CN113773063A - 一种多孔陶瓷的制备方法 - Google Patents

一种多孔陶瓷的制备方法 Download PDF

Info

Publication number
CN113773063A
CN113773063A CN202010515624.2A CN202010515624A CN113773063A CN 113773063 A CN113773063 A CN 113773063A CN 202010515624 A CN202010515624 A CN 202010515624A CN 113773063 A CN113773063 A CN 113773063A
Authority
CN
China
Prior art keywords
gel
porous ceramic
sol
inorganic salt
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010515624.2A
Other languages
English (en)
Other versions
CN113773063B (zh
Inventor
郭新爽
王献忠
万力
黄葳
颜嘉威
闵俊豪
祝嘉诚
胡兆龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pingxiang University
Original Assignee
Pingxiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pingxiang University filed Critical Pingxiang University
Priority to CN202010515624.2A priority Critical patent/CN113773063B/zh
Publication of CN113773063A publication Critical patent/CN113773063A/zh
Application granted granted Critical
Publication of CN113773063B publication Critical patent/CN113773063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/11Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with bag, cage, hose, tube, sleeve or like filtering elements
    • B01D29/13Supported filter elements
    • B01D29/15Supported filter elements arranged for inward flow filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • B01D29/56Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in series connection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • B01D39/2068Other inorganic materials, e.g. ceramics
    • B01D39/2093Ceramic foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/653500-1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/069Other materials, e.g. catalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/10Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by using foaming agents or by using mechanical means, e.g. adding preformed foam
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Nanotechnology (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种多孔陶瓷的制备方法,特别是涉及一种原位造孔技术。本发明的方法克服利用普通造孔剂法成型时,造孔剂直接添加时存在团聚和难分散问题,制备孔的不均匀等现象。本发明的制备方法以溶胶、酸和碱为原料,通过向溶胶中直接加入过量的酸和碱,以在形成凝胶体的同时,在凝胶体中产生酸碱反应生成的无机盐晶体的原位析出,无机盐晶体作为造孔剂,烧结后制得多孔陶瓷。该方法工艺简便,成型设备简单,便于工业化应用。

Description

一种多孔陶瓷的制备方法
技术领域
本发明涉及多孔陶瓷原位造孔技术领域,尤其涉及一种多孔陶瓷的制备方法。
背景技术
因兼备耐高温、热稳定性佳和密度低等优异性能,多孔陶瓷在过滤和催化剂载体等领域备受瞩目。随着环境问题的日益尖锐,尤其是水和大气处理方面,对多孔陶瓷特别是多级孔结构的多孔陶瓷的需求日趋增加。多级孔结构的多孔陶瓷的典型特点具有两种及以上孔结构类型,因此它具有高过滤,通量高,低密度且高比表面积特征而被备受瞩目。多孔陶瓷的制备工艺通常有溶胶凝胶法、复制法、发泡法和造孔剂法的一种和两种以上进行组合的,其中造孔剂法容易简便且普适性广而应用广泛。利用造孔剂法制备纳米孔结构多孔陶瓷时,通常采用直接加入纳米造孔剂的方法,在制备过程中纳米造孔剂容易发生团聚,造成纳米孔陶瓷的孔均匀性和连通性差,造成陶瓷骨架强度降低,且纳米孔结构得不到有效利用,影响使用效能。
发明内容
为了解决上述技术问题,本发明开发了一种多孔陶瓷的制备方法,能够克服目前制备方法制备的多孔陶瓷的强度较低的问题,此外,还避免了目前添加纳米造孔剂制备带纳米孔的多孔陶瓷时,纳米造孔剂容易发生团聚且制备的孔不均匀,导致其孔均匀性和连通性欠佳等问题。
为达到上述目的,本发明采取的技术方案是:
一方面,本发明提供了一种多孔陶瓷的制备方法,制备方法以溶胶、酸和碱为原料,通过向溶胶中直接加入过量的酸和碱,以在形成凝胶体的同时,在凝胶体中产生酸碱反应生成的无机盐晶体原位析出,无机盐晶体作为造孔剂,烧结后制得多孔陶瓷。
进一步的,生成的无机盐为可热解为气体的无机盐。
进一步的,制备方法包括如下步骤:
步骤1、将溶胶放入器皿中,然后加入一定量的酸,进行搅拌,再加入过量的碱,充分搅拌后使混合液凝胶,得到凝胶体;
步骤2、将步骤1得到的凝胶体室温下静置至凝胶老化,并使得凝胶体中酸碱反应生成的无机盐晶体原位析出,得到凝胶块体;
步骤3、将凝胶块体烘干,然后将烘干的凝胶块体采用真空烧结得到含有纳米孔的多孔陶瓷。
进一步的,步骤1中,其原料组成的体积比为:溶胶:酸:碱=15~28:3~8:4~12。
进一步的,步骤2中,将烘干的凝胶块体烧结得到多孔陶瓷的步骤包括:将烘干的凝胶块体放入高温炉中,以第一速度升温至无机盐的热解温度后保温,然后继续以第二速度升温至最终烧结温度并保温,得到含有纳米孔的多孔陶瓷。
进一步的,最终烧结温度为700~1500℃。
进一步的,制备方法中还可以添加碳纳米管作为增强骨架,加入发泡剂实现多级造孔。
进一步的,发泡剂为十二烷基硫酸钠。
进一步的,无机盐为氯化铵、磷酸铵或醋酸铵中的一种。
进一步的,制备方法包括如下步骤:
S1、在量取好的水中加入羧甲基纤维素钠,待羧甲基纤维素钠溶解后加入CNT,并使CNT均匀分散,得到溶液中含有连续的CNT三维网络的CNT分散液;
S2、在CNT分散液中加入溶胶,再添加HCl和SDS后搅拌进行发泡,在发泡的混合液中滴加氨水促使溶胶变成凝胶;
S3、将S2得到的凝胶室温下静置至凝胶老化以及NH4Cl的预析晶后得到凝胶块体,把凝胶块体在干燥箱中干燥后置于高温炉中烧结,当温度达到NH4Cl分解温度后,保温将NH4Cl除去后加热到最终烧结温度烧结,获得多孔陶瓷。
本发明与现有技术相比至少存在以下优点:
a.本申请提供的多孔陶瓷的制备方法采用溶胶凝胶法,以溶胶、酸和碱为原料,通过向溶胶中直接加入过量的酸和碱,使其形成凝胶体,在凝胶体老化过程中,凝胶体内发生酸碱反应生成的无机盐晶体原位析出,原位析出的晶体在凝胶内均匀分布,在烧结过程中,无机盐晶体达到分解温度时,无机盐分解排除,在原位留下纳米孔,再经过高温烧结最终能够得到含有纳米孔且孔连通的多孔陶瓷。由于反应在凝胶中进行,反应较为均匀,基本不会产生类似外加纳米球团聚的现象,所制得的含有纳米孔的多孔陶瓷的孔径均匀且连通性好。
b.本申请中引入以高强高韧性的碳纳米管(CNT)来实现陶瓷骨架增强,通过在CNT分散液中形成其三维网络,利用该网络增强凝胶体并最终实现增强多孔陶瓷强度的目的;通过盐酸和氨水将溶胶迅速凝胶,让两者在凝胶体中缓慢反应并析出NH4Cl晶体,NH4Cl在SDS的作用下析晶体生成NH4Cl纤维并穿插生长在发泡剂SDS作用下形成的泡与泡形成的孔壁中;将具有析晶体及其纤维的凝胶体烧结后,NH4Cl分解后将在原来的位置处留下不同孔尺寸的孔结构,并与发泡制得的孔共同形成多级孔结构的多孔陶瓷。
c.本申请提高的多孔陶瓷制备方法实施简便,成本低廉、操作简单、绿色环保,对设备要求简单。该方法制备的多级孔结构的多孔陶瓷可用于多级过滤和催化剂载体,适合规模化推广应用。
本申请中所述各技术方案之间,还可以相互组合来达成更多的优选方式。本发明的其他特征和优点将在随后的说明书中论述,方案优点可从说明书中简便获得,并且可通过本申请中的实施例明晰。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,并不构成对本申请的不当限定。
图1为本发明实施例1中烧结后的块状凝胶体的微观形貌;
图2为本发明实施例3中用于制备多孔陶瓷的凝胶体烧结前的宏观图;
图3为本发明实施例3中用于制备多孔陶瓷的凝胶体中生成的NH4Cl纤维的形貌;
图4为本发明实施例3的多孔陶瓷的样品形貌;
图5为本发明的多孔陶瓷的多级孔结构的三维示意图。
附图标记:
1-一级孔;2-二级孔;3-三级孔。
具体实施方式
以下结合具体实施例及附图对本发明的技术方案作进一步详细描述,但本发明的保护范围及实施方式不限于此。
本发明提供了一种多孔陶瓷的制备方法,采用溶胶凝胶工艺,以溶胶、酸和碱为原料,通过向溶胶中直接加入过量的酸和碱,使其形成凝胶体,凝胶体老化的同时在凝胶体中产生酸碱反应生成的无机盐晶体的原位析出,通过烧结排除无机盐晶体最终制得多孔陶瓷。
值得注意的是,上述生成的无机盐为可热解为气体的无机盐,上述无机盐在凝胶体中原位析晶;烧结过程中,当达到无机盐晶体分解温度时,无机盐晶体分解为气体排出,原无机盐晶体位置留下纳米晶体分解后的纳米孔,继续升温使基体烧结,最终能够得到含有纳米孔的多孔陶瓷。
示例性的,上述无机盐可以为NH4Cl、磷酸铵、醋酸铵等。
为实现上述发明目的,多孔陶瓷的制备方法包括如下步骤:
步骤1、将溶胶放入器皿中,然后加入一定量的酸,在一定的搅拌速率和搅拌时间下进行搅拌,再加入过量的碱,迅速均匀搅拌后使混合液凝胶,得到凝胶体;
步骤2、将步骤1得到的凝胶体室温下静置至凝胶老化,并使得凝胶体中酸碱反应生成的无机盐晶体原位析出,得到凝胶块体;
步骤3、将步骤2所得的凝胶块体烘干,然后将烘干的凝胶块体采用真空烧结得到含有纳米孔的多孔陶瓷。
值得注意的是,上述步骤1中,其原料组成的体积比为:溶胶:酸:碱=15~28:3~8:4~12。
为了提供步骤2中盐原位析晶的条件,控制步骤1中酸与碱的体积比为1~2。当生成NH4Cl时,过量的碱有利于凝胶反应的进行,且可以在凝胶内留下未被反应的铵根离子,在凝胶老化的过程中铵根离子与氯离子结合生成NH4Cl晶体。
需要说明的是,上述步骤1中的溶胶可以是硅溶胶、铝溶胶或锆溶胶等或者它们的组合溶胶。
上述步骤1中,为了使凝胶体更加均匀,将搅拌速度控制为200~350r/min,搅拌时间为10~60min。
值得注意的是,上述步骤1中,必须先加入盐酸搅拌均匀后,最后加氨水。如果先加入氨水再加入少量盐酸,虽然铵根离子过量,但是由于碱过量,易产生絮凝影响凝胶的均匀性。
上述步骤2中,控制凝胶体室温下静置8-24h,以便控制无机盐晶体能充分的原位析出。
上述步骤3中,控制凝胶块体烘干温度为60~80℃,烘干后的凝胶块体采用真空烧结得到含有纳米孔的多孔陶瓷。
上述步骤3中,将烘干的凝胶块体采用真空烧结得到多孔陶瓷的步骤包括:将烘干的凝胶块体放入真空高温炉中,以第一速度V1升温至盐的热解温度后保温t1时间(此阶段是为了保证无机盐晶体的分解排除),然后继续以第二速度V2升温至最终烧结温度并保温t2时间,得到含有纳米孔的多孔陶瓷。
上述步骤3中,控制第一速度V1为2~5℃/min,控制第二速度V2为3~5℃/min。
具体的,上述步骤3中,为了保证盐充分分解排除,并且保证不会在排除过程中造成基体开裂或破碎,保证基体结构的完整性,控制保温时间t1为50~120min。
需要说明的是,上述步骤3中,烧结温度对孔结构影响很大,最终烧结温度过高会导致因液相生成过多而坍塌;过低会造成制备的多孔陶瓷强度较低。因此,控制最终烧结温度为700~1500℃;t2过长会导致大量液相生成堵孔,降低气孔率;过短会导致多孔陶瓷强度低。因此,控制t2为1~3h。
上述步骤3中,含有纳米孔的多孔陶瓷的气孔率为71.3%。
本申请提供的多孔陶瓷的制备方法采用溶胶凝胶法,以溶胶、酸和碱为原料,通过向溶胶中直接加入过量的酸和碱,使其形成凝胶体,在凝胶体老化过程中,凝胶体内发生酸碱反应生成的无机盐晶体原位析出。原位析出的晶体在凝胶内均匀分布,在烧结过程中,无机盐晶体达到分解温度时,无机盐分解排除,在原位留下纳米孔,再经过高温烧结最终能够得到含有纳米孔且孔连通的多孔陶瓷。由于反应在凝胶中进行,反应较为均匀,基本不会产生类似外加纳米造孔剂团聚的现象,所制得的含有纳米孔的多孔陶瓷的孔径均匀且连通性好。
在一种可能的设计中,为了进一步提高多孔陶瓷的孔的连通性,并且增加多孔陶瓷的强度,多孔陶瓷的制备方法中还可以添加碳纳米管(CNT)作为增强骨架,加入十二烷基硫酸钠(SDS)实现多级造孔,采用的盐可以为NH4Cl。具体的,多孔陶瓷的制备方法包括如下步骤:
S1、在水中加入CNT和CMC(羧甲基纤维素钠)后制得具有良好分散性的CNT分散液,CNT分散液中含有三维CNT网络;
S2、在CNT分散液中,加入溶胶,然后再加入盐酸和SDS搅拌发泡,调控溶液中产生均匀的气泡,最后利用氨水进行凝胶以制得凝胶体(凝胶体的微观形貌如图1所示);
S3、将S2得到的凝胶体室温下静置至凝胶老化以及NH4Cl的预析晶后得到凝胶块体,再将烘干的凝胶块体烧结得到具有多级孔结构的多孔陶瓷材料。
需要说明的是,S1-S3中,其原料组成的质量或体积比为:CMC:CNT:水:溶胶:盐酸:SDS:氨水=0.03~0.06g:0.06~0.12g:10~20mL:15~35mL:3~8ml:0.15~0.3g:4~12mL。
在S1中,当CNT在溶液中进行超声分散时,如果处理时间过短会造成CNT分散性差,而处理时间过长则会导致CNT结构及长度被破坏而增强效果差且影响效率。所以控制CNT超声分散的时间为40~120min。此外,当超声功率过大会破坏碳纳米管的结构;过小则团聚的CNT达不能分散均匀。因而控制超声功率为120~200w来使CNT充分得到良好分散。
在S1中,实验所用的水为去离子水,因为它的化学纯度高且几乎不含杂质物质,避免了对CNT分散性提高的负面作用。
值得注意的是,在S1中,如果CNT的浓度过高会导致其分散性差且团聚加剧;如果CNT的浓度过低会造成CNT三维网络不完整而对陶瓷骨架的增强效果变差。所以控制CNT分散液中CNT的浓度为0.004~0.012g/mL来有效起到增强作用。
需要说明的是,在S1中,如果CMC的浓度过大会导致溶液粘度偏高会造成CNT团聚性加剧,但如果CNT浓度偏小会导致CNT的分散性欠佳。所以CMC的浓度设定在0.001~0.005g/ml之间来达到较好分散效果。
需要说明的是,在S2中的溶胶可以是硅溶胶、铝溶胶或锆溶胶等或者它们的组合溶胶。
上述S2中,如果CNT和溶胶的体积比过大,即碳纳米管过少、导致碳纳米管在基体中起不到实质性增强作用;过小即溶胶过少,导致形成的凝胶网络不完整。因此,控制CNT与溶胶的体积比为1~3。
上述S2中,为了提供步骤3中NH4Cl原位析晶和NH4Cl长出纤维的条件,控制盐酸与氨水的体积比为1~2比较合适。
上述S2中,混合液中的SDS的浓度过高会过于促进NH4Cl纤维的长出,破坏基体强度和结构;过低会导致发泡量不足,降低气孔率以及不能很好的促进NH4Cl纤维的长出。因此,控制混合液中的SDS的浓度为0.003~0.008g/ml比较合适。
进一步的,上述S2中,为了保证得到有大小均匀的气泡的混合液,搅拌速度为200~350r/min,搅拌时间为10~60min时实验效果最佳。
需要强调的是,上述S2中,必须依次加入盐酸、SDS,搅拌产生均匀气泡后,最后加氨水才能凝胶并封存气泡;盐酸和氨水可促进溶胶凝胶,SDS按此操作顺序也能够保证实验安全。
为了保证凝胶完全老化和NH4Cl原位析晶,以及保证在凝胶体中完全长出NH4Cl纤维(NH4Cl纤维的SEM图如图3所示),上述S3中,控制凝胶体室温下静置8-24h;控制凝胶块体烘干温度为60~80℃,烘干后的凝胶块体采用真空烧结得到多级孔结构的多孔陶瓷。
S3中,将烘干的凝胶块体采用真空烧结得到多级孔结构的多孔陶瓷的步骤包括:将烘干的凝胶块体放入真空高温炉中,以第一速度V1升温至NH4Cl热解温度后保温t1时间(排除NH4Cl),然后继续以第二速度V2升温至最终烧结温度并保温t2时间,得到多级孔结构的多孔陶瓷。
第一速度V1过大会使NH4Cl的分解速度过快,导致基体开裂,且对炉子质量要求较高;第一速度V1过小,效率较低。因此,控制第一速度V1为2~5℃/min。
具体的,控制第二速度V2为3~5℃/min。
上述S3中,为了保证凝胶中生成的NH4Cl晶体充分分解排除基体,避免它在排除过程中造成基体开裂或破碎,保证基体结构的完整性,控制t1为50~120min。
需要说明的是,上述S3中,最终烧结温度过高会导致因液相生成过多而坍塌;过低会造成制备的多孔陶瓷强度较低。因此,控制最终烧结温度为700~1500℃;t2过长会导致大量液相生成堵塞孔结构而降低气孔率;过短会导致多孔陶瓷强度低。因此,控制t2为1~3h,优选的,t2为2h。
S3中得到的多级孔结构的多孔陶瓷的结构如图4至图5所示,多级孔结构的多孔陶瓷表面和内部均分布有毫米级的一级孔1、微米级的二级孔2和纳米级的三级孔3;一级孔1的孔壁上分布有二级孔2和三级孔3;二级孔2的孔壁上也分布有三级孔3;多孔陶瓷的气孔率为65%~82%(例如,68.2%~78.3%);其中,一级孔的孔径范围为0.8~3mm,二级孔的孔径范围为2~15μm,三级孔的孔径范围为30~100nm,一级孔、二级孔和三级孔的结构和大小均比较均匀。
具体的,多级孔结构的多孔陶瓷的抗弯强度为7~13.5MPa。
本发明的多孔陶瓷的制备方法以溶胶作原料,CNT为增强材料和SDS为发泡剂,利用盐酸和氨水将溶胶变为凝胶并封存气泡,发泡产生的气泡作为一级造孔剂;并将盐酸和氨水生成的NH4Cl在凝胶基体中原位析晶,再利用发泡剂诱导NH4Cl在基体中长成纤维作为二级造孔剂,未成纤维的NH4Cl晶体作为三级造孔剂,通过(700~1500℃)真空烧结得到多级孔结构的多孔陶瓷。
通过对比现有技术可知,本申请发明提供的多孔陶瓷的制备方法中引入以高强高韧性和高强度的碳纳米管CNT来实现陶瓷骨架增强为增强骨架,通过在CNT分散液中形成其三维网络,利用该网络增强凝胶体并最终实现增强多孔陶瓷的目的从而在凝胶体中形成均匀的碳纳米管增强网络,提升多孔陶瓷的强度。其次碳纳米管互相搭接,也能提高气孔率;采用通过盐酸和氨水,利用溶胶凝胶法,促使将溶胶迅速凝胶,让两者在凝胶体中缓慢反应并析出NH4Cl晶体使得盐酸和氨水反应生成氯化铵NH4Cl而在凝胶体中缓慢析晶,且在表面活性剂十二烷基硫酸钠SDS的作用下,析晶体生成氯化铵NH4Cl纤维,并在基体中穿插生长在发泡形成的泡与泡形成的孔壁中。将具有析晶体及其纤维的凝胶体烧结后,烧结过程中,NH4Cl的析晶和氯化铵纤维达到分解温度时,分别原位留下约为30~100nm和2~15μm大小的孔,并与发泡得到制得的孔共同构建形成了多级孔结构的多孔陶瓷,大大的提升了气孔率和比表面积。
本发明由于NH4Cl析晶和NH4Cl纤维的生成,所以需要在NH4Cl热解温度300~350℃保温一定时间,使得NH4Cl充分分解排除,从而不会由于排除过程中造成基体开裂或破碎,保证了基体结构的完整性。
本申请发明提供的多孔陶瓷制备方法实施简便工艺简单,成本低廉、操作简单、绿色环保,对设备要求简单。该方法制备的多级孔结构多孔陶瓷可用于多级过滤和催化剂载体,适合规模化推广应用。
实施例1
首先在烧杯中加入20mL硅溶胶,然后加入5ml盐酸,以搅拌速度为200r/min搅拌,搅拌时间为15min,再加入7mL氨水,边加边搅拌,直至凝胶,得到凝胶体。将得到的凝胶体室温下静置10h得到凝胶块体,将凝胶块体放入鼓风干燥箱60℃烘干,待烘干后将凝胶块体放入高温炉,700℃烧结2h,升温速率V1为3℃/min,V2为4℃/min,得到含纳米孔的多孔陶瓷。其中,在350℃将NH4Cl分解,预排除1h。本实施例制得的多孔陶瓷的纳米孔的孔径大小为50-100nm;多孔陶瓷的气孔率为71.6%,抗弯强度约为0.9MPa。
实施例2
首先在烧杯中加入20mL硅溶胶,然后加入5ml盐酸以搅拌速度为250r/min搅拌,搅拌时间为10min,再加入7mL氨水,边加边搅拌,直至凝胶,得到凝胶体。将制得的凝胶体在室温下静置24h得到凝胶块体,将凝胶块体放入鼓风干燥箱50℃烘干,待烘干后将凝胶块体放入高温炉,在350℃将NH4Cl预排除2h,在800℃烧结2h制得含纳米孔的多孔陶瓷。升温速率V1为3℃/min,V2为4℃/min。本实施例制得的多孔陶瓷的纳米孔的孔径大小为40-75nm;多孔陶瓷的气孔率为68.2%,抗弯强度约为1.3MPa。
实施例3
首先在烧杯中加入20mL水,然后在其中加入0.06g的CNT和0.03g的CMC,在超声功率为130w和超声时间为90min时超声后得到均匀分散的CNT分散液。在制得的CNT分散液中加入20mL硅溶胶,然后在上述混合液中添加5ml的HCl和0.15g的SDS,将搅拌速度设定为200r/min,通过15min的充分搅拌使溶胶中产生均匀的气泡。在发泡均匀的溶胶中添加7mL氨水使其变成凝胶并封存产生的气泡。把制得的凝胶体在室温下静置24h得到凝胶块体,然后将其在60℃中烘干,通过在表面活性剂SDS的诱导作用,在凝胶块体中将长出大量的NH4Cl纤维,将烘干后将凝胶块体放入高温炉,在350℃保温2h将NH4Cl分解,然后再升温至800℃保温2h得到多级孔结构的多孔陶瓷(如图4所示),升温速率V1为3℃/min,V2为4℃/min。本实施例制得的多孔陶瓷的一级孔的孔径大小为0.9~2.5mm;二级孔大小为4~15μm;三级孔大小约为40-100nm;多孔陶瓷的气孔率为78.3%,抗弯强度约为9.3MPa。
实施例4
首先在烧杯中加入20mL水,然后再称取0.1g的CNT和0.03g的CMC加入放有水的烧杯中,在超声功率为150w和超声时间为60min时超声得到均匀分散的CNT分散液。再将22mL硅铝溶胶加入到CNT分散液中,按顺序加入3ml盐酸,0.15gSDS,以搅拌速度为350r/min,搅拌时间为15min,充分搅拌使溶胶均匀发泡后,再加入12mL氨水,边加边搅拌,直至凝胶并封存气泡,得到凝胶体。将制到的凝胶体室温下静置12h得到凝胶块体,将凝胶块体放入鼓风干燥箱70℃烘干,在表面活性剂SDS的诱导下,凝胶块体会长出大量的NH4Cl纤维,待烘干后将凝胶块体放入高温炉,1300℃烧结2h,升温速率V1为3℃/min,V2为4℃/min,得到多孔陶瓷。其中,在350℃将NH4Cl分解,预排除1h。本实施例制得的多孔陶瓷的一级孔的孔径大小为0.8~1.6mm,;二级孔大小为2~10μm,三级孔大小为35-90nm;多孔陶瓷的气孔率约为73.5%,抗弯强度约为13MPa。
本申请发明提供的多孔陶瓷的制备方法实施简便、工艺简单、成本低廉、操作简单、绿色环保,对设备要求简单。该方法制备的多级孔结构多孔陶瓷可用于多级过滤和催化剂载体,适合规模化推广应用。上述实施例仅例示性地对本发明的技术方案进行了说明,而非用于限定本发明保护的范围,本技术领域的技术人员在本发明揭露的技术范围内,所作的任何修改、等同替换、改进等,均属于本发明所要求保护的范围。

Claims (10)

1.一种多孔陶瓷的制备方法,其特征在于,所述制备方法以溶胶、酸和碱为原料,通过向溶胶中直接加入过量的酸和碱,以在形成凝胶体的同时,在凝胶体中产生酸碱反应生成的无机盐晶体原位析出,无机盐晶体作为造孔剂,烧结后制得多孔陶瓷。
2.按照权利要求1所述的制备方法,其特征在于,所述生成的无机盐为可热解为气体的无机盐。
3.按照权利要求1-2所述的制备方法,其特征在于,所述制备方法包括如下步骤:
步骤1、将溶胶放入器皿中,然后加入一定量的酸,进行搅拌,再加入过量的碱,充分搅拌后使混合液凝胶,得到凝胶体;
步骤2、将步骤1得到的凝胶体室温下静置至凝胶老化,并使得凝胶体中酸碱反应生成的无机盐晶体原位析出,得到凝胶块体;
步骤3、将凝胶块体烘干,然后将烘干的凝胶块体采用真空烧结得到含有纳米孔的多孔陶瓷。
4.按照权利要求3所述的制备方法,其特征在于,所述步骤1中,其原料组成的体积比为:溶胶:酸:碱=15~28:3~8:4~12。
5.按照权利要求4所述的制备方法,其特征在于,所述步骤3中,将烘干的凝胶块体烧结得到多孔陶瓷的步骤包括:将烘干的凝胶块体放入高温炉中,以第一速度升温至无机盐的热解温度后保温,然后继续以第二速度升温至最终烧结温度并保温,得到含有纳米孔的多孔陶瓷。
6.按照权利要求5所述的制备方法,其特征在于,所述最终烧结温度为700~1500℃。
7.按照权利要求3所述的制备方法,其特征在于,所述制备方法中还可以添加碳纳米管作为增强骨架,加入发泡剂实现多级造孔。
8.按照权利要求7所述的制备方法,其特征在于,所述发泡剂为十二烷基硫酸钠。
9.按照权利要求8所述的制备方法,其特征在于,所述无机盐为氯化铵、磷酸铵或醋酸铵中的一种。
10.按照权利要求9所述的制备方法,其特征在于,所述制备方法包括如下步骤:
S1、在量取好的水中加入羧甲基纤维素钠,待羧甲基纤维素钠溶解后加入CNT,并使CNT均匀分散,得到溶液中含有连续的CNT三维网络的CNT分散液;
S2、在CNT分散液中加入溶胶,再添加HCl和SDS后搅拌进行发泡,在发泡的混合液中滴加氨水促使溶胶变成凝胶;
S3、将S2得到的凝胶室温下静置至凝胶老化以及NH4Cl的预析晶后得到凝胶块体,把凝胶块体在干燥箱中干燥后置于高温炉中烧结,当温度达到NH4Cl分解温度后,保温将NH4Cl除去后加热到最终烧结温度烧结,获得多孔陶瓷。
CN202010515624.2A 2020-06-09 2020-06-09 一种多孔陶瓷的制备方法 Active CN113773063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010515624.2A CN113773063B (zh) 2020-06-09 2020-06-09 一种多孔陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010515624.2A CN113773063B (zh) 2020-06-09 2020-06-09 一种多孔陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN113773063A true CN113773063A (zh) 2021-12-10
CN113773063B CN113773063B (zh) 2022-10-04

Family

ID=78834255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010515624.2A Active CN113773063B (zh) 2020-06-09 2020-06-09 一种多孔陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN113773063B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671674A (zh) * 2022-03-14 2022-06-28 上海轩邑新能源发展有限公司 一种二氧化硅泡沫陶瓷及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456535A (zh) * 2003-05-30 2003-11-19 武汉理工大学 水基凝胶注模成型法制备多孔陶瓷的工艺
CN1529373A (zh) * 2003-09-30 2004-09-15 华南理工大学 锌空气电池空气扩散电极的造孔方法及其造孔剂
CN101851112A (zh) * 2010-06-08 2010-10-06 陕西科技大学 一种过滤用安山岩多孔过滤陶瓷的制备方法
CN102294179A (zh) * 2011-08-16 2011-12-28 上海交通大学 无机介孔膜的制备方法
CN102372305A (zh) * 2010-08-13 2012-03-14 范晓星 介孔钨酸盐光催化材料及其制备方法
CN104548213A (zh) * 2014-12-23 2015-04-29 四川大学 一种多孔球形磷酸钙骨填充材料及其制备方法
CN106512103A (zh) * 2016-10-17 2017-03-22 西南交通大学 一种多孔结构陶瓷材料的制备方法
CN107098352A (zh) * 2016-02-20 2017-08-29 金承黎 一种耐高温气凝胶及气凝胶型多孔陶瓷的制备方法
CN108299001A (zh) * 2018-01-05 2018-07-20 江苏省陶瓷研究所有限公司 一种硅基陶瓷型芯成型方法
CN108585798A (zh) * 2018-05-09 2018-09-28 安徽中航名坤新材料科技有限公司 一种纳米多孔氧化铝气凝胶陶瓷小球及其制备方法
CN109225351A (zh) * 2018-09-18 2019-01-18 北京国能中林科技开发有限公司 一种基于碳纳米管/氧化铝复合载体的加氢催化剂及其制备方法和应用
CN109627011A (zh) * 2018-12-12 2019-04-16 萍乡学院 一种具有同心孔的多孔陶瓷的制备方法及多孔陶瓷
CN110550950A (zh) * 2019-10-09 2019-12-10 江苏脒诺甫纳米材料有限公司 一种基于纳米技术的耐高温陶瓷气凝胶制备工艺

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1456535A (zh) * 2003-05-30 2003-11-19 武汉理工大学 水基凝胶注模成型法制备多孔陶瓷的工艺
CN1529373A (zh) * 2003-09-30 2004-09-15 华南理工大学 锌空气电池空气扩散电极的造孔方法及其造孔剂
CN101851112A (zh) * 2010-06-08 2010-10-06 陕西科技大学 一种过滤用安山岩多孔过滤陶瓷的制备方法
CN102372305A (zh) * 2010-08-13 2012-03-14 范晓星 介孔钨酸盐光催化材料及其制备方法
CN102294179A (zh) * 2011-08-16 2011-12-28 上海交通大学 无机介孔膜的制备方法
CN104548213A (zh) * 2014-12-23 2015-04-29 四川大学 一种多孔球形磷酸钙骨填充材料及其制备方法
CN107098352A (zh) * 2016-02-20 2017-08-29 金承黎 一种耐高温气凝胶及气凝胶型多孔陶瓷的制备方法
CN106512103A (zh) * 2016-10-17 2017-03-22 西南交通大学 一种多孔结构陶瓷材料的制备方法
CN108299001A (zh) * 2018-01-05 2018-07-20 江苏省陶瓷研究所有限公司 一种硅基陶瓷型芯成型方法
CN108585798A (zh) * 2018-05-09 2018-09-28 安徽中航名坤新材料科技有限公司 一种纳米多孔氧化铝气凝胶陶瓷小球及其制备方法
CN109225351A (zh) * 2018-09-18 2019-01-18 北京国能中林科技开发有限公司 一种基于碳纳米管/氧化铝复合载体的加氢催化剂及其制备方法和应用
CN109627011A (zh) * 2018-12-12 2019-04-16 萍乡学院 一种具有同心孔的多孔陶瓷的制备方法及多孔陶瓷
CN110550950A (zh) * 2019-10-09 2019-12-10 江苏脒诺甫纳米材料有限公司 一种基于纳米技术的耐高温陶瓷气凝胶制备工艺

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114671674A (zh) * 2022-03-14 2022-06-28 上海轩邑新能源发展有限公司 一种二氧化硅泡沫陶瓷及其制备方法

Also Published As

Publication number Publication date
CN113773063B (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN113773064B (zh) 一种多级孔结构的多孔陶瓷
CN112038648B (zh) 一种中空结构过渡金属钴、氮共掺杂炭氧还原催化剂及其制备方法和应用
JP7099739B2 (ja) 多孔質炭化ケイ素セラミック担体の製造方法
CN111925194B (zh) 一种耐高温高性能气凝胶复合材料及其制备方法
CN111454041A (zh) 一种纤维增强二氧化硅气凝胶的制备方法
CN105905908A (zh) 一种基于埃洛石原料制备纳米硅的方法
CN113773063B (zh) 一种多孔陶瓷的制备方法
CN109019614B (zh) 一种稀土增韧硅气凝胶前驱体
CN105776170B (zh) 一种块体含氮多级孔道炭材料的制备方法
CN112125311A (zh) 一种疏水气凝胶粉体及其快速制备方法
CN113831581A (zh) 一种高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN110127654A (zh) 一种均匀微米孔径三维碳网络的制备方法
CN107057107B (zh) 一种冷冻干燥制备纤维素气凝胶的方法
CN110745807B (zh) 一种碳气凝胶微球及其制备方法
CN113648940B (zh) 一种超轻质高弹性抗辐射纳米纤维气凝胶材料及其制备方法
CN114394612A (zh) 一种耐高温、低密度氧化铝纳米棒气凝胶及其制备方法
CN106431168B (zh) 一种常压干燥制备大块状柔性气凝胶的方法
CN108017047B (zh) 一种类红毛丹型氮杂中空介孔碳球纳米材料及其制备方法
CN103848436B (zh) 一种无模板剂两步法水热合成超微a型沸石的方法
CN110026223B (zh) 一种介孔氮化碳纳米材料的制备方法
CN112661125A (zh) 一种介孔氮化碳中空微球及其制备方法
CN113773110B (zh) 一种碱激发粉煤灰转化的碳纳米管/白榴石多孔陶瓷复合材料的制备方法
JP2001213627A (ja) ゾル・ゲル法を利用した高純度シリカガラスの製造方法
CN115321525A (zh) 一种具有大孔结构石墨烯纳米网的制备方法
CN114368741A (zh) 石墨烯/碳纳米管/二氧化硅气凝胶材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant