CN113779726B - Establishment method and solution method of thermal error model based on cutting force - Google Patents

Establishment method and solution method of thermal error model based on cutting force Download PDF

Info

Publication number
CN113779726B
CN113779726B CN202111074462.4A CN202111074462A CN113779726B CN 113779726 B CN113779726 B CN 113779726B CN 202111074462 A CN202111074462 A CN 202111074462A CN 113779726 B CN113779726 B CN 113779726B
Authority
CN
China
Prior art keywords
thermal error
thermal
cutting force
cutting
machine tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111074462.4A
Other languages
Chinese (zh)
Other versions
CN113779726A (en
Inventor
王四宝
汤滨瑞
孙守利
黄强
赵增亚
王泽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202111074462.4A priority Critical patent/CN113779726B/en
Publication of CN113779726A publication Critical patent/CN113779726A/en
Application granted granted Critical
Publication of CN113779726B publication Critical patent/CN113779726B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

本发明公开了一种基于切削力的热误差模型创建方法,首先因为机床产生的轴向热伸长误差和径向热漂移误差会导致刀具的切深和切宽发生变化,从而导致机床产生热误差前后,同样加工条件下切削力大小会发生变化,所以测量相同加工环境下机床产生热误差前后的切削力,建立切削力与热误差的数学模型,就可以根据切削力的变化值,得到当前的机床热误差,即本发明能够基于切削力的变化得到当前机床的热误差,从而创建热误差模型。

The invention discloses a method for creating a thermal error model based on cutting force. Firstly, because the axial thermal elongation error and radial thermal drift error generated by the machine tool will cause the cutting depth and cutting width of the tool to change, which will cause the machine tool to generate heat. Before and after the error, the cutting force will change under the same processing conditions. Therefore, by measuring the cutting force before and after the thermal error of the machine tool under the same processing environment, and establishing a mathematical model of cutting force and thermal error, the current value can be obtained according to the change value of the cutting force. The thermal error of the machine tool, that is, the present invention can obtain the thermal error of the current machine tool based on the change of the cutting force, thereby creating a thermal error model.

Description

基于切削力的热误差模型创建方法及求解方法Establishment method and solution method of thermal error model based on cutting force

技术领域technical field

本发明属于机械误差分析技术领域,具体的为一种基于切削力的热误差模型创建方法及求解方法。The invention belongs to the technical field of mechanical error analysis, in particular to a method for creating and solving a thermal error model based on cutting force.

背景技术Background technique

随着航空航天、模具加工等行业的快速发展,对复杂工件的精密制造需求逐渐增加,五轴数控机床的角色也越来越重要。五轴数控机床在工作时,受加工系统内外多种复杂因素影响,必然产生加工误差,且这些误差对被加工零件的精度及表面质量有较大影响。大量研究表明:影响机床加工工件精度的主要误差是热致误差,占数控机床所有误差的比值达40%以上。相比传统三轴机床,五轴数控机床不仅轴数更多且具有更高的主轴转速与进给速度,其内部热致因素众多,因此,开展五轴数控机床的热误差识别,对补偿热误差提高五轴数控机床的加工精度具有重要的价值。在ISO230-3,ISO10791-10等标准中,对机床主轴和进给轴的热误差测量进行了详细的描述。关于五轴数控机床的旋转轴(C轴)热误差测量,尽管尚未形成相应的行业标准,但是国内外相关学者开始尝试使用R-test测量装置、机床在机测头以及切削试件等测量方式测量机床旋转轴的热误差。机床的主要热误差包括主轴热误差和进给驱动轴热误差,电机和轴承的温度变化是主轴热误差的主要来源,主轴引起的热误差包括轴向热伸长误差和径向热漂移误差。With the rapid development of aerospace, mold processing and other industries, the demand for precision manufacturing of complex workpieces is gradually increasing, and the role of five-axis CNC machine tools is becoming more and more important. When the five-axis CNC machine tool is working, it is affected by various complex factors inside and outside the processing system, and processing errors are bound to occur, and these errors have a great impact on the accuracy and surface quality of the processed parts. A large number of studies have shown that: the main error that affects the accuracy of machine tool machining workpieces is thermal error, which accounts for more than 40% of all errors in CNC machine tools. Compared with traditional three-axis machine tools, five-axis CNC machine tools not only have more axes but also have higher spindle speed and feed speed, and have many internal thermal factors. It is of great value to improve the machining accuracy of five-axis CNC machine tools. In ISO230-3, ISO10791-10 and other standards, the thermal error measurement of the machine tool spindle and feed axis is described in detail. Regarding the thermal error measurement of the rotary axis (C-axis) of the five-axis CNC machine tool, although no corresponding industry standard has been formed, relevant scholars at home and abroad have begun to try to use R-test measurement devices, machine tool probes, and cutting test pieces. Measure thermal errors of machine tool rotary axes. The main thermal error of the machine tool includes the thermal error of the spindle and the thermal error of the feed drive shaft. The temperature change of the motor and bearing is the main source of the thermal error of the spindle. The thermal error caused by the spindle includes the axial thermal elongation error and the radial thermal drift error.

虽然以往的研究提出了很多的热误差建模和预测的方法但是也存在一些缺点,主要有:Although previous studies have proposed many thermal error modeling and prediction methods, there are still some shortcomings, mainly including:

(1)需要很多的温度传感器才能达到高精度测量;(1) A lot of temperature sensors are needed to achieve high-precision measurement;

(2)温度敏感点选择方法存在很多缺陷,无法从根本上解决多重共线性和传感器耦合问题;(2) There are many defects in the temperature sensitive point selection method, which cannot fundamentally solve the problems of multicollinearity and sensor coupling;

(3)热误差模型的建模方法的鲁棒性低。(3) The modeling method of the thermal error model has low robustness.

发明内容Contents of the invention

有鉴于此,本发明的目的在于提供一种基于切削力的热误差模型创建方法及求解方法,能够基于切削力的变化得到当前机床的热误差,从而创建热误差模型。In view of this, the purpose of the present invention is to provide a thermal error model creation method and solution method based on cutting force, which can obtain the thermal error of the current machine tool based on the change of cutting force, thereby creating a thermal error model.

为达到上述目的,本发明提供如下技术方案:To achieve the above object, the present invention provides the following technical solutions:

本发明首先提出了一种基于切削力的热误差模型创建方法:The present invention first proposes a method for creating a thermal error model based on cutting force:

利用指数公式表示切削力F:Use the exponential formula to express the cutting force F:

其中,D表示决定于被加工材料和切削条件的系数;a、b、c、d表示各工艺参数的指数;vc表示切削速度;fz表示每齿进给量;ap表示轴向切深;ae表示径向切削深度;Among them, D represents the coefficient determined by the processed material and cutting conditions; a, b, c, d represent the index of each process parameter; v c represents the cutting speed; f z represents the feed per tooth; a p represents the axial cutting deep; a e represents the radial cutting depth;

将切削力F在机床坐标系的X、Y、Z三个方向分解为Fx、Fy、Fz三个分力,分别为:The cutting force F is decomposed into three component forces F x , F y , and F z in the X, Y, and Z directions of the machine tool coordinate system, respectively:

其中,D1、D2、D3分别表示X,Y,Z三个方向决定于被加工材料和切削条件的系数;a1、b1、c1、d1表示X向分力工艺参数的指数;a2、b2、c2、d2表示Y向分力工艺参数的指数;a3、b3、c3、d3表示Z向分力工艺参数的指数;Among them, D 1 , D 2 , and D 3 represent the coefficients of the three directions of X, Y, and Z that are determined by the processed material and cutting conditions; a1, b1, c1, and d1 represent the indices of the X-direction force component process parameters; a2, b2, c2, d2 represent the index of the Y-direction component force process parameter; a3, b3, c3, d3 represent the Z-direction force component process parameter index;

由于热误差导致机床主轴存在径向漂移和轴向伸长;Radial drift and axial elongation of the machine tool spindle due to thermal errors;

主轴径向漂移导致机床的径向切削深度发生改变,即径向切削深度的变化值是主轴径向漂移的函数,表示为:The radial drift of the spindle leads to changes in the radial depth of cut of the machine tool, that is, the change value of the radial depth of cut is a function of the radial drift of the spindle, expressed as:

Δae=f(δxy)Δa e =f(δ xy )

其中,Δae表示径向切削深度的变化值;δx、δy表示主轴因热误差导致的在X、Y方向的径向漂移;Among them, Δa e represents the change value of the radial cutting depth; δ x and δ y represent the radial drift of the spindle in the X and Y directions caused by thermal errors;

主轴轴向伸长导致机床的轴向切深发生改变,且轴向伸长与轴向切深之间的关系为:The axial elongation of the spindle causes the axial depth of cut of the machine tool to change, and the relationship between the axial elongation and the axial depth of cut is:

δz=Δap δ z = Δa p

其中,Δap表示轴向切深的变化值;δz表示主轴因热误差导致的在Z方向的轴向伸长;Among them, Δa p represents the change value of the axial depth of cut; δ z represents the axial elongation of the spindle in the Z direction caused by thermal errors;

因此,因热误差导致的机床切削力的变化可表示为:Therefore, the change in the cutting force of the machine tool due to thermal error can be expressed as:

其中,ΔFx表示同等加工条件下,因热误差导致的前后两次切削在x方向上的切削力的变化值;Among them, ΔF x represents the change value of the cutting force in the x direction of the two cuttings caused by the thermal error under the same processing conditions;

ΔFy表示同等加工条件下,因热误差导致的前后两次切削在y方向上的切削力的变化值;ΔF y represents the change value of the cutting force in the y direction of the two cuttings caused by the thermal error under the same processing conditions;

ΔFz表示同等加工条件下,因热误差导致的前后两次切削在z方向上的切削力的变化值;ΔF z represents the change value of the cutting force in the z direction of the two cuttings caused by the thermal error under the same processing conditions;

从而可以求解得到机床热误差的表达式为:Therefore, the expression of the thermal error of the machine tool can be solved as follows:

其中,V表示主轴转速;Among them, V represents the spindle speed;

A0,A1,A2,A3,A4表示X方向热误差的回归系数;A0, A1, A2, A3, A4 represent the regression coefficient of the thermal error in the X direction;

B0,B1,B2,B3,B4表示Y方向热误差的回归系数;B0, B1, B2, B3, B4 represent the regression coefficient of the thermal error in the Y direction;

C0,C1,C2,C3,C4表示Z方向热误差的回归系数;C0, C1, C2, C3, C4 represent the regression coefficient of the thermal error in the Z direction;

从而创建得到热误差模型。This creates a thermal error model.

本发明还提出了一种如上所述基于切削力的热误差模型创建方法创建得到的热误差模型的求解方法,测量至少15组机床主轴的热误差-切削力数据并代入所述热误差模型,利用多元回归算法求解热误差模型中在X方向热误差的回归系数、在Y方向热误差的回归系数和在Z方向热误差的回归系数;其中,热误差-切削力数据包括热误差数据和对应的切削力数据。The present invention also proposes a method for solving the thermal error model created by the thermal error model creation method based on cutting force as described above, measuring at least 15 sets of thermal error-cutting force data of the machine tool spindle and substituting them into the thermal error model, Using the multiple regression algorithm to solve the regression coefficient of the thermal error in the X direction, the regression coefficient of the thermal error in the Y direction and the regression coefficient of the thermal error in the Z direction in the thermal error model; where the thermal error-cutting force data includes the thermal error data and the corresponding cutting force data.

进一步,热误差数据的测量方法为:Further, the measurement method of thermal error data is:

沿主轴轴向方向分别设置两个用于检测主轴在X方向上的径向漂移的位移传感器和两个用于检测主轴在Y方向上的径向漂移的两个位移传感器;在主轴的自由端端部设置一个用于检测主轴在Z方向上的轴向伸长的位移传感器;从而可以得到:Two displacement sensors for detecting the radial drift of the main shaft in the X direction and two displacement sensors for detecting the radial drift of the main shaft in the Y direction are respectively arranged along the axial direction of the main shaft; at the free end of the main shaft A displacement sensor for detecting the axial elongation of the main shaft in the Z direction is provided at the end; thus:

δz=zδ z = z

其中,Lx,Ly分别为主轴固定端距离X、Y方向最近的位移传感器距的距离;Hx,Hy分别为X、Y方向上的两个位移传感器之间的距离;x1,x2分别为X方向上的两个位移传感器测量得到的位移值;y1,y2分别为Y方向上的两个位移传感器测量得到的位移值;z为Z方向上的位移传感器测量得到的位移值;。αx,αy分别为绕Y、X轴的热倾斜。Among them, L x , L y are the distances from the fixed end of the spindle to the nearest displacement sensor in the X and Y directions; H x , Hy are the distances between the two displacement sensors in the X and Y directions respectively; x 1 , x 2 is the displacement value measured by the two displacement sensors in the X direction; y 1 and y 2 are the displacement values measured by the two displacement sensors in the Y direction; z is the displacement value measured by the displacement sensor in the Z direction displacement value; . α x , α y are the thermal inclinations around the Y and X axes, respectively.

本发明的有益效果在于:The beneficial effects of the present invention are:

本发明基于切削力的热误差模型创建方法,首先因为机床产生的轴向热伸长误差和径向热漂移误差会导致刀具的切深和切宽发生变化,从而导致机床产生热误差前后,同样加工条件下切削力大小会发生变化,所以测量相同加工环境下机床产生热误差前后的切削力,建立切削力与热误差的数学模型,就可以根据切削力的变化值,得到当前的机床热误差,即本发明能够基于切削力的变化得到当前机床的热误差,从而创建热误差模型。The cutting force-based thermal error model creation method of the present invention, first of all, because the axial thermal elongation error and radial thermal drift error generated by the machine tool will cause the cutting depth and cutting width of the tool to change, thus causing the thermal error of the machine tool before and after, the same The cutting force will change under the processing conditions, so measure the cutting force before and after the thermal error of the machine tool under the same processing environment, establish the mathematical model of cutting force and thermal error, and then get the current thermal error of the machine tool according to the change value of the cutting force , that is, the present invention can obtain the thermal error of the current machine tool based on the change of the cutting force, thereby creating a thermal error model.

附图说明Description of drawings

为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:In order to make the purpose, technical scheme and beneficial effect of the present invention clearer, the present invention provides the following drawings for illustration:

图1为本发明基于切削力的热误差模型创建方法实施例的流程图;Fig. 1 is a flowchart of an embodiment of a method for creating a thermal error model based on cutting force in the present invention;

图2为主轴热误差数据测量装置的结构示意图;Fig. 2 is a structural schematic diagram of a spindle thermal error data measuring device;

图3为主轴热误差偏移模型图;Figure 3 is a model diagram of the thermal error offset of the spindle;

图4为切削力测量装置的结构示意图。Fig. 4 is a schematic structural diagram of the cutting force measuring device.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.

如图1所示,为本发明基于切削力的热误差模型创建方法实施例的流程图。本实施例基于切削力的热误差模型创建方法:As shown in FIG. 1 , it is a flow chart of an embodiment of the method for creating a thermal error model based on cutting force in the present invention. In this embodiment, the method of creating a thermal error model based on cutting force:

利用指数公式表示切削力F:Use the exponential formula to express the cutting force F:

其中,D表示决定于被加工材料和切削条件的系数;a、b、c、d表示各工艺参数的指数;vc表示切削速度;fz表示每齿进给量;ap表示轴向切深;ae表示径向切削深度;Among them, D represents the coefficient determined by the processed material and cutting conditions; a, b, c, d represent the index of each process parameter; v c represents the cutting speed; f z represents the feed per tooth; a p represents the axial cutting deep; a e represents the radial cutting depth;

将切削力F在机床坐标系的X、Y、Z三个方向分解为Fx、Fy、Fz三个分力,分别为:The cutting force F is decomposed into three component forces F x , F y , and F z in the X, Y, and Z directions of the machine tool coordinate system, respectively:

其中,D1、D2、D3分别表示X,Y,Z三个方向决定于被加工材料和切削条件的系数;a1、b1、c1、d1表示X向分力工艺参数的指数;a2、b2、c2、d2表示Y向分力工艺参数的指数;a3、b3、c3、d3表示Z向分力工艺参数的指数;Among them, D 1 , D 2 , and D 3 represent the coefficients of the three directions of X, Y, and Z that are determined by the processed material and cutting conditions; a1, b1, c1, and d1 represent the indices of the X-direction force component process parameters; a2, b2, c2, d2 represent the index of the Y-direction component force process parameter; a3, b3, c3, d3 represent the Z-direction force component process parameter index;

由于热误差导致机床主轴存在径向漂移和轴向伸长;Radial drift and axial elongation of the machine tool spindle due to thermal errors;

主轴径向漂移导致机床的径向切削深度发生改变,即径向切削深度的变化值是主轴径向漂移的函数,表示为:The radial drift of the spindle leads to changes in the radial depth of cut of the machine tool, that is, the change value of the radial depth of cut is a function of the radial drift of the spindle, expressed as:

Δae=f(δxy)Δa e =f(δ xy )

其中,Δae表示径向切削深度的变化值;δx、δy表示主轴因热误差导致的在X、Y方向的径向漂移;Among them, Δa e represents the change value of the radial cutting depth; δ x and δ y represent the radial drift of the spindle in the X and Y directions caused by thermal errors;

主轴轴向伸长导致机床的轴向切深发生改变,且轴向伸长与轴向切深之间的关系为:The axial elongation of the spindle causes the axial depth of cut of the machine tool to change, and the relationship between the axial elongation and the axial depth of cut is:

δz=Δap δ z = Δa p

其中,Δap表示轴向切深的变化值;δz表示主轴因热误差导致的在Z方向的轴向伸长;Among them, Δa p represents the change value of the axial depth of cut; δ z represents the axial elongation of the spindle in the Z direction caused by thermal errors;

因此,因热误差导致的机床切削力的变化可表示为:Therefore, the change in the cutting force of the machine tool due to thermal error can be expressed as:

其中,ΔFx表示同等加工条件下,因热误差导致的前后两次切削在x方向上的切削力的变化值;Among them, ΔF x represents the change value of the cutting force in the x direction of the two cuttings caused by the thermal error under the same processing conditions;

ΔFy表示同等加工条件下,因热误差导致的前后两次切削在y方向上的切削力的变化值;ΔF y represents the change value of the cutting force in the y direction of the two cuttings caused by the thermal error under the same processing conditions;

ΔFz表示同等加工条件下,因热误差导致的前后两次切削在z方向上的切削力的变化值;ΔF z represents the change value of the cutting force in the z direction of the two cuttings caused by the thermal error under the same processing conditions;

从而可以求解得到机床热误差的表达式为:Therefore, the expression of the thermal error of the machine tool can be solved as follows:

其中,V表示主轴转速;Among them, V represents the spindle speed;

A0,A1,A2,A3,A4表示X方向热误差的回归系数;A0, A1, A2, A3, A4 represent the regression coefficient of the thermal error in the X direction;

B0,B1,B2,B3,B4表示Y方向热误差的回归系数;B0, B1, B2, B3, B4 represent the regression coefficient of the thermal error in the Y direction;

C0,C1,C2,C3,C4表示Z方向热误差的回归系数;C0, C1, C2, C3, C4 represent the regression coefficient of the thermal error in the Z direction;

从而创建得到热误差模型。This creates a thermal error model.

本实施例还提出了一种基于切削力的热误差模型的求解方法,首先利用上述基于切削力的热误差模型创建方法创建得到的热误差模型,而后测量至少15组机床主轴的热误差-切削力数据并代入所述热误差模型,最后利用多元回归算法求解热误差模型中在X方向热误差的回归系数、在Y方向热误差的回归系数和在Z方向热误差的回归系数;其中,热误差-切削力数据包括热误差数据和对应的切削力数据。This embodiment also proposes a solution method of a thermal error model based on cutting force. First, the thermal error model is created by using the above-mentioned thermal error model creation method based on cutting force, and then the thermal error-cutting of at least 15 groups of machine tool spindles is measured. The force data is substituted into the thermal error model, and finally the multiple regression algorithm is used to solve the regression coefficient of the thermal error in the X direction, the regression coefficient of the thermal error in the Y direction, and the regression coefficient of the thermal error in the Z direction in the thermal error model; The error-cutting force data includes thermal error data and corresponding cutting force data.

为了更好地检测主轴的热效应,依据ISO230-3国际标准,利用位移传感器等设备,针对主轴产品综合性能测试与评价的实际要求测定热效应变形,主要检测由主轴旋转引起的温升导致的主轴变形,并对检测到的数据进行整理,得到由热效应引起的主轴变形图像。本文根据ISO230-3标准中的五点检测法,搭建了如图2所示主轴热误差测量装置。In order to better detect the thermal effect of the spindle, according to the ISO230-3 international standard, use displacement sensors and other equipment to measure the thermal effect deformation according to the actual requirements of the comprehensive performance test and evaluation of the spindle product, mainly to detect the spindle deformation caused by the temperature rise caused by the rotation of the spindle , and organize the detected data to obtain the deformation image of the main shaft caused by the thermal effect. In this paper, according to the five-point detection method in the ISO230-3 standard, a spindle thermal error measurement device as shown in Figure 2 is built.

具体的,热误差数据的测量方法为:沿主轴轴向方向分别设置两个用于检测主轴在X方向上的径向漂移的位移传感器和两个用于检测主轴在Y方向上的径向漂移的两个位移传感器;在主轴的自由端端部设置一个用于检测主轴在Z方向上的轴向伸长的位移传感器。Specifically, the measurement method of the thermal error data is as follows: two displacement sensors for detecting the radial drift of the main shaft in the X direction and two displacement sensors for detecting the radial drift of the main shaft in the Y direction are respectively arranged along the axial direction of the main shaft. Two displacement sensors; a displacement sensor for detecting the axial elongation of the main shaft in the Z direction is arranged at the free end of the main shaft.

如图3所示,假设检验棒在机床运行过程中不发生变形,直线A0B0为初值检验棒位置,A1B1为主轴产生热误差后主轴检验棒位置。Ax,Bx为热误差后主轴检验棒位置A1B1在X方向上投影,同理Ay,By为A1B1在Y方向上投影。通过几何关系分析,可以得到五项误差的精确表达式如式。式中δx,δy分别为X、Y方向的热漂移。αx,αy分别为绕Y、X轴的热倾斜,δz为Z向热伸长,x1,x2分别为X方向上的两个位移传感器测量得到的位移值。y1,y2分别为Y方向上的两个位移传感器测量得到的位移值,z为Z方向上的位移传感器测量得到的位移值。Hx,Hy分别为X、Y方向上的两个位移传感器之间的距离,Lx,Ly分别为主轴固定端距离X、Y方向最近的位移传感器距的距离。在图中形成的梯形中根据简单的几何关系,忽略高阶小量,从而可以得到:As shown in Figure 3, assuming that the inspection rod does not deform during the operation of the machine tool, the straight line A 0 B 0 is the initial value of the inspection rod position, and A 1 B 1 is the position of the spindle inspection rod after the spindle generates a thermal error. A x , B x is the projection of the position of the spindle test rod A 1 B 1 in the X direction after the thermal error, similarly A y , By y is the projection of A 1 B 1 in the Y direction. Through the analysis of the geometric relationship, the precise expression of the five errors can be obtained as follows. where δ x , δ y are the thermal drift in the X and Y directions, respectively. α x , α y are the thermal inclinations around the Y and X axes, respectively, δ z is the thermal elongation in the Z direction, and x 1 , x 2 are the displacement values measured by two displacement sensors in the X direction. y 1 and y 2 are the displacement values measured by the two displacement sensors in the Y direction, respectively, and z is the displacement value measured by the displacement sensor in the Z direction. H x , H y are the distances between the two displacement sensors in the X and Y directions respectively, and L x and L y are the distances from the fixed end of the main shaft to the nearest displacement sensor in the X and Y directions respectively. In the trapezoid formed in the figure, according to the simple geometric relationship, ignoring the high-order small quantity, it can be obtained:

δz=zδ z = z

其中x1,x2为X方向的位移传感器所测得的位移值,近似代替主轴平均线在X方向的热漂移;y1,y2为Y方向的位移传感器所测得的位移值,近似代替主轴平均线在Y方向的热漂移;z为Z方向传感器测得的位移值,为直接测量所得的主轴Z向热伸长。Among them, x 1 , x 2 are the displacement values measured by the displacement sensor in the X direction, approximately replacing the thermal drift of the mean line of the main axis in the X direction; y 1 , y 2 are the displacement values measured by the displacement sensor in the Y direction, approximately Instead of the thermal drift of the mean line of the main shaft in the Y direction; z is the displacement value measured by the sensor in the Z direction, and is the direct measurement of the thermal elongation of the main shaft in the Z direction.

切削力数据的测量方法为:如图4所示,利用切削力测量装置直接测量刀具切削工件的切削力。切削力测量装置包括测力计、与测力计相连的滤波器和与滤波器相连的计算机。工件安装在测力计上,安装在主轴刀柄上的刀具切削工件时,即可利用切削力测量装置测量得到切削力F,并可将切削力F分解为X、Y、Z三个方向的分力Fx、Fy、FzThe measurement method of the cutting force data is as follows: as shown in Figure 4, the cutting force of the tool cutting the workpiece is directly measured by the cutting force measuring device. The cutting force measuring device includes a dynamometer, a filter connected with the dynamometer and a computer connected with the filter. The workpiece is installed on the dynamometer, and when the tool installed on the spindle tool holder cuts the workpiece, the cutting force F can be measured by the cutting force measuring device, and the cutting force F can be decomposed into three directions of X, Y, and Z. Force components F x , F y , F z .

以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。The above-mentioned embodiments are only preferred embodiments for fully illustrating the present invention, and the protection scope of the present invention is not limited thereto. Equivalent substitutions or transformations made by those skilled in the art on the basis of the present invention are all within the protection scope of the present invention. The protection scope of the present invention shall be determined by the claims.

Claims (3)

1.一种基于切削力的热误差模型创建方法,其特征在于:1. A method for creating a thermal error model based on cutting force, characterized in that: 利用指数公式表示切削力F:Use the exponential formula to express the cutting force F: 其中,D表示决定于被加工材料和切削条件的系数;a、b、c、d表示各工艺参数的指数;vc表示切削速度;fz表示每齿进给量;ap表示轴向切深;ae表示径向切削深度;Among them, D represents the coefficient determined by the processed material and cutting conditions; a, b, c, d represent the index of each process parameter; v c represents the cutting speed; f z represents the feed per tooth; a p represents the axial cutting deep; a e represents the radial cutting depth; 将切削力F在机床坐标系的X、Y、Z三个方向分解为Fx、Fy、Fz三个分力,分别为:The cutting force F is decomposed into three component forces F x , F y , and F z in the X, Y, and Z directions of the machine tool coordinate system, respectively: 其中,D1、D2、D3分别表示X,Y,Z三个方向决定于被加工材料和切削条件的系数;a1、b1、c1、d1表示X向分力工艺参数的指数;a2、b2、c2、d2表示Y向分力工艺参数的指数;a3、b3、c3、d3表示Z向分力工艺参数的指数;Among them, D 1 , D 2 , and D 3 represent the coefficients of the three directions of X, Y, and Z that are determined by the processed material and cutting conditions; a1, b1, c1, and d1 represent the indices of the X-direction force component process parameters; a2, b2, c2, d2 represent the index of the Y-direction component force process parameter; a3, b3, c3, d3 represent the Z-direction force component process parameter index; 由于热误差导致机床主轴存在径向漂移和轴向伸长;Radial drift and axial elongation of the machine tool spindle due to thermal errors; 主轴径向漂移导致机床的径向切削深度发生改变,即径向切削深度的变化值是主轴径向漂移的函数,表示为:The radial drift of the spindle leads to changes in the radial depth of cut of the machine tool, that is, the change value of the radial depth of cut is a function of the radial drift of the spindle, expressed as: Δae=f(δxy)Δa e =f(δ xy ) 其中,Δae表示径向切削深度的变化值;δx、δy表示主轴因热误差导致的在X、Y方向的径向漂移;Among them, Δa e represents the change value of the radial cutting depth; δ x and δ y represent the radial drift of the spindle in the X and Y directions caused by thermal errors; 主轴轴向伸长导致机床的轴向切深发生改变,且轴向伸长与轴向切深之间的关系为:The axial elongation of the spindle causes the axial depth of cut of the machine tool to change, and the relationship between the axial elongation and the axial depth of cut is: δz=Δap δ z = Δa p 其中,Δap表示轴向切深的变化值;δz表示主轴因热误差导致的在Z方向的轴向伸长;Among them, Δa p represents the change value of the axial depth of cut; δ z represents the axial elongation of the spindle in the Z direction caused by thermal errors; 因此,因热误差导致的机床切削力的变化可表示为:Therefore, the change in the cutting force of the machine tool due to thermal error can be expressed as: 其中,ΔFx表示同等加工条件下,因热误差导致的前后两次切削在x方向上的切削力的变化值;Among them, ΔF x represents the change value of the cutting force in the x direction of the two cuttings caused by the thermal error under the same processing conditions; ΔFy表示同等加工条件下,因热误差导致的前后两次切削在y方向上的切削力的变化值;ΔF y represents the change value of the cutting force in the y direction of the two cuttings caused by the thermal error under the same processing conditions; ΔFz表示同等加工条件下,因热误差导致的前后两次切削在z方向上的切削力的变化值;ΔF z represents the change value of the cutting force in the z direction of the two cuttings caused by the thermal error under the same processing conditions; 从而可以求解得到机床热误差的表达式为:Therefore, the expression of the thermal error of the machine tool can be solved as follows: δx=A0ΔFx A1ΔFy A2ΔFz A3VA4 δ x = A 0 ΔF x A1 ΔF y A2 ΔF z A3 V A4 δy=B0ΔFx B1ΔFy B2ΔFz B3VB4 δ y = B 0 ΔF x B1 ΔF y B2 ΔF z B3 V B4 δz=C0ΔFx C1ΔFy C2ΔFz C3VC4 δ z = C 0 ΔF x C1 ΔF y C2 ΔF z C3 V C4 其中,V表示主轴转速;Among them, V represents the spindle speed; A0,A1,A2,A3,A4表示X方向热误差的回归系数;A0, A1, A2, A3, A4 represent the regression coefficient of the thermal error in the X direction; B0,B1,B2,B3,B4表示Y方向热误差的回归系数;B0, B1, B2, B3, B4 represent the regression coefficient of the thermal error in the Y direction; C0,C1,C2,C3,C4表示Z方向热误差的回归系数;C0, C1, C2, C3, C4 represent the regression coefficient of the thermal error in the Z direction; 从而创建得到热误差模型。This creates a thermal error model. 2.一种如权利要求1所述基于切削力的热误差模型创建方法创建得到的热误差模型的求解方法,其特征在于:测量至少15组机床主轴的热误差-切削力数据并代入所述热误差模型,利用多元回归算法求解热误差模型中在X方向热误差的回归系数、在Y方向热误差的回归系数和在Z方向热误差的回归系数;其中,热误差-切削力数据包括热误差数据和对应的切削力数据。2. A method for solving the thermal error model created by the thermal error model creation method based on cutting force as claimed in claim 1, characterized in that: measure the thermal error-cutting force data of at least 15 groups of machine tool spindles and substitute into said Thermal error model, using multiple regression algorithm to solve the regression coefficient of thermal error in the X direction, the regression coefficient of thermal error in the Y direction and the regression coefficient of thermal error in the Z direction in the thermal error model; where, the thermal error-cutting force data includes thermal error Error data and corresponding cutting force data. 3.根据权利要求2所述基于切削力的热误差模型的求解方法,其特征在于:热误差数据的测量方法为:3. according to the solution method of the thermal error model based on cutting force described in claim 2, it is characterized in that: the measuring method of thermal error data is: 沿主轴轴向方向分别设置两个用于检测主轴在X方向上的径向漂移的位移传感器和两个用于检测主轴在Y方向上的径向漂移的两个位移传感器;在主轴的自由端端部设置一个用于检测主轴在Z方向上的轴向伸长的位移传感器;从而可以得到:Two displacement sensors for detecting the radial drift of the main shaft in the X direction and two displacement sensors for detecting the radial drift of the main shaft in the Y direction are respectively arranged along the axial direction of the main shaft; at the free end of the main shaft A displacement sensor for detecting the axial elongation of the main shaft in the Z direction is provided at the end; thus: δz=zδ z = z 其中,Lx,Ly分别为主轴固定端距离X、Y方向最近的位移传感器距的距离;Hx,Hy分别为X、Y方向上的两个位移传感器之间的距离;x1,x2分别为X方向上的两个位移传感器测量得到的位移值;y1,y2分别为Y方向上的两个位移传感器测量得到的位移值;z为Z方向上的位移传感器测量得到的位移值;αx,αy分别为绕Y、X轴的热倾斜。Among them, L x , L y are the distances from the fixed end of the spindle to the nearest displacement sensor in the X and Y directions; H x , Hy are the distances between the two displacement sensors in the X and Y directions respectively; x 1 , x 2 is the displacement value measured by the two displacement sensors in the X direction; y 1 and y 2 are the displacement values measured by the two displacement sensors in the Y direction; z is the displacement value measured by the displacement sensor in the Z direction Displacement value; α x , α y are the thermal inclinations around the Y and X axes respectively.
CN202111074462.4A 2021-09-14 2021-09-14 Establishment method and solution method of thermal error model based on cutting force Active CN113779726B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111074462.4A CN113779726B (en) 2021-09-14 2021-09-14 Establishment method and solution method of thermal error model based on cutting force

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111074462.4A CN113779726B (en) 2021-09-14 2021-09-14 Establishment method and solution method of thermal error model based on cutting force

Publications (2)

Publication Number Publication Date
CN113779726A CN113779726A (en) 2021-12-10
CN113779726B true CN113779726B (en) 2023-08-22

Family

ID=78843570

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111074462.4A Active CN113779726B (en) 2021-09-14 2021-09-14 Establishment method and solution method of thermal error model based on cutting force

Country Status (1)

Country Link
CN (1) CN113779726B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1211418A (en) * 1967-11-27 1970-11-04 Ikegai Iron Works Ltd An automatic tool position compensating system for a numerically controlled machine tool
JP2012038017A (en) * 2010-08-05 2012-02-23 Tottori Univ Method and device for cutting work
WO2014081281A2 (en) * 2012-11-26 2014-05-30 Universiti Malaya (Um) Lubrication system in cnc machine linear guide ways for precise machining and less oil consumption
TW201631427A (en) * 2015-02-17 2016-09-01 Victor Taichung Machinery Works Co Ltd Correction system and method for thermal displacement of CNC machine tool
CN106736848A (en) * 2016-12-13 2017-05-31 西安交通大学 Numerically controlled lathe Thermal Error measures compensation system and compensation method
CN107498391A (en) * 2017-08-03 2017-12-22 南京航空航天大学 The heating power of machine cut process is load simulated and error detecting system and method
CN109143967A (en) * 2018-08-28 2019-01-04 大连理工大学 A kind of the feed system Thermal Error test device and method of simulation cutting power load condition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1211418A (en) * 1967-11-27 1970-11-04 Ikegai Iron Works Ltd An automatic tool position compensating system for a numerically controlled machine tool
JP2012038017A (en) * 2010-08-05 2012-02-23 Tottori Univ Method and device for cutting work
WO2014081281A2 (en) * 2012-11-26 2014-05-30 Universiti Malaya (Um) Lubrication system in cnc machine linear guide ways for precise machining and less oil consumption
TW201631427A (en) * 2015-02-17 2016-09-01 Victor Taichung Machinery Works Co Ltd Correction system and method for thermal displacement of CNC machine tool
CN106736848A (en) * 2016-12-13 2017-05-31 西安交通大学 Numerically controlled lathe Thermal Error measures compensation system and compensation method
CN107498391A (en) * 2017-08-03 2017-12-22 南京航空航天大学 The heating power of machine cut process is load simulated and error detecting system and method
CN109143967A (en) * 2018-08-28 2019-01-04 大连理工大学 A kind of the feed system Thermal Error test device and method of simulation cutting power load condition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
数控落地镗铣床滑枕组件热力耦合场分析及误差补偿方法;王泽民;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》(第8期);全文 *

Also Published As

Publication number Publication date
CN113779726A (en) 2021-12-10

Similar Documents

Publication Publication Date Title
CN103328154B (en) Error measure device and error measure method
CN103878641B (en) The rotating shaft geometric error discrimination method that a kind of five-axle number control machine tool is general
CN111487923B (en) Swing position error detection and identification method for CA double-swing five-axis numerical control machine tool
CN112207627B (en) Automatic compensation device and compensation method for tool wear of CNC machining center
WO2021189298A1 (en) Swing head position error detection and identification method for ca double-swing-head five-axis numerically controlled machine tool
CN102785128A (en) On-line detection system and detection method of machining accuracy of parts for numerically controlled lathe
CN105397560B (en) One kind is dry to cut chain digital control gear hobbing machine bed and workpiece method for thermal deformation error compensation
CN112526924B (en) Calibration method of 3D measuring head for five-axis double-cradle structure machine tool
CN102689234B (en) Device and method for detecting thermal errors of hobbing machine tool
CN112580160B (en) On-machine measurement system calibration method for forming gear grinding machine
CN202964283U (en) Device for detecting length of tool of numerical control milling machine
CN105665846A (en) Construction method for trapezoidal internal thread turning transient cutting force model
CN103801987A (en) Method for improving precision of numerically-controlled machine tool main shaft rotating thermal error measuring data
CN114296396A (en) Numerical control lathe spindle thermal error measuring device and modeling method
CN103197601A (en) Cutter-shaft-swing five-coordinate numerical control machine tool pendulum length determination method
Maščeník et al. Determining the exact value of the shape deviations of the experimental measurements
CN105066883A (en) Method for rapidly measuring end surface pin hole location degree of revolving body type part
CN113779726B (en) Establishment method and solution method of thermal error model based on cutting force
CN104180789B (en) Blade detection method based on graphic matching algorithm
CN202656009U (en) Part processing accuracy online detection system facing numerically controlled lathe
CN101135899A (en) An online inspection system for precision CNC machine tools
CN102974995B (en) A kind of little hole forming method
CN105058163A (en) Device and method for measuring thermal error at working state of gear grinding machine
CN117348546B (en) A method for evaluating process quality of flexible production line
CN110877237B (en) Compensation method based on the eccentricity of the center of rotation of the grinding machine spindle and the center of rotation of the workpiece

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant