1-3min、超声水洗1-3min、溢流水洗、吸水滚轮、80℃-100℃的热风烘干3-5min。
9.根据权利要求1所述的一种基于正负脉冲的陶瓷基板表面镀铜方法,其特征在于:步骤六中,所述表面处理方式为防氧化、化学镍金、化学镀银或电镀镍金。
CN202110952652.5A 2021-08-19 2021-08-19 一种基于正负脉冲的陶瓷基板表面镀铜方法 Pending CN113789513A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110952652.5A CN113789513A (zh) 2021-08-19 2021-08-19 一种基于正负脉冲的陶瓷基板表面镀铜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110952652.5A CN113789513A (zh) 2021-08-19 2021-08-19 一种基于正负脉冲的陶瓷基板表面镀铜方法

Publications (1)

Publication Number Publication Date
CN113789513A true CN113789513A (zh) 2021-12-14

Family

ID=79181890

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110952652.5A Pending CN113789513A (zh) 2021-08-19 2021-08-19 一种基于正负脉冲的陶瓷基板表面镀铜方法

Country Status (1)

Country Link
CN (1) CN113789513A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279042A (zh) * 2022-07-26 2022-11-01 江苏富乐华半导体科技股份有限公司 一种化学镀镍金dpc陶瓷基板制备方法
CN115449860A (zh) * 2022-09-28 2022-12-09 深圳市创智成功科技有限公司 一种陶瓷基板的电镀镍金液及其电镀工艺
CN115787016A (zh) * 2022-12-14 2023-03-14 上海天承化学有限公司 一种图形电镀工艺及印制线路板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150197870A1 (en) * 2014-01-15 2015-07-16 The Board Of Trustees Of The Leland Stanford Junior University Method for Plating Fine Grain Copper Deposit on Metal Substrate
CN105845582A (zh) * 2016-04-28 2016-08-10 东莞市凯昶德电子科技股份有限公司 一种igbt封装用陶瓷基板的制备方法
CN109561585A (zh) * 2017-09-27 2019-04-02 深圳市博敏电子有限公司 陶瓷基线路板制备工艺
CN110459668A (zh) * 2019-08-16 2019-11-15 国网河南省电力公司邓州市供电公司 一种大功率led散热基板的制备方法
CN113046805A (zh) * 2021-03-16 2021-06-29 元六鸿远(苏州)电子科技有限公司 一种用于单层陶瓷电容基板镀层厚度均匀化的表面处理方法
CN113079646A (zh) * 2021-03-23 2021-07-06 江苏富乐德半导体科技有限公司 一种dpc覆铜陶瓷基板表面金属化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150197870A1 (en) * 2014-01-15 2015-07-16 The Board Of Trustees Of The Leland Stanford Junior University Method for Plating Fine Grain Copper Deposit on Metal Substrate
CN105845582A (zh) * 2016-04-28 2016-08-10 东莞市凯昶德电子科技股份有限公司 一种igbt封装用陶瓷基板的制备方法
CN109561585A (zh) * 2017-09-27 2019-04-02 深圳市博敏电子有限公司 陶瓷基线路板制备工艺
CN110459668A (zh) * 2019-08-16 2019-11-15 国网河南省电力公司邓州市供电公司 一种大功率led散热基板的制备方法
CN113046805A (zh) * 2021-03-16 2021-06-29 元六鸿远(苏州)电子科技有限公司 一种用于单层陶瓷电容基板镀层厚度均匀化的表面处理方法
CN113079646A (zh) * 2021-03-23 2021-07-06 江苏富乐德半导体科技有限公司 一种dpc覆铜陶瓷基板表面金属化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUNG KC等: "The Effects of Pulse Plating Parameters on Copper Plating Distribution of Microvia in PCB Manufacture"", 《IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING》, vol. 26, no. 2, pages 106 - 109, XP001175884, DOI: 10.1109/TEPM.2003.817722 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115279042A (zh) * 2022-07-26 2022-11-01 江苏富乐华半导体科技股份有限公司 一种化学镀镍金dpc陶瓷基板制备方法
CN115449860A (zh) * 2022-09-28 2022-12-09 深圳市创智成功科技有限公司 一种陶瓷基板的电镀镍金液及其电镀工艺
CN115787016A (zh) * 2022-12-14 2023-03-14 上海天承化学有限公司 一种图形电镀工艺及印制线路板

Similar Documents

Publication Publication Date Title
CN113789513A (zh) 一种基于正负脉冲的陶瓷基板表面镀铜方法
KR101295186B1 (ko) 침지 방법
KR20060114010A (ko) 알루미늄상의 전기 도금 방법
TWI658764B (zh) 在印刷電路板上製造銅柱的方法
CN101035413A (zh) 布线基板的制造方法
CN113079646A (zh) 一种dpc覆铜陶瓷基板表面金属化方法
CN111586993B (zh) 一种回流焊接孔金属化的铝基微带板生产工艺
KR20110038457A (ko) 무전해 니켈 도금층을 갖는 금속배선 구조 및 그 제조방법
TWI510680B (zh) 銅電鍍溶液及其製備與使用方法
TW583349B (en) Method for enhancing the solderability of a surface
CN102560580A (zh) 无镍电镀金制作工艺
CN108184312A (zh) 一种双面导通陶瓷线路板及其制备方法
KR101264460B1 (ko) 가공물의 표면으로부터 이온 오염물을 제거하기 위한 수용액 및 방법
CN104561955A (zh) 一种陶瓷基板化学镀铜溶液及陶瓷基板的金属化工艺
CN1362536A (zh) 陶瓷电子器件表面金属化的方法
CN101035416A (zh) 布线基板的制造方法
CN101027427B (zh) 用锡和锡合金涂布含有锑化合物的衬底的方法
CN115551213A (zh) 一种覆铜陶瓷基板图形侧壁无镀银层的方法
PH12015501631B1 (en) Multi-level metalization on a ceramic substrate
KR20010042625A (ko) 주석 또는 주석 합금층으로 구리 또는 구리 합금의 표면을피복하는 방법
CN114016098A (zh) 一种PCB用覆铜板电镀Ni-Co-Ce薄膜镀液及薄膜制备方法
US6003225A (en) Fabrication of aluminum-backed printed wiring boards with plated holes therein
CN109082651B (zh) 一种用于化学镀的预处理组合物
CN209949533U (zh) 一种反射陶瓷电路板
CN109951947B (zh) 一种反射陶瓷电路板及其加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination